• No results found

Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system

N/A
N/A
Protected

Academic year: 2021

Share "Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Research

article

Feasibility

of

photoacoustic/ultrasound

imaging

of

synovitis

in

finger

joints

using

a

point-of-care

system

Pim

J.

van

den

Berg

a

,

Khalid

Daoudi

b

,

Hein

J.

Bernelot

Moens

c

,

Wiendelt

Steenbergen

a,

*

aBiomedicalPhotonicImaging,MIRAInstituteforBiomedicalTechnologyandTechnicalMedicine,UniversityofTwente,POBox217,7500AE,Enschede,The

Netherlands

b

MedicalUltrasoundImagingCenter,departmentofRadiology,RadboudUniversityMedicalCenter,POBox9101,6500HBNijmegen,TheNetherlands

c

ZiekenhuisgroepTwente,DepartmentofRheumatology,Postbus546,7550AMHengelo,TheNetherlands

ARTICLE INFO

Articlehistory: Received29March2017

Receivedinrevisedform21July2017 Accepted28August2017

Availableonline31August2017 Keywords: Rheumatoidarthritis Synovitis Photoacoustic Optoacoustic Medicalultrasound Echography Ultrasonography Proofofprinciple Feasibilitystudy ABSTRACT

Weevaluateaportableultrasoundandphotoacousticimaging(PAI)systemforthefeasibilityofa point-of-careassessmentofclinicallyevidentsynovitis.Inflamedandnon-inflamedproximalinterphalangeal jointsof10patientswereexaminedandcomparedwithjointsfrom7healthyvolunteers.PAIscans, ultrasoundpowerDoppler(US-PD),andclinicalexaminationwereperformed.Wequantifiedtheamount ofphotoacoustic(PA)signalusingaregionofinterest(ROI)drawnoverthehypertrophicjointspace.PAI responsewasincreased4to10foldwhencomparinginflamedwithcontralateralnon-inflamedjoints andwithjointsfromhealthyvolunteers(p<0.001forboth).US-PDandPAIwerestronglycorrelated (Spearman’sr=0.64,with95%CI:0.42,0.79).Hence,PAIusingacompacthandheldprobeiscapableof detectingclinicallyevidentsynovitis.ThismotivatesfurtherinvestigationintothepredictivevalueofPAI, includingmultispectralPAI,withotherestablishedmodalitiessuchasUS-PDorMRI.

©2017TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

1.Introduction

In rheumatoid arthritis (RA), imaging of synovitis with ultrasound power Doppler (US-PD) and magnetic resonance imaging(MRI)canpredictdiseaseprogressionandboneerosion

[1–3]. In clinical remission, detection of subclinical synovitis indicatesdiseaseprogressionandincreasestheriskofdiseaseflare

[4–7].US-PDhasgainedaplaceintheclinicalworkflowbasedon these qualities. However, US-PD has inherently high operator dependencyandsuboptimal reproducibility[8,9].Specific com-plicationsofUS-PDareitsdependencyontheanglebetweenthe flowvectorandthesoundbeam,andthedisturbanceoftheblood flow by the probe pressure. MRI is rather costly, specificity is modest and it requires contrast agents [10]. Optical imaging methodswerestudied inrecent years aspotentialalternatives. Opticalspectral transmission(OST) forexample,hasshown fair performanceatdetectingsynovitiswhilebeingpresumablylowin cost[11–13],however,sensitivityandspecificityaremodestand thelowspatialresolutionlimitsdifferentiationbetweensynovitis andtenosynovitis.Fluorescenceopticalimaging[14–17]appearsto

havehigherperformancethanOST,butalsohaslowresolutionand inadditionrequiresinjectionofcontrastagents.

Photoacousticimaging(PAI),ahybrid optical-and-ultrasound imaging technique, may offer a good balance in features, combining thesensitivityto haemoglobinof opticaltechniques withtheresolution ofclinicalultrasound[18–21].To formaPA image,shortlaserpulsesareshoneontheskinandsubsequently enterthetissue,wherethelightisscatteredbycellsandbecomes diffuse.Thelightpulseisthenabsorbedbydarktissueconstituents suchashaemoglobinandmelanin.Theabsorptionslightlyheats structurescontainingtheseconstituents whichleadstoa small pressurebuild-up,generatingsoundwavesthatcanbepickedup byultrasoundtransducers.PAIisthereforesimilartosonography, exceptthattheultrasoundisgeneratedwithintissue,insteadof reflected('backscattered')byit.

PAI differs significantly from US-PD in three aspects. First, movementoferythrocytesisnotrequiredforsignalgeneration, sincethegenerationofPAsignalsreliesonlyonthepresenceof haemoglobin (or other chromophores) [19]. Second, there is a largerconcentrationofhaemoglobinwithinvasculaturethanin surroundingtissue,leadingtomoresignalgeneration,whereasin US-PD, erythrocytes reflect comparatively less signal than the surroundingtissue[22,23].Awallfilteristhereforenotrequiredin *Correspondingauthor.

E-mailaddress:w.steenbergen@utwente.nl(W.Steenbergen).

http://dx.doi.org/10.1016/j.pacs.2017.08.002

2213-5979/©2017TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/). ContentslistsavailableatScienceDirect

Photoacoustics

(2)

PAI,and‘flash'artefactsormotionclutterarenotpresent.These propertiesimplythatslowbloodflowinsynovialmicrovasculature poses no problem to PAI. As a result, we expect PAI to be particularlysensitivetosubclinicalsynovitis.Finally,thePAIsignal islessaffectedbytheorientationofthebloodvesselthanUS-PD. PAI has been investigated in other medical areas involving angiogenesis,forinstanceinclinicalstudiesintomammography

[24–27].PAIhasalsobeeninvestigatedinpre-clinicalstudiesof synovitis [28–31], and several setups have been proposed for humanfingerjoints[32–37].In addition,a fewearly feasibility studieshavebeenperformedwithRApatients[38,39].However, these studies used large lasers, not suited for routine clinical application,letalonepoint-of-careimaging.

