• No results found

Subject-specific knee ligaments modeling approaches in finite element analysis: 1D and 3D

N/A
N/A
Protected

Academic year: 2021

Share "Subject-specific knee ligaments modeling approaches in finite element analysis: 1D and 3D"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

22nd Congress of the European Society of Biomechanics, July 10 - 13, 2016, Lyon, France

SUBJECT-SPECIFIC KNEE LIGAMENTS MODELING APPROACHES IN

FINITE ELEMENT ANALYSIS: 1D AND 3D

Hamid Naghibi Beidokhti (1), Dennis Janssen (1), Sebastiaan van de Groes (2), Ton van den Boogaard (3), Nico Verdonschot (1)

1. Orthopaedic Research Lab, Radboud University Nijmegen Medical Centre, The Netherlands; 2.Orthopaedic Department, Radboudumc, Nijmegen, The Netherlands; 3. Department of Applied Mechanics,

University of Twente, The Netherlands.

Introduction

Knee ligaments are among the most complicated structures and have a large effect on knee biomechanics. There are different approaches to model the knee ligaments in FE models. In the knee joint, ligaments have been commonly modelled as 1D spring elements; moreover, some studies modelled the ligaments as 3D constitutive elements [2].

Using springs reduces computational costs compared to constitutive models of the ligaments. In turn, constitutive models closer approximate the anatomy, and facilitate the prediction of local quantities and interactions with surrounding tissues, such as wrapping [1].

To the best of our knowledge, there is no direct/practical comparison study between two FE ligament modelling approaches. The aim of this study is to develop and compare two separate subject-specific finite element knee models in terms of ligament modelling approaches, based on cadaveric validation experiments.

Materials and Methods

Two FE knee models were developed based on MRI data of a cadaveric knee, including bones, cartilage, menisci and ligaments. In the first model all tibiofemoral ligaments were modelled using solid elements with nonlinear transversely isotropic fiberic materials using the Holzapfel–Gasser–Ogden model. In the second model, the ligaments were represented by nonlinear no-compression springs, where the cruciate and collateral ligaments were modelled as two and three bundles, each, respectively. In both models, the ligament properties, including the collagenous fiber properties and ligament pre-tension were separately optimized based on cadaveric laxity tests, starting from data in the literature. Subsequently, both models were validated according to a series of validation experiments. The joint kinematics, tibial cartilage contact pressure (on the lateral plateau) and computational costs were compared.

Results

Both optimized models could closely follow the experimental translations, in unloaded, tibial axially loaded (106N) and anteriorly loaded (100N) passive flexions. However, constitutive model revealed better agreement with the experiment in valgus-varus rotations in both loaded and unloaded flexions cases (Figure1). Contact variables are listed in Table1 for the experiment, optimized constitutive model and optimized spring model. The average computational time for each spring and constitutive models were approximately 25 and 40 minutes, respectively.

(a) (b)

Experiment Constitutive Model

Optimized Spring Model Optimized

(c) Constitutive Model

Literature Spring Model Literature

Figure 1: knee Rotations predictions of spring and constitutive models vs. experiment in loaded flexion (a), and unloaded flexion (b); contact pressure on tibial cartilage at flexion angle of 60 deg. (c).

Flexio n Angle (deg) Experiment Constitutive Model Spring Model Peak Pressu re (M Pa ) Co n tact Are a (mm2) Peak Pressu re (M Pa ) Co n tact Area (mm2) Peak Pressu re (M Pa ) Co n tact Area (mm2) 0 0.74 290 0.98 247 1.14 118 30 0.72 435 0.95 367 0.62 282 60 1.18 341 1.57 380 1.52 440 90 1.54 290 1.96 430 1.75 483 110 1.36 214 2.14 457 2.24 397 Table 1: contact variables at lateral tibial cartilage in tibial axially loaded (106N) passive flexion.

Conclusion

Both subject-specific knee FE models, the faster spring model and the more realistic and detailed constitutive model, could successfully predict the biomechanics of the joint. Implementing the properties from the literature can misguide the analyses to wrong solutions.

References

1. Galbusera et al, Front. Bioeng. Biotechnol, 2:54, 2014. 2. Kazemi et al, Comput. Math. Methods Med., 2013: 1-27,

2013.

Acknowledgements

This study is a part of BIOMECHTOOLS funded by European Research Council.

-10 -5 0 5 10 15 20 0 50 100 R ot ati on s (deg ) Flexion (deg) Lo ad ed Fl exi o n VrVg_EXPERIMENT VrVg_CNSTV_OPTIMIZED VrVg_SPRING_OPTIMIZED IE_EXPERIMENT IE_CNSTV_OPTIMIZED IE_SPRING_OPTIMIZED -10 -5 0 5 10 15 20 0 50 100 R ot ati on s (deg ) Flexion (deg) Unloaded Flexion

View publication stats View publication stats

Referenties

GERELATEERDE DOCUMENTEN

Scheutgroei Aantal scheuten Bloemknopvorming In bloei krijgen Hoge lichtintensiteit + + + Lange dag + ± - Hoge temperatuur ± 1) + + Stikstof + + + Fosfaat + +

Hoewel larven, nimfen en volwassen teken gevangen werden tijdens het onderzoek, zijn alleen de nimfen onderzocht op aanwezigheid van Borrelia parasieten.. Van nature is

beschrijving Het plan Hierdense Poort is een onderdeel van de totale toekomstvisie Veluwe 2010. In die visie is vastgelegd hoe de natuur op de Veluwe moet worden hersteld. Het

zowel het wegoppervlak als de markering door een waterlaagje worden overdekt; omdat het licht aan het oppervlak van het waterlaagje re- flecteert, worden alle

Sargus rufescens (zie figuur 3) afgebeeld, waarvan de snij- tanden enigszins lijken op de tand uit St.. Die tand is weliswaar groter en breder dan de

Uit de kaart blijkt dat een aanzienlijk deel van de gronden binnen de provincie een grote 28% van de oppervlakte of wisselende 37% kwetsbaarheid heeft voor nitraatuitspoeling..

Een actieve rol van leerlingen is niet alleen nodig bij het lezen, maar ook bij het leren. Zeker als je met het onderwijs meer wilt berei- ken dan reproductie. Wanneer leerlingen

L'utilisation de cherbains de récupération pour la construction des drains, ainsi que Ja présence d'un col decruche databie de Ja fin du ne-début du me siècle dans Je drain a