• No results found

Muscle mass versus body mass index as predictor of adverse outcome

N/A
N/A
Protected

Academic year: 2021

Share "Muscle mass versus body mass index as predictor of adverse outcome"

Copied!
3
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Muscle mass versus body mass index as predictor of adverse outcome

Groothof, Dion; Post, Adrian; Polinder-Bos, Harmke A; Hazenberg, Bouke P C; Gans, Reinold

O B; Bakker, Stephan J L

Published in:

Journal of cachexia sarcopenia and muscle DOI:

10.1002/jcsm.12686

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Groothof, D., Post, A., Polinder-Bos, H. A., Hazenberg, B. P. C., Gans, R. O. B., & Bakker, S. J. L. (2021). Muscle mass versus body mass index as predictor of adverse outcome. Journal of cachexia sarcopenia and muscle, 12(2), 517-518. https://doi.org/10.1002/jcsm.12686

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Muscle mass versus body mass index as predictor of

adverse outcome

Sarcopenia is a progressive skeletal muscle disorder, which is characterized by low muscle mass and strength and associated with increased risk of adverse outcomes, including premature death.1 Despite improved awareness of the im-portance of sarcopenia by health care professionals, funda-mental findings from research lack translation to clinical practice—a gap that must be bridged given the major per-sonal, social, and economic burdens ensued by its presence.1 We report on a renal transplant recipient who experienced substantial muscle wasting during 27.5 years of follow-up. Height-indexed 24 h creatinine excretion rate (CER index) was used as accurate marker of muscle mass.2

A 22-year-old Black male was diagnosed with terminal renal insufficiency in May 1981. Chronic intermittent haemodialysis was initiated and maintained until successful renal transplan-tation in March 1982 (Figure 1A and 1B). At that time, body

Figure 1 Serum creatinine, body mass index, and height-indexed 24 h creatinine excretion rate over the course of the patient’s follow-up. Evolutions

in serum creatinine (A), CER index, and BMI (B) are shown over the course of follow-up. Moments of renal transplantation are represented by the vertical dashed dark green lines, whereas moments of graft failure are represented by the vertical dashed red lines. The non-linear line represents the estimated CER index, and the shaded area about the line the associated 95% pointwise confidence interval. The line is solid and coloured dark green at follow-up times where CER index was actually observed, whereas the line is dashed and coloured dark red at periods of haemodialysis (interpolation). Non-linearity was modelled using natural cubic splines with two knots imposed at 2.1 and 11.7 years of follow-up. Boundary knots were set to the 5th and 95th percentiles of follow-up. The orange points through which the dark blue line is drawn represent observed BMIs. To facilitate appraisal of serum concentrations of creatinine, CER indices, and BMIs around the third renal transplantation (i.e. the rightmost vertical dashed dark green line), the range of the x and y axes of the originalfigure were cropped, and the resulting enlarged images are given in the upper border of the plots. BMI, body mass index; CER index, height-indexed 24 h creatinine excretion rate.

L E T T E R T O T H E E D I T O R

mass index (BMI) was 19.8 kg/m2 (Figure 1B). Serum

creatinine had remained steady until de novo membranous glo-merulopathy ensued in March 1985 and eventually graft failure in May 1986. Deteriorating renal function manifested as a grad-ual rise in serum creatinine (Figure 1A) and, interestingly, a con-comitant decrease in CER index, indicating muscle wasting from chronic kidney disease (Figure 1B). Six years of haemodialysis followed until a second transplantation in June 1992. Importantly, CER index was considerably lower shortly af-ter the second compared with thefirst transplantation (Figure 1B), whereas BMI had actually increased to 21.7 kg/m2(Figure 1B). Eighteen months later, serum creatinine abruptly rose be-cause of interstitial rejection and membranous glomerulopathy (Figure 1A), whereafter haemodialysis was resumed in January 1994. During the years 1995–2003, complaints of generalized arthropathy from haemodialysis-associatedβ-2 microglobulin

© 2021 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Journal of Cachexia, Sarcopenia and Muscle (2021)

(3)

amyloidosis gradually developed, which caused progressive de-creases in mobility and, consequently, muscle mass and mani-fested as concomitant decreases in serum creatinine and CER index (Figure 1A and 1B). In December 2008, a third transplan-tation was performed because of progressive amyloid arthrop-athy. We observed an increase in BMI from 18.9 kg/m2(first day after transplantation) to 23.1 kg/m2(19 days later at dis-charge), and improved well-being was reported shortly after. Remarkably, CER index had massively dropped to a quarter of that in June 1992, indicating substantial muscle wasting. De-spite increases in BMI in absence of oedema (beginning of Feb-ruary 2009: 18.4 kg/m2; end of February 2009: 20.0 kg/m2; March 2009: 20.2 kg/m2; June 2009: 20.9 kg/m2), CER index steadily waned in the remaining months until the patient’s death in August 2009 (Figure 1B).