InordertobringPAI tooutpatientclinics,a handheldPA/US probewasdeveloped[33],whichinthisstudyisinvestigatedfor possibleuseinassessingsynovitis.Theobjectiveofthisstudyisto investigatewhetherthisPA/USprobecandetectclinicallyevident synovitisandtocomparetheresultswithUS-PD.

2.Methods 2.1.Patientinclusion

Patients undergoing care in the Ziekenhuisgroep Twente hospitalwereaskedbytheirrheumatologisttoparticipateinthis study.Healthyvolunteerswererecruitedinpersonorviaflyersat theUniversityofTwente.

Patientsagedover18yearswithrheumatoidarthritisfulfilling6 or more ACR/EULAR criteria (ACR/EULAR=American College of Rheumatology/European LeagueAgainst Rheumatism) were in-cluded[40].Specificinclusioncriteriawere:swellingofatleastone proximalinterphalangeal(PIP)joint,2,3or4jointswithatleast grade1 power-DopplersignalonUSexamination.Test subjects (healthyorpatient)wereexcludedfromparticipationiftheyhad clinicallysignificantbonedeformationand/orosteoarthritisinthe jointofinterest.Allsubjectsreceivedwritteninformationandgave informedconsent,resultinginadelayof3to8daysbetweenthe inclusionbyarheumatologistandtimeofmeasurement. 2.2.Imagingsystem

The imaging study is performed using a dual modality photoacoustic/ultrasoundsystem. The system relies ona probe that houses both a small diode laser together withultrasound transducers (see Fig.1).The diode laser is pulsed to generate photoacousticwaves,whicharethendetectedbytheultrasound transducers. Thesetransducers are alsoused totransmit ultra-soundtogenerate high-qualityb-mode ultrasound images.The probein thisstudyis asecondgenerationprototypedeveloped fromtheprobedescribedearlierindetail[33].Theoriginalprobe

contained diode lasers producing 130ns pulses at a 805nm wavelengthandapulseenergyof0.56mJ.Aswillappear,themain changeisadoublingofthepulseenergy.

The diode laser source (Quantel Laser, les Ulis, France) is controlled bya short pulselaser driver (Brightloop Converters, Paris,France)and generates1mJ pulsesof120ns duration.The pulsesareformedintoarectangularshapeof2.2mmby17.6mm (1/e2) by a diffractive optical element (SILIOS Technologies, Peynier, France),afterwhich thelightexitstheprobe underan angle via a prism. The laser emission is at 808nm, which corresponds to the isosbestic point of oxy-haemoglobin and deoxy-haemoglobin, which leads toPAsignalamplitudes inde-pendentofthebloodoxygenation.

TheultrasounddetectionisbasedonanESAOTESL3323probe. Transducersareplacedinanarrayof128elements.Eachelement hasabandwidthfrom2.5MHzto10MHzwitha7.5MHzcentre frequency.Anacousticlens(focallength:24mm)isplacedinfront of the transducers to moderately focus the detection in the elevationalplane.

The probe is connected to a MylabOne ultrasound scanner (ESAOTEEurope),whichcanbeusedintwomodes.Inthefirstit transfers the collectedtime-pressure data from the middle 64 elements directly to a laptop. This mode is used to acquire photoacoustic data. In the second mode the scanner operates regularlyandisusedtoacquireb-modeultrasoundusingall128 elementsinaline-by-linetransmissionandacquisitionscheme.

TheUS-PDexaminationisdoneusinganidenticalMylabOne scanner(inthesecondmodeasdescribedabove)incombination witha14MHzcentrefrequencylineararray(SL3116,ESAOTE).The PRF wassetat 750Hz, and thewall filteratitslowest andthe sensitivityatitshighestsetting.

2.3.Scanprotocol

Persubject examination,a minimumof twoPIP jointswere scanned:oneclinicallyinflamedjointandanuninflamedjoint– preferablythesamejointcontra-lateral.Acompleteexamination ofonesubjectincludedaseriesoflongitudinalimagesusingpower Doppler ultrasoundforeach applicablejointand anotherseries usingthePA/USsystem.Bothexaminationstookplacewiththe subject’sarmplacedinawaterbathfittedwithsupportsforthe arm, handand thefingertobescanned(see Fig.1).Thewater temperaturewascontrolledto29–31Cduringtheexamination. DuringmeasurementstherewasnocontactofthePA/USand US-PDprobeswiththeskininorder toavoidpressureartefacts.In addition,thePA/USprobewasplaced4–5mmfromtheskinsuch that the laser beam intersects with the ultrasound elevational planeattheskinsurface.

ForthePA/USexaminationthePA/US probewas placedona motorizedstageforbettercontrolofthemeasurement.Theprobe

Fig. 1.ThePA/USprobe(left)withviewofthefrontendshowingthelightdeliverywindow(darkaperture)andacousticlensinmediumgray.Thepatient’shandissubmerged inwater(right)whereitrestsonaseriesofsupports.Theprobeismountedona2-axismotorizedstageandpositionedabovethejoint.

(3)

wasalignedlongitudinaltothefingerandonthedorsalside.The stagewasmovedorthogonaltothefingerin0.5mmstepsforover 6mm.Ateachstep,aPAimagewasaccumulatedover500laser pulsesfor0.25s.Takingintoaccounttheangleofincidenceof52 withtheorthogonalontheskinandthebeamsizeof2.2mmby 17.6mm,thelightexposureis3.2mW/cm2,whichisbelowtheIEC 60825-1safetylimitof5mW/cm2forthiswavelengthandpulse train.Inaddition,100framesofplanewaveultrasound(onefixed angle)wererecordedeachstep.Eachscanwasrepeatedwiththe sameprobeandatidenticalsteps,butthenwithhigh-quality line-by-lineb-modeultrasound.Onescanyieldedtherefore13PA,13 planewaveand13b-modeimagesatidenticallocations.In our scan protocol there was approximately 1min between a PA acquisitionandthesubsequentb-modeUSimage.

