• No results found

andthe hemi alsignatures from re ent spe tros opi observationsasso iateits

progenitor with a dwarf galaxy (Casey et al. 2013b,a). A number of plausible

progenitorshavebeensuggested(Zu keretal.2006;Fellhaueretal.2007b;Jin&

Lynden-Bell2007;Salesetal.2008),butitisstillpossiblethatthetrueprogenitor

remainsundis overed inthesouthernhemisphere(Caseyet al.2013b).

Ingeneral,thedis overyofmostofthesubstru tures inthehalooftheMilky

Wayhasbeenpossiblethankstophotometri multi- olourwideareasurveys. Su h

surveysposeseveraladvantagesforthiskindofsear h. First,theirmultiple-band

photometryallowsforstellarpopulationsele tions(haloorthi kdisk;red lump,

main sequen e turno point, et .) based on olour- olour stellar lo i. These

sele tion riteria anbeusedtomakestellardensitymapsthattra kthestreams

all through the survey's overage area (Majewski et al. 2003; Belokurov et al.

2006b). Se ond,their ontinuous overageofalargeareaallowtheeldsadja ent

to the substru ture to a t as ontrol elds. In this way, the olour-magnitude

diagrams (CMDs) of the ontrol elds an be used to statisti ally subtra t the

foreground and the ba kground stars from the elds probing the substru ture.

Thisenhan esthesignatureofthestellar population belongingtothestreamor

satellite(byremovingthenoise),andmakesitpossibletoidentifyageanddistan e

indi atorssu has the red lumpor themain sequen e turno point(Belokurov

etal.2006b;Koposovetal.2012;Slateret al.2013).

Inthispaper weexplorethepossibilitiesofusingdeeptwo-bandpen il-beam

surveys instead of the usual wide-area multi- olour surveys in order to dete t

and hara terize stellar streams of the halo and, in parti ular, we revisit the

Sagittarius, the Palomar 5 and the Orphan streams. We derive photometri

distan esusingpurelythemainsequen eturnopointandunlikeotherworks

regardlessofthegiantbran h anditsred lump.

−50 0

50 100

150 200

250 RA (degrees)

−60

−40

−20 0 20 40 60 80

DE C ( de gre es )

Sgr dwarf survey fields

Sgr stream fields, faint branch Sgr stream fields, bright branch Pal5 and Orphan fields

Figure4.1: Equatorialmapshowingthepositionofalltheeldsfromoursurvey

(white hexagons) and highlighting the ones that lay on the Sagittarius stream

(green ir lesforthefaintbran handgreensquaresforthebrightbran h),onthe

Palomar5streamandontheOrphanstream(orangediamonds). Theba kground

imageistheSDSS-DR8mapoftheSgrstreamfromKoposovetal.(2012),where

thelo ationoftheSagittariusdwarfgalaxyhasbeenmarked(redstar).

Bona a et al. 2012b) (see Figure 4.1). Further away from the plane of the Sgr

stream,wealsondthreeeldstobe oin identwiththeTriangulum-Andromeda

stru ture(Ro ha-Pinto et al.2004; Bona a et al. 2012a), two to three with the

Pis esOverdensity(Watkinsetal.2009;Sesaret al.2010b; Sharmaetal.2010),

onetransitionalbetweentheTriangulum-AndromedaandthePis esOverdensity,

fourwith theAnti enter Stru ture (Grillmair2006b) and two tothree with the

NGC5466stream (Grillmair & Johnson 2006; Fellhauer et al. 2007a). We also

nd two elds on the Lethe stream (Grillmair 2009), four on the Styx stream

(Grillmair2009), one ona region apparently ommon to the Styxand Co ytos

streams(Grillmair2009)andtwoontheCanisMajoroverdensity(Martinet al.

2004).

In this paper we on entrate on the learest stru tures (those where the

ontrast-to-noisein the CMD is higher)in order to test the apabilities of our

method. Inparti ular, we address theSagittariusstream, thePalomar5 stream

andtheOrphanstream.

4.2.2 Corre tion of the PSF distortionand impli ations for

the star/galaxy separation

Beforebuilding atalogues andin orderto performana uratestar/galaxy

sep-aration,itisne essary tore tifythevaryingPSF a rosstheelds oftheCFHT

images.

Inorderto orre tforthisee t,wemakeuseofa 'PSF-homogenizing' ode

(K.Kuijkenet al.,in prep.). The ode usestheshapesofbright obje ts

unam-biguously lassiedasstarstomapthePSFa rosstheimage,andthen onvolves

itwithanappropriatespatiallyvariablekerneldesignedtorenderthePSF

gaus-sianeverywhere. WithaviewtoobtainingaPSFashomogeneousaspossible,we

treatthedataasfollows(vanderBurgetal.2013): i)weimplementana urate

sele tionof su iently brightstars basedonan initial atalogue, ii)werun the

ode ontheindividual exposures forea h eld,and iii) wereje t bad exposures

basedonaseeing riterion 1

beforesta kingtheminto onenalimage,onwhi h

weperformthenalsour eextra tionandphotometry.

The advantages of this pro edure are twofold. First, be ause the resulting

PSFforea hexposureis gaussian,all thestarsbe omeround. Se ond, be ause

thePSFanisotropyisremovedfromallexposuresbeforesta king,thedispersion

in size for the point-sour e obje ts be omes smaller, even if the average value

in reases after sta king the individual exposures (see Figure 4.2). These two

improvementssigni antlyredu ethegalaxy ontaminationwhenperformingthe

starsele tion(illustratedinFigure4.3). Additionally,homogenizingthePSFalso

allowstomeasure oloursin xedapertures.

