• No results found

Imaginary Axis

N/A
N/A
Protected

Academic year: 2021

Share "Imaginary Axis"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Closed-Loop System Identi ation Framework

Toon van Waters hoot

(ESAT-SCD/SISTA)

SISTA Seminar 19/02/2004

(2)

A ousti Feedba k Problem

Predi tion Error Method for Closed-Loop System Identi ation

Time-varying Autoregressive Noise model

Simulation Results

(3)

speech/

music

G

F

x

(t)

microphone

loudspeaker

electroacoustic

acoustic

feedback path

forward path

y(t)

u(t)

v(t)

H

w(t)

System:

8

<

:

y(t)

=

F

(q)u(t) + v(t)

u(t)

=

G(q)y(t)

v(t)

=

H

(q)w(t)

Closed-Loop Transfer Fun tion:

u(t) =

G(q)

1 − G(q)F (q)

v(t)

(4)

Nyquist: instability o urs if

∃ ω :

|G(e

)F (e

)|

1

∠G(e

)F (e

)

=

n

2π, n ∈ Z.

instability leads to howling

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Nyquist Diagram

Real Axis

Imaginary Axis

system operation lose to instability leads to ringing and ex essive reverberation (typi ally avoided by hoosing gain margin

GM >

2dB

)

onsequen e: restri tion on forward path ampli ation, e.g. when

G(q) = Kq

−d

hoose

K

10

− GM

20

max

ω

|F (e

)|

(5)

In lude an ellation lter

F

0

(q)

:

U

(e

)

V

(e

)

=

G(e

)

1 − G(e

)(F (e

) − F

0

(e

))

F

x(t)

F

0

G

v(t)

H

w(t)

u(t)

y

(t)

ˆ

y

(t)

e(t)

to in rease gain margin

→ |F

0

(e

)|

should model peaks of

|F (e

)|

xed an ellation lter

to redu e signal distortion

→ F

0

(q)

should be a onsistent estimate of

F

(q)

(6)

Estimate

F

(q)

using the Predi tion Error Method

dire t approa h (no probe signal required): identify

F

(q)

from

y

(t) = F (q)u(t) + H(q)w(t)

F

x

(t)

G

r

(t)

H

y(t)

v(t)

w(t)

u

(t)

(7)

indire t approa h (inje tion of probe signal

r(t)

and knowledge of forward path

G(q)

required): with

F

c

(q) =

1−G(q)F (q)

F

(q)

and

H

c

(q) =

1−G(q)F (q)

H

(q)

, identify

F

c

(q)

from

y(t) = F

c

(q)r(t) + H

c

(q)w(t)

and al ulate

F

(q)

as

F

(q) = F

c

(q)(1 + F

c

(q)G(q))

−1

joint input-output approa h (inje tion of probe signal

r(t)

is usual but not required): with

F

c

(q) =

F

(q)

1−G(q)F (q)

,

H

c

(q) =

H

(q)

1−G(q)F (q)

and

S(q) =

1

1−G(q)F (q)

, identify

»F

c

(q)

S

(q)

from

»y(t)

u(t)

=

»F

c

(q)

S

(q)

r(t) +

»

H

c

(q)

G(q)H

c

(q)

w(t)

and al ulate

F

(q)

as

F

(q) = F

c

(q)(S(q))

−1

(8)

Assume FIR model stru ture

F

ˆ

(q) = ˆ

f

0

(t) + ˆ

f

1

(t)q

−1

+ . . . + ˆ

f

n ˆ

F

(t)q

−n ˆ

F

and su ient order ase (

n

ˆ

F

= n

F

).

ˆ

f

LS

(t)

=

arg min

ˆ

f

k

2

6

6

4

y(t)

y(t − 1)

. . .

y(1)

3

7

7

5

2

6

6

4

u(t)

. . .

u(t − n

F

ˆ

)

u(t − 1)

. . .

u(t − n

F

ˆ

− 1)

. . . . . . . . .

u(1)

. . .

u(−n

F

ˆ

+ 1)

3

7

7

5

·

2

6

4

ˆ

f

0

(t)

. . .

ˆ

f

n ˆ

F

(t)

3

7

5

k

2

=

arg min

ˆ

f

ky

t×1

− U

t

×(n ˆ

F

+1)

ˆ

f

(t)

(n ˆ

F

+1)×1

k

2

=

(U

T

U

)

−1

U

T

y

=

f

+ (U

T

U)

−1

U

T

v

Bias term in the time domain:

ˆ

f

(9)

If a noise model

H

ˆ

(q)

is in luded in the PEM identi ation, the bias term in the frequen y domain may be expressed as

ˆ

F

(e

) − F (e

) = (H(e

) − ˆ

H

(e

))Φ

wu

Φ

−1

u

Sin e

Φ

wu

6= 0

due to one-sided orrelation between

u(t)

and

w(t)

:

u(t) =

G(q)H(q)

1 − G(q)F (q)

w(t),

ˆ

F

(q)

will be a biased estimate of

F

(q)

unless

ˆ

H

(q) = H(q),

∀t.

Note that

Φ

wu

Φ

−1

(10)

Audio signals are ommonly modelled as Autoregressive (AR) sequen es, whi h leads to a Linear

Predi tion (LP) estimation problem.

However, audio signals are only stationary over short data windows (on average

20ms

for spee h). Hen e for onsistent estimation of the sour e signal model

H

(q)

, a time-varying autoregressive (TVAR) model should be identied:

either by tra king the TVAR oe ients using an adaptive algorithm (assuming 'slow' time-variation and short data windows, whi h is not always possible when on urrently estimating

H

(q)

and

F

(q)

),

or by basis expansion of

 the TVAR oe ients (e.g. on a Fourier, Legendre, wavelet, ... basis)

 the model stru ture (e.g. on a Kautz, Laguerre basis),

or by regarding the TVAR oe ients as sto hasti variables and estimating them using Kalman ltering.