US-PD examinationwaseitherperformedbyanexperienced rheumatologistorbyplacingtheUS-PDprobeinthemotorized stage.Foreachjoint,3–5imagesarerecorded.

2.4.ScoringofUS-PDimages

Representative US-PD images were digitally stored and anonymized. They were graded (0–3) according to Szkudlarek et al. [40] by two rheumatologists who were blinded to the allocation of the images. The widely used semi-quantitative gradingsystem is basedonvisual assessment ofblood flow as indicatedbypower-Dopplersignals:nosignals(score0),upto3 singlevesselsignals(score1),confluentvesselsignalsinlessthan halfoftheareaofthesynovium(2)orvesselsignalsinmorethan half of the area of the synovium (3). Discrepant results were reviewedtoreachconsensusresultinginafinalPD-scoreforeach individualjoint.

2.5.Dataanalysis

The PAchanneldata–thepressureasa functionoftimeas measuredbythe transducers–is convertedinto a mapofthe originalpressuredistributionusingaFourierdomain reconstruc-tionalgorithm[41].Forthisreconstructionalgorithm,wefound anaxialresolutionof0.2mmandalateralresolutionof0.4mm

[33].Thealgorithmwasselectedforitscomputationalspeed.All dataanalysisisautomatedusingMatlab(Massachusetts,USA).To account for the light attenuation within tissue, a depth-dependentcorrection('gain')is applied.Sincethefingerinthe longitudinalorientationisfairlyflat,abasicexponentialgainof 1=expð

m

effzÞisusedwith

m

eff=1/mmtheeffectiveattenuation coefficientandzthedepthintissue[42,43].Adifferentz=0isset foreveryaxiallineinthePAimage,suchthatthefluencecorrection startsattheskinlevel.Determiningthepositionoftheskinsurface wasdonevisuallyusingthePAresponsefromthemelaninlayerin theskin.

Forimageformation,thePAdataiscompressedlogarithmically atadynamicrangeof40dBor18dB,withthesameminimumand maximum amplitude for inflamed and non-inflamed images. These dynamic ranges were selected based on the noise level (40dB) and the amplitude of healthy joint’s background PA signals(18dB)respectively.Pixelswithinthedynamicrangeare colorcodedinMatlab’sred-and-yellowcolormap‘hot’andfinally overlaidonab-modeultrasoundimage.

Foreachjointscan,aregion-of-interest(ROI)isdrawntoselect the hypertrophic joint area. The ROI is drawn on the b-mode ultrasoundimage,wherethehypertrophic areais definedas to includeanypixelsbetweenthetendonandthebonesurface.The ROIisthentransferredtothePAimage,fromwhichthenumberof PApixelsiscalculatedthatfallwithinthe18dBdynamicrange.A secondary quantification metric is provided by the mean

amplitudeofnon-compressedPAsignalswithintheROI.Incase ofhealthyjointsthereisnohypertrophicareaandtheROIselection willincludemoretissuesthanjustthesynovialspace.

2.6.Statisticalanalysis

Mann-WhitneyU-test (left-sided)is used for comparingthe control group (either joints from healthy volunteers or non-inflamed joint from the same subject) with inflamed joints. Spearman’s rank correlation is used when comparing the PD gradingwithPAquantification.

3.Results

3.1.Subjectcharacteristics

7healthyvolunteersand10RApatientswereincludedinthe study.AllsubjectshadCaucasianskin.Thecharacteristicsofthese subjectsareshowninTable1.TheRApatientshadameandisease duration of 117 months (range 5–133), all were positive for rheumatoidfactorsand7werepositiveforanti-cyclic-citrullinated proteinantibody(anti-CCP),andthemeanC-reactiveprotein(CRP) levelspriortothemeasurementwere6.3(SD5.6).

3.2.Photoacoustic/ultrasoundimaging

Fig.2depictsexamplesoffluencecorrectedPA/USandUS-PD imagesforaninflamedjointandthecontra-lateralnon-inflamed jointof anRA patient.The reconstructedPAsignals areshown rangingfromdarkred(lowsignalamplitudes,startingat40dB) tolightyellow(high/abnormalsignalamplitudes,upto0dB);the dataisoverlaidonthegrayscaleUSb-modeimage.ThePAimages inFig.2Ashowasuperficialbloodvesselinboththeinflamedand non-inflamedjoint,withadditionalPAfeaturesunderneath,above thebonesurface.Largeramplitudesandmoreconfluentfeatures arerecordedfortheinflamedjoint,ascanbefurtherobservedin

Fig.2Bwhere only highamplitudes (18dBdynamic range) are plotted.Withthisthreshold,almostnoPAfeaturesarevisiblefor thenon-inflamedjoint.

3.3.QuantificationofPAandUS-PDimaging

ThenumbersofhighamplitudePApixels(suchasthosevisible inFig.2B)werecomputedforinflamedandnon-inflamedjoints, andofjointsfromhealthyvolunteers.Theresult(Fig.3A)indicates alargernumberofhighamplitudePApixelsforinflamedjoints, compared to healthy and non-inflamed joints. In addition, an alternativequantificationmethodforPAIalsoshowsalargervalue forinflamedjoints:themean(non-compressed)pressure ampli-tudeofPAfeatures(Table2).Bothquantificationmethodsshow4 to10-foldincreasedcounts(p<0.001)whencomparinginflamed jointswiththosefromcontrolgroups.Notealsothatthefingersare swollen:thesizeoftheROIasdrawnonthegrayscaleUSimagesis significantly larger in inflamed joints compared to healthy (p<0.001) and compared to non-inflamed joints (p <0.05). Grading of US-PD images shows a strong agreement (

r

=0.64, 95% CI: 0.42, 0.79, p<0.001) of the PA pixel count with the Table1

Subjectcharacteristics.

