• No results found

The inverted Muscle Skeleton approach: moving beyond rigid exoskeletons

N/A
N/A
Protected

Academic year: 2021

Share "The inverted Muscle Skeleton approach: moving beyond rigid exoskeletons"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

This work is supported by NWO, Domain Applied and Engineering Sciences, Project no. 14429.

The inverted Muscle Skeleton approach

Moving beyond rigid exoskeletons

References

[1] A. T. Asbeck, S. M. De Rossi, K. G. Holt, and C. J. Walsh, “A biologically inspired soft exosuit for walking assistance”, 2015.

iMS Knee Extension Prototype Schematic

iMS Knee Extension Prototype Realisation

iMS Prototype Evaluation

Pneumatics and Sensor Schematic

Martijn E. Grootens* Edsko E.G. Hekman Herman van der Kooij

Department of Biomechanical Engineering, University of Twente, The Netherlands.

*m.e.grootens@utwente.nl

Actuators

Push between body segments

Shear forces

Their direction is now inverted

Shear forces carried by straps

No shear forces on the wearer → Only compression forces on wearer

iMS Approach

Artificial muscles

Pull between body segments

Small artificial muscle moment arms

→ Large actuator forces

Large shear forces

Shear forces act on the wearer

→ Torques limited by the shear forces the wearer can support [1]

Exosuits Approach

Cable Cable Actuator Actuator Waist belt Proximal shell Pneumatic cylinders Strap Hip axis Ankle axis Proximal axis Knee axis Distal axis Flexible rod Distal shell Strap Padding Padding

Successful application of iMS approach to knee orthosis design

– Knee extension torque up to 42 Nm

– Range of motion up to 62 degrees (flexion)

Challenges

– Keeping in place during walking

Other possible iMS applications

– Ankle plantarflexion – Upper extremities

Discussion and Conclusion

Assistance ‘strategy’

Virtual compression spring on prototype cylinders, while doing one-legged squats.

ɛ

3/2-W

ay

5/3-W

ay

50L Supply

P

S

Main valve Prop. dir. Valve

Cylinders

P

1

P

2

ɛ

Proximal hinge

ƒ

1

Distal hinge

ƒ

2

Extensor muscles

Normalized time [-] Scaled mean

1111111111111111111111111 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 1111111111111111111111111 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 1111111111111111111111111 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 V as.La t. Vas.Med. Rec.F em.

Muscle Activity (EMG)

Cylinder position ɛ and actuator force Fa ; Tracking of reference force Fr

Time [s]

0

0.05

0.1

0.15

0

20

40

60

0

200

400

F or ce [N] P osition

ɛ

[m] Force Tracking Fr Fa

Squat motion: extension–flexion–extension

Normalized time [-] 1111111111111111111111111 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 99 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 1111111111111111111111111 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 1. 02 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 0. 97 1111111111111111111111111 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 0. 74 Position

ɛ

[m] 0% 50% 100% Assistance level Motion Profile Muscles

Pull between body segments

Small muscle moment arms

→ Large muscle forces

Large compression forces

Compression forces on bones

Musculoskeletal System

Quadriceps

Calf

Referenties

GERELATEERDE DOCUMENTEN

DOEL: In dit vragenlijstonderzoek werd het verband tussen contact met natuur en het cognitief functioneren van kinderen met AD(H)D op twee manieren onderzocht: (1) intra-individueel

grooter dan hoek CTA. Het omgekeerde 'van stelling 45; kan worden be- wezen met behulp van de theorie van het gesloten systeem. Congruentie in het algemeen. Evenals in de

-Men kan dan bepaalde interessante en belangrijke eigenschappen van die functies onderzoeken, zoals periodiciteit en de oplosbaarheid vanf(x) = y bij gegeven y. Dat wil

The rate of wear of the brass-expressed as decrease in weight per meter of sliding distance-differs for alloys with high or low zinc contents, if expressed as

Wanneer bij grote mechanismen, zoals de kraan van fi- guur 30 in Keen translerend vlak wordt gevraagd dan betekent dit met de hiervoor besproken mechanismen, de

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

• Under the latter assumption the BEM-TV AR preltering te hnique perfo rms similar to a state-of- the-art referen e algo rithm in whi h de orrelation by frequen y shifting is