Body mass index—defined as weight divided by height in metres squared—is considered the ‘gold standard’ measure of weight and hence abundantly used in clinical decision mak-ing and research. In 1985, however, Andres and colleagues called this concept into question by demonstrating that the association between height-adjusted weight and mortality follows a U-shaped curve. Moreover, the nadir of that curve (i.e. the weight at which mortality rates were lowest) was highly dependent on age.3Thesefindings gave rise to a con-cept referred to as the‘obesity paradox’, which still receives much attention.4We built on this concept with the patient’s gradual, yet inexorable, wasting of muscle mass as harbinger of deteriorating clinical condition and, eventually, death—all in absence of declining BMI. This fuels the notion that muscle mass is superior to BMI in mirroring clinical condition. Indeed, the phenomenon of changing body composition with steady (or even gained) weight can be explained by disproportionate losses of lean mass and concurrent deposition of intramuscu-lar adipose tissue.5Additionally, the inexorable nature of the observed muscle wasting indicates the difficulty of rebuilding muscle after serious events. We urge that surrogates of muscle mass, like CER index, as potentially superior prognosti-cators of adverse outcome to BMI, be considered in study de-sign and more frequently used to inform clinical decision making in settings of low muscle mass or muscle wasting.

Acknowledgement

The authors of this manuscript certify that they comply with the ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle.6

Funding

None.

Dion Groothof

Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands d.groothof@umcg.nl

Adrian Post

Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands

Harmke A. Polinder-Bos

Department of Internal Medicine, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands

Bouke P.C. Hazenberg

Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Reinold O.B. Gans

Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands

Stephan J.L. Bakker

Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB, The Netherlands

References

1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48:16–31. 2. Bürger M. Beiträge zum

Kreatininstof-fwechsel. I. Die Bedeutung des Kreatinin-koefizienten für die quantitative Bewertung der Muskulatur als Korpergewichts-komponente. Z Ges Exp Med 1919; 9:262–284.

3. Andres R, Elahi D, Tobin D, Muller DC, Brant L. Impact of age on weight goals. Ann Intern

Med 1985;103:1030–1033.

4. Lee DH, Keum NN, Hu FB, Orav EJ, Rimm EB, Willett WC, et al. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ 2018;362:k2575.

5. Song M-Y, Ruts E, Kim J, Janumala I, Heymsfield S, Gallagher D. Sarcopenia and

increased adipose tissue infiltration of muscle in elderly African American women.

Am J Clin Nutr 2004;79:874–880.

6. von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2017. J Cachexia Sarcopenia Muscle 2019;10:1143–1145.

2 Letter to the Editor

Journal of Cachexia, Sarcopenia and Muscle 2021 DOI: 10.1002/jcsm.12686

Referenties

GERELATEERDE DOCUMENTEN

University Medical Center Groningen Department of Obstetrics and Gynecology Groningen, The

GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Respiratory Medicine, National Institute for Health Research

Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands..

Department of Internal Medicine University Medical Center Groningen Groningen, The Netherlands..

Buitenlucht voorverwarming met een laag temperatuur warmtewisselaar heeft op deze bedrijven weinig effect (minder dan 0.5 m³ gasbesparing) omdat de warmtepomp geen extra voordeel

Does anyone else have cramps that are SO BAD that you have to be picked up from school because you can’t breathe and you’re screaming and crying and shaking?.. I went to the

By combining these three approaches in one fashion exhibition, visitors get the complete experience: dress museology makes them aware of the importance and relevance of costume

Doordat er geen significant interactie-effect tussen sensitiviteit van de moeder en sensitiviteit van de pedagogisch medewerker op de gedragsproblemen van het kind is gevonden,