Characteristic Healthyvolunteers RApatients (N=7) (N=10) Age:mean(range) 56(49–62) 63(49–80) Gender(%female) 43% 50% Valuesarethesubject’smean(standarddeviation,SD)or(range).

(4)

consensusPDscoreassignedtotheimagesbytworheumatologists (Fig.3BandTable3).

Toobtainanearlyimpressiononthediagnosticaccuracyofthe method,ReceiverOperatingCharacteristicshavebeenconstructed for themean PA amplitude in the regions of interest, and the number of high amplitude PA pixels, given in Fig. 4A and B, respectively.Separatecurvesandareasunderthecurvearegiven forinflamedjointsvs.non-inflamedcontralateraljointsinpatients, andvs.jointsinhealthysubjects.

4.Discussion

WefoundthatPAI–inthefirststudywithahandheldcombined photoacousticprobe–wassensitivetoclinicallyevidentsynovitis as demonstrated by the significant difference in PA features Fig.2. PA/USandUS/PDimagesofaninflamed(upperrow)andnon-inflamedcontra-lateraljoint(bottomrow)ofanRApatient.PA/USimagesin(A)showadifferencein colorbetweeninflamedandnon-inflamedcorrespondingtoanincreaseinamplitudelevels.WhendiscardinglowPAamplitudesin(B),onlyfeaturesintheinflamedjointare visible.CorrespondingUS-PDimagesareshownin(C).ThebluelineinthePA/USimagesindicatestheROIusedforquantificationofPAfeaturesinthesynovialspace.The0dB levelisthemaximumPAamplitudefromtheinflamedjoint.d=dermis;dv=dorsalvein;pp=proximalphalanx;pip=proximalinterphalangealjoint;mp=middlephalanx; s=synovium;t=extensortendon.

Fig.3. PAquantificationwith(A)comparingthenumberofhighPApixelsforeachjointgroupand(B)comparingthesamequantificationfordiscretePDscore(0,1,2or3, offsetonthex-axisistovisualizeindividualmarkers);Spearman’sr=0.64(95%CI:0.42,0.79),p<0.001.Onetrianglerepresentsonejointandhorizontalbarismedianofone group.

Table2

PDscore,PAquantificationandhypertrophicarea(ROIsize).

Parameter Healthy Non-inflamed Inflamed (N=12) (N=11) (N=11) PDscore 0.1(0.3)*** 0.5(0.7)** 1.7(0.9) NumberofhighPApixels 225(299)*** 444(694)*** 2792(1742) MeanPAamplitude 13.2(4.4)*** 14.9(11.7)*** 56.7(36.0) ROIsize(pixels) 4540(1318)*** 7900(3690)* 12468(4554) Quantificationvalues:mean(standarddeviation).Ranktestp-valuesfortesting inflamedjointsversuseitherofthecontrolgroups (healthyornon-inflamed): ***p<0.001,**p<0.01or*p<0.05.

(5)

between inflamed and control joints. In addition, the PA quantificationagreedwellwiththecorresponding semi-quantita-tivePDscores.TheROCsandareasunderthecurverevealagood separation of photoacoustic image characteristics between in-flamedandnon-inflamedjoints.Thisobservationmustbetreated with care, because of the small size of the study and the methodological limitations discussed below. Nevertheless, the resultsdoencouragefurtherresearchinphotoacousticimagingof earlyinflammations.

Hyper-vascularization and angiogenesis are hallmarks of rheumatoid arthritis and are markers for imaging with US-PD, astheincreaseinbloodflowisdetectableusingultrasoundflow imaging. In joints that are close to the skin, the increase in vascularityisanattractivetargetforPAI.Itshouldberealized,that US-PD and PAI do not provide an identical representation of vascularity,synovialorotherwise.Ononehand,US-PDisexpected tohighlight largerfeedingvessels and,theoretically,the move-mentofotherstructuressuchasvilloussynovialfoldswithinthe hypertrophic region. On the otherhand, PAI is expected tobe particularly sensitive to increased blood volume in smaller vasculaturewithinthesynovial membrane. PAI typically works bestforsmallvessels,networkedmostlyparalleltotheprobe; US-PDrathervisualizeslargevessels,angledtotheprobe.Theunique photoacoustic probe that we used in this study is sensitive to vessels, or vascular networks of 0.2mm in size and larger. Interestingly,theappearanceofsynovitisin PAIis quitesimilar foralltheclinicallyinflamedjointsthatwereimagedinthisstudy  unlike that of the US-PD representation, which varied considerably.

These fundamental differences betweenPAI andUS-PD may help explain the variation between the PD score and the PAI

quantification(Fig.3B).Thereareafewdatapointsthatfalloutside the‘natural’spread:Fig.3Bshowstwograde1jointswithavery highphotoacousticsignalandthreegrade1–2jointsthathardly showaPAIsignal.Theformer(“toohighPAIsignal”)mayoriginate from a different source, as the shape of these corresponding structures was decidedly different from the regularly seen representation of the synovium in PAI. The latter offsets (“too lowPAIsignal”)mayinfactbeduetofalsepositivePDscoringa resultofartefacts:notesfromoneofthetwoblindedexaminers confirmthispossibility.