(11)

The noise model

H

ˆ

(q)

an be in orporated in the PEM identi ation by preltering the loudspeaker and mi rophone signals

u(t)

resp.

y

(t)

with a (time-varying) lter

L(q) = ˆ

H

−1

(q)

:

ˆ

f

LS

,L

(t)

=

arg min

ˆ

f

kL

t

×(t+nL)

y

(t+nL)×1

− L

t

×(t+nL)

U

(t+nL)×(n ˆ

F

+1)

ˆ

f

(t)

(n ˆ

F

+1)×1

k

2

=

(U

T

L

T

LU

)

−1

U

T

L

T

Ly

=

f

+ (U

T

L

T

LU

)

−1

U

T

L

T

Lv

where preltering matrix

L

t

×(t+nL)

is dened as

L

t

×(t+nL)

=

2

6

6

4

l

0

(t)

l

1

(t)

. . .

l

nL

(t)

0

. . .

0

0

l

0

(t − 1)

. . .

l

nL−1

(t − 1)

l

nL

(t − 1)

. . .

0

. . . . . . . . . . . . . . . . . . . . .

0

0

. . .

0

0

. . .

l

nL

(1)

3

7

7

5

.

If

L(q)

is a onsistent estimate of the true inverse sour e signal model

H

−1

(q), ∀t

, then

Lv

= w

and the bias term

(U

T

L

T

LU

(12)

G

F

y

(t)

v

(t)

w

(t)

x

(t)

H

L

u

(t)

ˆ

F

ˆ

y

L

(t)

e

L

(t)

L

y

L

(t)

u

L

(t)

(13)

Simulation parameters:

f

s

= 8kHz

,

F

(q)

a pre-measured room impulse response,

n

F

+ 1 =

1000

,forward path

G(q) = Kq

−1

,

N

= 24000

samples,

GM

= 3dB

,

F

ˆ

(q)

anexponentially windowed RLS adaptive lter with

λ

= 0.9997

Performan e measure: normalized bias

δ

(t) = 20 log

10

k

ˆ

fLS

(t)−

f

k

k

f

k

Referen e algorithm: de orrelation of

u(t)

and

y(t)

by SSB-AM frequen y shifting

1

Preltering te hniques (sour e signal

v(t)

assumed to be known):  onstant preltering

 pie ewise onstant preltering with

N

win

= 3000

samples

 BEM-TVAR preltering: basis expansion of sour e signal on a Fourier basis with

51

basis fun tions over time windows of

N

win

= 3000

samples

Sour e signals:

 stationary AR sequen e of order

12

exhibiting a long-term spee h spe trum  true spee h signal

1

(14)

Sour e signal

v(t)

= stationary AR sequen e

0

0.5

1

1.5

2

2.5

x 10

4

10

0

10

1

10

2

t/T

s

(s)

δ

(dB)

no decorrelation

SSB−AM decorrelation

constant prefiltering

(15)

Sour e signal

v

(t)

= true spee h signal

0

0.5

1

1.5

2

2.5

x 10

4

10

0

10

1

10

2

no decorrelation

SSB−AM decorrelation

constant prefiltering

piecewise constant prefiltering

BEM−TVAR prefiltering

(16)

Consistent PEM identi ation of the a ousti feedba k path

F

(q)

in adaptive feedba k an ellation using the dire t method, an be a hieved by in luding a noise model

H

ˆ

(q)

in the identi ation pro edure.

The noise model

H

ˆ

(q)

should be a onsistent estimate of the sour e signal model

H

(q)

, whi h is generally time-varying due to the non-stationary nature of audio signals.

Several approa hes to time-varying autoregressive (TVAR) modelling exist. A BEM-TVAR te hnique that expands the TVAR oe ients onto a set of predened basis fun tions was implemented under

the assumption that the sour e signal was known.

Under the latter assumption the BEM-TVAR preltering te hnique performs similar to a state-of-the-art referen e algorithm in whi h de orrelation by frequen y shifting is applied. However, the

BEM-TVAR preltering te hnique does not introdu e any signal distortion in the forward path,

whereas the frequen y shifting te hnique does.

Con urrent estimation of the a ousti feedba k path

F

(q)

and the inverse sour e signal model

Referenties

GERELATEERDE DOCUMENTEN

The face is also vital in Kierkegaard’s relational conception of the self. Kierkegaard's under- standing of the face in relation to his notion of the self as a relational

The SEEV4-City project involves very specific technology (PV, EV and storage); hence, a bottom-up (or hybrid) model - that starts from detailed energy technology and

The spatiotemporal mapping approach presented here is superior to a simple, geometric analysis of the encounter state employed in our earlier work (Bashir et al. 2006) in that it

De menselijke kant (gedragingen, sociale processen, communicatie) komt minder aan bod dan het benoemen van verantwoordelijkheden. Wat betreft technische literatuur, is er op

On behalf of the NCTV, the Wetenschappelijk Onderzoek- en Documentatiecentrum (WODC) commissioned RAND Europe to examine the current state-of-the-art in cybersecurity. In this

De 11 themagebieden zijn in een workshop door Nederlandse cybersecurity deskundigen beoordeeld, besproken en geprioriteerd. Op basis hiervan zijn de meest prominente kwesties in

Case 3 (SA 1) This case was previousiy pubhshed (Disteche et al, 1986b) Briefly, the patient was evaluated followmg exploratory lapa rotomy for bilateral cryptorchidism at 17 months

Entonces los posibles inmigrantes no son solo auto-seleccionados, sino también originariamente acotados por el país de destino desde el principio, haciendo así que el