WhilethisworkprovidesevidenceofPAIdetectingsynovitis, thereexistafewmethodologicallimitationstothisstudy.Forone, theselectionofpatientstookplaceapproximatelyaweekbefore thePAexamination.ThismayexplainpartlythevarianceinthePA quantification of inflamed joints (Fig. 3A), as some patients’ synovitissubsidedafterselection,butwerestillincludedinthe inflamedgroup.Inaddition,US-PDishardtostandardize,which may have caused the PD artefacts explained earlier. Also, the researcherinchargeofdrawingtheROIswasnotblindedtothe jointinflammation,whichmayhavebiasedtheinterpretation.This issuewasmoderatedhowever,sincetheROIwasdrawnontheUS imagewithoutshowingthePAoverlay.Atechnicallimitationofthe systemwastheinabilitytoco-acquirehigh-qualityb-modeandPA images. The short delay between both may have resulted in inaccuracy due to accidental movement of the finger. This limitationofoursetupwillbesolvedinafutureversion,leading toalmostsimultaneousacquisitionofPAandb-modeUSimages. Despite these limitations this study shows positive and highly significant findings in PAI. Fluence correction appeared to be necessaryin ouranalysis.Variations of theappliedexponential Table3

PDscoreversusotherparameters.

Parameter PD-0 PD-1 PD-2 PD-3

(N=19) (N=7) (N=6) (N=2)

NumberofHighPApixels 252(367) 2368(2494) 1909(1219) 2741(472) MeanPAamplitude 12.2(4.1) 43.8(39.8) 50.1(38.8) 53.6(6.5) ROIsize(pixels) 5263(2115) 11075(5265) 12162(3868) 14013(4445) Quantificationvalues:mean(1s).

Fig.4. ReceiverOperatingCharacteristics(ROCs)forthemeanPAamplitude(A)andthenumberofhighPApixelsexceeding18dB(B)withintheregionsofinterest.Separate comparisonsandareasunderthecurvearegivenofinflamedjointswithjointsinhealthysubjects(‘healthy’)andcontralateraljointsinpatients(‘control’).

(6)

fluencedecayrateinarealisticintervalaroundtheassumedvalue of1/mm,hadnocriticalinfluenceontheoutcomeofouranalysis. This is the first clinical study with a compact and fully integratedPA/USimagingprobe.Itmeansanimportantstepfrom existingPAIsystems,wheresizableandcostlyexternallasersare used,towardspracticaluseinclinicalsettings.Furthermore,our systemreliesonanearinfrared(NIR)lightsourceat808nm,in contrasttopreviousstudies,which usedvisiblelightof 580nm

[44].WhilehaemoglobinabsorbslessNIRlightthanitdoesinthe visiblerange,lightattenuationinthesurroundingtissueis also lower.ThismeansthatwithNIRlightthePAoutcomedependsless on the exact tissue composition. In addition, absorption by superficial structures would be much more pronounced with visible light, for instance in the melanin layer and of regular vessels.Absorptionlikethisisknowntocausepronouncedclutter when these PA signals also travel down and reflect on lower structures.

Previousstudiesshowedthatlineararray-basedsystemssuch as used in this study are susceptible to clutter and reflection artefacts [45]. Future studies should therefore include clutter reductionandartefactremoval[46,47].Wewereabletorejectthe possibilityofmosttypesofartefactsbymovingtheillumination positioninrelationtothefinger–formosttypesofartefactsthe appearanceofPAfeatureswouldmoveinrelationtotheUSimage

[48], but this did not happen in the cases investigated here. However,cluttermayhavecausedthebaselinePAsignalascanbe seeninFig.2,andalsosomeoftheoutlyingdatapointsinFig.3. FutureapplicationsofPAItosynovitiscantakeadvantageofits multi-spectralimagingcapabilities,allowingtheestimationofthe oxygenationsaturation(sO2)ofthesynovium.Multi-spectralPAIis expectedtoimprovethespecificityofthetechnique.TargetedPA contrast agents [49] with specific spectral signature linked to molecular markers also deserve investigation, as they could provideinformation aboutinflammationsimilartofor example positronemissiontomography.Thenext prototypeofourprobe includesdiodelasersofvariouswavelengthsforthispurpose.This prototypemeritsfurtherinvestigationofsubclinicalsynovitisina largerpatientpopulation, and itspredictive valuefor a disease flare.Inaddition,comparisonwithMRIangiographywillallowa closerlookatwhich specificvascularstructuresaredepictedby PAI. A current limitation of the handheld probe is its low penetrationdepth(15mm)comparedtootherPAIsystems,which meansfutureapplicationswilllikelyfocusonperipheraljointsthat areclosetotheskin.

5.Conclusion

PAIisauniquemodalityduetoitsopticalimagingcontrastin combinationwithultrasound-based resolution. Wehaveshown that PAI with a handheld probe can detect clinically evident synovitis,whichis afirststeptowardtheapplicationof PAIfor diagnosis and monitoringof inflammation in peripheral joints. Theseresultsprovideabasisforfurtherresearchtoinvestigatethe potentialbenefitsofPAIoverothermodalities.

Contributions

Allauthorstookpartintheconceptionanddesignofthestudy. PJB,KDandHJBMperformedthemeasurements.PJBprocessedand analysedthedataandwrotethemanuscriptdraft.HJBMtookpart ingradingtheUS-PDimages.Eachauthortookpartineditingthe manuscript,readandapproveditsfinalversion.

Patientconsent

Writteninformedconsentwasobtainedpriortoinclusion.

Funding

Theresearchleadingtotheseresultshasreceivedfundingfrom theEuropeanCommission’sSeventhFrameworkProgramme(FP7/ 2007-2013)undergrantagreementno.318067,andtheEuropean H2020programundergrantagreementno.731771.

Ethicsapproval

TheethicalcommitteeMETCTwentegaveitsapprovalofthe studyprotocol.

Conflictofinterest

Theauthorsdeclarethattherearenoconflictsofinterest. Acknowledgements

WethankDr.CeesJ.Haagsmaforhissupportandgradingofthe US-PDimages.

References

[1]P.G. Conaghan,P.O’Connor,D. McGonagle,P. Astin,R.J. Wakefield, W.W. Gibbon,etal.,Elucidationoftherelationshipbetweensynovitisandbone damage—arandomizedmagneticresonanceimagingstudyofindividualjoints inpatientswithearlyrheumatoidarthritis,ArthritisRheum.48(1)(2003)64– 71.

[2]P.P.M. Reynolds, C. Heron,J. Pilcher, P.D.W. Kiely, Prediction of erosion progressionusingultrasoundinestablishedrheumatoidarthritis:a2-year follow-upstudy,SkeletalRadiol.38(5)(2009)473–478.

[3]T.Funck-Brentano,F.Gandjbakhch,F.Etchepare,S.Jousse-Joulin,A.Miquel,C. Cyteval,etal.,Predictionofradiographicdamageinearlyarthritisby sonographicerosionsandpowerdopplersignal:alongitudinalobservational study,ArthritisCareRes.(Hoboken)65(6)(2013)896–902.

[4]F.Gandjbakhch,P.G.Conaghan,B.Ejbjerg,E.A.Haavardsholm,V.Foltz,A.K. Brown,etal.,Synovitisandosteitisareveryfrequentinrheumatoidarthritis clinicalremission:resultsfromanMRIstudyof294patientsinclinical remissionorlowdiseaseactivitystate,J.Rheumatol.38(9)(2011)2039–2044. [5]F.Gandjbakhch,E.A.Haavardsholm,P.G.Conaghan,B.Ejbjerg,V.Foltz,A.K.

Brown,etal.,Determiningamagneticresonanceimaginginflammatory activityacceptablestatewithoutsubsequentradiographicprogressionin rheumatoidarthritis:resultsfromafollowupMRIstudyof254patientsin clinicalremissionorlowdiseaseactivity,J.Rheumatol.41(2)(2014)398–406. [6]A.Krabben,W.Stomp,J.A.B.VanNies,T.W.J.Huizinga,D.VanDerHeijde,J.L. Bloem,etal.,MRI-detectedsubclinicaljointinflammationisassociatedwith radiographicprogression,Ann.Rheum.Dis.73(11)(2014)2034–2037. [7]H.Nguyen,A.Ruyssen-Witrand,F.Gandjbakhch,A.Constantin,V.Foltz,A.

Cantagrel,Prevalenceofultrasound-detectedresidualsynovitisandriskof relapseandstructuralprogressioninrheumatoidarthritispatientsinclinical remission:asystematicreviewandmeta-analysis,Rheumatology53(11) (2014)1–9.

[8]E.L.Rowbotham,A.J.Grainger,Rheumatoidarthritis:ultrasoundversusMRI, AJRAm.J.Roentgenol.197(3)(2011)541–546.

[9]S.Torp-Pedersen,R.Christensen,M.Szkudlarek,K.Ellegaard,M.A.D’Agostino, A.Iagnocco,etal.,PowerandcolorDopplerultrasoundsettingsfor inflammatoryflow:impactonscoringofdiseaseactivityinpatientswith rheumatoidarthritis,ArthritisRheumatol.67(2)(2015)386–395. [10]I.K. Haugen,H.B. Hammer, Aneed for new imaging modalityto detect

inflammationinrheumatoidarthritisandosteoarthritis?Ann.Rheum.Dis.75 (3)(2016)479–480.

[11]A.J.Meier,W.H.Rensen,P.K.deBokx,R.N.deNijs,Potentialofopticalspectral transmissionmeasurementsforjointinflammationmeasurementsin rheumatoidarthritispatients,J.Biomed.Opt.17(8)(2012)081420. [12]A.M.Glimm,S.G.Werner,G.R.Burmester,M.Backhaus,S.Ohrndorf,Analysisof

distributionandseverityofinflammationinpatientswithosteoarthitis comparedtorheumatoidarthritisbyICG-enhancedfluorescenceoptical imagingandmusculoskeletalultrasound:apilotstudy,Ann.Rheum.Dis.75 (3)(2016)566–570.

[13]M.vanOnna,D.F.TenCate,K.L.Tsoi,A.J.Meier,J.W.Jacobs,A.A.Westgeest, etal.,Assessmentofdiseaseactivityinpatientswithrheumatoidarthritis usingopticalspectraltransmissionmeasurements,anon-invasiveimaging technique,Ann.Rheum.Dis.75(3)(2016)511–518.

[14]M.Krohn,S.Ohrndorf,S.G.Werner,B.Schicke,G.R.Burmester,B.Hamm,etal., Near-infraredfluorescenceopticalimaginginearlyrheumatoidarthritis:a comparisontomagneticresonanceimagingandultrasonography,J. Rheumatol.42(7)(2015)1112–1118.

[15]R.Meier,K.Thuermel,P.B.Noël,P.Moog,M.Sievert,C.Ahari,etal.,Synovitisin patientswithearlyinflammatoryarthritismonitoredwithquantitative

(7)

analysisofdynamiccontrast-enhancedopticalimagingandMRimaging, Radiology270(1)(2014)176–185.

[16]V.S.Schäfer,W.Hartung,P.Hoffstetter,J.Berger,C.Stroszczynski,M.Müller, etal.,Quantitativeassessmentofsynovitisinpatientswithrheumatoid arthritisusingfluorescenceopticalimaging,ArthritisRes.Ther.15(5)(2013). [17]S.G.Werner,H.E.Langer,S.Ohrndorf,M.Bahner,P.Schott,C.Schwenke,etal.,

Inflammationassessmentinpatientswitharthritisusinganovelinvivo fluorescenceopticalimagingtechnology,Ann.Rheum.Dis.71(4)(2012)504– 510.

[18]L.V.Wang,S.Hu,Photoacoustictomography:invivoimagingfromorganelles toorgans,Science335(6075)(2012)1458–1462.

[19]P.Beard,Biomedicalphotoacousticimaging,InterfaceFocus1(4)(2011)602– 631.

[20]L.V.Wang,J.Yao,Apracticalguidetophotoacoustictomographyinthelife sciences,Nat.Methods13(8)(2016)627–638.

[21]V.Ntziachristos,Goingdeeperthanmicroscopy:theopticalimagingfrontierin biology,Nat.Methods7(8)(2010)603–614.

[22]P.J.vandenBerg,K.Daoudi,W.Steenbergen,Reviewofphotoacousticflow imaging:itscurrentstateanditspromises,Photoacoustics3(3)(2015)89–99. [23]Z.J. Guo, Z. Xu, L.H.V. Wang, Dependence of photoacoustic speckles on

boundaryroughness,J.Biomed.Opt.17(4)(2012).

[24]T.Kitai,M.Torii,T.Sugie,S.Kanao,Y.Mikami,T.Shiina,etal.,Photoacoustic mammography:initialclinicalresults,BreastCancer21(2)(2014)146–153. [25]E.Fakhrejahani,M.Toii,T.Kitai,S.Kanao,Y.Asao,Y.Hashizume,etal.,Clinical reportonthefirstprototypeofaphotoacoustictomographysystemwithdual illuminationforbreastcancerimaging,PLoSOne10(10)(2015).

[26]M.Heijblom,D.Piras,M.Brinkhuis,J.C.vanHespen,F.M.vandenEngh,M.van derSchaaf,etal.,Photoacousticimagepatternsofbreastcarcinomaand comparisonswithMagneticResonanceImagingandvascularstained histopathology,Sci.Rep.5(2015)11778.

[27]M.Heijblom,D.Piras,F.M.vandenEngh,M.vanderSchaaf,J.M.Klaase,W. Steenbergen,etal.,ThestateoftheartinbreastimagingusingtheTwente PhotoacousticMammoscope:resultsfrom31measurementsonmalignancies, Eur.Radiol.(2016).

[28]X.Wang,D.L.Chamberland,P.L.Carson,J.B.Fowlkes,R.O.Bude,D.A.Jamadar, etal.,Imagingofjointswithlaser-basedphotoacoustictomography:ananimal study,Med.Phys.33(8)(2006)2691–2697.

[29]J.R. Rajian, G. Girish, X. Wang, Photoacoustic tomography to identify inflammatoryarthritis,J.Biomed.Opt.17(9)(2012).

[30]J.R. Rajian, X. Shao, D.L. Chamberland, X. Wang, Characterization and treatmentmonitoringofinflammatoryarthritisbyphotoacousticimaging: astudyonadjuvant-inducedarthritisratmodel,Biomed.Opt.Express4(6) (2013)900–908.

[31]N.Beziere,C.VonSchacky,Y.Kosanke,M.Kimm,A.Nunes,K.Licha,etal., Optoacousticimagingandstagingofinflammationinamurinemodelof arthritis,ArthritisRheumatol.66(8)(2014)2071–2078.

[32]G. Xu,J.R. Rajian,G. Girish,M.J.Kaplan, J.B.Fowlkes, P.L. Carson,etal., Photoacousticandultrasounddual-modalityimagingofhumanperipheral joints,J.Biomed.Opt.18(1)(2013).

[33]K.Daoudi,P.J.VanDenBerg,O.Rabot,A.Kohl,S.Tisserand,P.Brands,etal., Handheldprobeintegratinglaserdiodeandultrasoundtransducerarrayfor ultrasound/photoacousticdualmodalityimaging,Opt.Express22(21)(2014) 26365–26374.

[34]C.Lutzweiler,R.Meier,E.Rummeny,V.Ntziachristos,D.Razansky,Real-time optoacoustictomographyofindocyaninegreenperfusionandoxygenation parametersinhumanfingervasculature,Opt.Lett.39(14)(2014)4061–4064. [35]P.VanEs,S.K.Biswas,H.J.B.Moens,W.Steenbergen,S.Manohar,Initialresults offingerimagingusingphotoacousticcomputedtomography,J.Biomed.Opt. 19(6)(2014).

[36]L.Xi,H.B.Jiang,Highresolutionthree-dimensionalphotoacousticimagingof humanfingerjointsinvivo,Appl.Phys.Lett.107(6)(2015).

[37]Z.Deng,C.Li,Noninvasivelymeasuringoxygensaturationofhuman finger-jointvesselsbymulti-transducerfunctionalphotoacoustictomography,J. Biomed.Opt.21(6)(2016)61009.

[38]J.Jo,G.Xu,A.Marquardt,G.Girish,X.Wang,Photoacousticevaluationof humaninflammatoryarthritisinhumanjoints,Proc.SPIE(2017) (1006409-1006408).

[39]G.Xu,D.Chamberland,G.Girish,X.D.Wang,Photoacousticandultrasound dual-modalityimagingforinflammatoryarthritis,PhotonicTher.Diagn.X (2014)8926.

[40]M.Szkudlarek,M.Court-Payen,S.Jacobsen,M.Klarlund,H.S.Thomsen,M. Østergaard,Interobserveragreementinultrasonographyofthefingerandtoe jointsinrheumatoidarthritis,ArthritisRheum.48(4)(2003)955–962. [41]M.Jaeger,S.Schüpbach,A.Gertsch,M.Kitz,M.Frenz,Fourierreconstructionin

optoacousticimagingusingtruncatedregularizedinversek-space interpolation,InverseProb.23(6)(2007)S51–S63.

[42]B. Cox, J.G. Laufer, S.R. Arridge, P.C. Beard, Quantitative spectroscopic photoacousticimaging:areview,J.Biomed.Opt.17(6)(2012).

[43]S.L.Jacques,Opticalpropertiesofbiologicaltissues:areview,Phys.Med.Biol. 58(11)(2013)R37–61.

[44]J.Jo,G.Xu,A.Marquardt,S.Francis,J.Yuan,D.Girish,etal.,Photoacoustic imagingofinflammatoryarthritisinhumanjoints,Proc.SPIE9689(2016). [45]P.Stefan,H.Gerrit,G.A.Hidayet,J.Michael,F.Martin,Studyofclutteroriginin

in-vivoepi-optoacousticimagingofhumanforearms,J.Opt.18(9)(2016) 094003.

[46]M. Kuniyil, Ajith Singh, W. Steenbergen, Photoacoustic-guided focused ultrasound(PAFUSion)foridentifyingreflectionartifactsinphotoacoustic imaging,Photoacoustics3(4)(2015)123–131.

[47]H.M.Schwab,M.F.Beckmann,G.Schmitz,Photoacousticclutterreductionby inversionofalinearscattermodelusingplanewaveultrasound

measurements,Biomed.Opt.Express7(4)(2016)1468–1478.

[48]G.Held,S.Preisser,H.GünhanAkarçay,S.Peeters,M.Frenz,M.Jaeger,Effectof irradiationdistanceonimagecontrastinepi-optoacousticimagingofhuman volunteers,Biomed.Opt.Express5(11)(2014)3765–3780.

[49]J.Lemaster,J.V. Jokerst,What’snewinnanoparticle-basedphotoacoustic imaging,WIREsNanomed.Nanobiotechnol.9(1)(2016),doi:http://dx.doi.org/ 10.1002/wnan.1404.

PimvandenBergisaPhDresearcherattheUniversityof Twente,theNetherlands.HeisworkingontheEuropean projectFullphase,whichaimstodevelopanaffordable andportableultrasound/photoacoustic (US/PA)system forearlydiseasedetection.Hismainresearchinterests areflowimagingusingphotoacousticsandthe applica-tionofUS/PAimagingfortheassessmentofrheumatoid arthritis. Beforestarting his PhD, Pimdidhis master studiesonOpticsandBiophysics,buildingaSTORMsuper resolutionmicroscopeanduseditforcharacterizationof proteinaggregationinParkinson'sdisease.Interestsalso includehighschoolsciencepromotion,having partici-patedinamediapusharoundphotoacousticimagingfor thepopularizationofappliedsciences.

KhalidDaoudi,receivedhisPhDdegreeinAppliedOptics fromuniversityPierreetMarieCurie(ParisVII)ofParis, FranceonhisworkonOptical-ElastographyatLangevin Institute(ESPCI).Afterhegraduatedhestartedapost-doc position at Institute for Biomedical Technology and TechnicalMedicine,BMPIgroupatuniversityofTwente in Netherlands. His research focused on optical and hybridacousticalandopticalimagingmethodssuchas photoacoustics and acousto-optics and modeling of sound/lighttissueinteraction.Recentlyhejoined Rad-boud University Medical Center (Nijmegen, The Netherlands)atthedepartmentofRadiologywherehe isworkingonthedevelopmentofphotoacousticimaging techniqueatMedicalUltrasoundImagingCenter(MUSIC)group.

HeinBernelot Moensisarheumatologist inhospital ZiekenhuisgroepTwente,theNetherlands.Hespecialized ininternalmedicineandrheumatology,andreceivedin 1991hisPhDincomputerassisteddiagnosisofrheumatic diseasesattheuniversityofAmsterdam.Since2005heis qualifiedinultrasoundofthemusculoskeletalsystem, andusesultrasoundroutinelyinpatiëntcare.Nextto clinicalwork,hejoinedresearchprojectson computer-assistedimagingofhandradiographs.Since2011heis involvedinthedevelopmentofclinicalapplication of photoacousticimagingofsynovialinflammationatthe BMPIdepartmentoftheUniversityofTwente.Since2015 heisPresidentoftheDutchSocietyforRheumatology. Wiendelt Steenbergen obtained a Master degree in AerospaceEngineeringattheDelftUniversityof Technol-ogy (1988), a PhD degree in fluid dynamics at the EindhovenUniversityofTechnology(1995)andjoined theUniversityofTwente,Enschede(theNetherlands).In 2000hewasappointedassistantprofessorinbiomedical optics and broadened his scope to low-coherence interferometry and photoacoustic and acousto-optic imaging.In2010 hebecamefull professorandgroup leaderoftheBiomedicalPhotonicImaginggroupofthe UniversityofTwente.Hiscurrentresearchinterestsare specklebasedperfusionimaging,photoacousticimaging formammographyandrheumatology,andquantification ofphotoacousticimagingusingacousto-optics.

Referenties

GERELATEERDE DOCUMENTEN

The coherent case, where we assume that the phase of the reflectivity of bulk hBN and graphite are the same, seems to agree the best with the measurements that were previously done

Ide nt ifi ed Sc re en in g Inc lude d Inc lude d Used Database: Web of Science Found: 2029 2009-2020 After screening for title and abstract N = 934

In contrast to the results of a previous experiment, results from the present ERP study show a higher mismatch negativity (MMN) for gender variation than for speaker changes

Indien de ouders op het moment van uit elkaar gaan het ouderlijk gezag van de vader nog niet hebben geregeld zal dit lastiger worden doordat de moeder toestemming moet geven voor

pandemics which led to havoc due to lack of broadly protective influenza vaccines 6–9. There is an urgent need for a universal or broadly protective influenza vaccine 4,10.

Er wordt nu een RF-puls (Radio Frequente puls, puls van radiostraling) naar de patiënt gezonden met fotonen die precies de energie ΔE hebben die nodig is om de waterstofkernen

This research hypothesized a positively relationship between gender in corporate boards and corporate governance quality, since several former studies (Nguyen, 2012 and Gul et

We introduce magnetic resonance imaging of the microwave magnetic stray fields that are generated by spin waves as a new approach for imaging coherent spin-wave transport.. We