Fromthenalimages, weextra tthesour esand produ ephotometri

ata-loguesusingSExtra tor(Bertin&Arnouts1996). Toderivethestellar atalogues,

weusea odethat ltersthesour e ataloguesas follows: i)ndsthesaturated

starsandremovesthemfrom thestellar atalogue;ii)evaluatesthedistribution

of bright sour es (

r = [18.0, 20.0] mag

) in the brightness-size parameter spa e, assumesa gaussian distribution inthesize and inthe ellipti ityparameters (

e 1

,

e 2

)2 of stars, and uses this information to dene the boundaries of the stellar lo us along the bright range; iii) evaluates the dependen e of the width of the

stellar lo us on brightness and extrapolates the relation to fainter magnitudes;

iv)appliestheextendedstellarlo usand anellipti ity riterionto dropgalaxies

fromthestellar atalogue.

For the starsresultingfrom thissele tion (Figure4.3), we orre t their

pho-tometryfromgala ti reddeningbyusingtheextin tionmapsfromS hlegeletal.

(1998). Thenalstellar ataloguesareusedtobuildtheCMDsemployedforour

analysis. ThePSF- orre ted ataloguesyieldmu h leanerCMDsthanthe

ata-logueswithsimilar star/galaxyseparation butnoPSF- orre tion(Figure4.4).

1

Thereje tionofexposuresderivesfromtryingtooptimizetheimagequalitywhilea hieving

thedesiredphotometri depth. Thusourseeing riterionisavariablenumberdependentonthe

elditself,theseeingdistributionforindividualexposuresandtheindividualplustotalexposure

time.Ingeneralittakesvalues

<≈ 0.9 ′′

.

2

e 1 = 1 − q 2

1 + q 2 cos 2θ , e 2 = 1 − q 2 1 + q 2 sin 2θ ,

where

q =

axisratio,

θ =

positionangleofthemajoraxis.

Figure4.2: Brightnessversussizediagramofallthesour esinoneofourpointings.

Thestellarlo uspriortothePSF-homogenization (bla k)iswiderandtherefore

subje t to greater galaxy ontamination at the faint end than the stellar lo us

posteriortothe orre tion(blue)be ausethePSFinitiallyvariesa rosstheeld.

The sour es more ompa t than the stellar lo us are artefa ts from the sour e

extra tion;theyholdnorelevan eforouranalysissin etheydonotpassthestar

sele tion(seeFigure 4.3).

Figure4.3: BrightnessversussizediagramshowingallthePSF- orre tedsour es

(blue)and thesubset ofsour es sele tedas stars through ourstar/galaxy

sepa-rationalgorithm(red) forone ofourpointings. Althoughthestarsele tionmay

notbe omplete at the faint end due to in reasing s atter, our algorithm

mini-mizesthegalaxy ontamination, whi hotherwisewouldbethemain obsta lefor

dete tingfaintstru turesin theCMD.

Figure4.4: Colour-MagnitudeDiagram(CMD)displayingthesele tionofsour es

onsideredstars(sele tedasexplainedinse tion2.2). Theplumeontheredside

(

g − r ≈ 1.2

)is omposedofthenearbyM-dwarfs,whereasthemainsequen eon

thebluer side(

0.18 < g − r < 0.6

) orrespondsto a halo overdensitylo ated at a parti ularwell-dened distan e. The loudof sour esat faintmagnitudes are

faintgalaxiesthatenterthestarsele tion. Left: CMDderivedfromanimagethat

hasnotbeenPSF- orre ted. Right: CMDderivedfrom a PSF- orre tedimage.

AfterhomogenizingthePSF,thegalaxy ontaminationde reasesmarkedlybelow

r ≈ 22

.

4.2.3 Identi ation of the main sequen e turno point

Thephotometri depthofourdataallowsustodete tanumberofhalo

substru -tures several magnitudes below their main sequen e turn-o point. However,

be auseoursurveyisapen il-beamsurveyla king ontrol eldsadja enttoour

targetelds, wehavenoreferen e-CMDsrepresentinga lean foregroundplusa

smoothhalo, and thus a simpleforeground subtra tion is notpossible. Instead

thehalosubstru turesinoursurvey anonlybedete tedinthoseeldswherethe

ontrastin densitybetweenthemain sequen e stream starsand the foreground

andba kgroundstarsissigni antin theCMD.

Thus, in order to sear h for main sequen es in theCMDs, we build a

ross- orrelationalgorithmthatruns a rossaregionoftheCMD(the'sear hregion'),

fo usedonthe olourrangeasso iatedwiththehaloturnostars(

0.18 ≤ g − r ≤ 0.30

). Within the boundaries of this sear h region, we slide a template main

sequen e-shaped2Dfun tionthatoperatesoverthenumberofstarsand,forea h

step,yields anintegral representingtheweighteddensityofstars insu h amain

sequen e-shapedarea. Whenthetemplatemainsequen efun tion oin ideswith

a similarly shaped overdensity in the CMD), the value of the ross- orrelation

(theweighteddensity)ismaximized,andavaluefortheturnopointisassigned.

Thispro essisillustratedin Figure4.5.

Insome asesa CMD presentsmore than one main sequen esignature with

su ient ontrast to noise. When this happens we use the dete tion of the

primary main sequen e (the position of its turno point and its hara teristi

width-fun tion)to randomlysubtra t a per entage of the stars asso iated with

it (lowering its density to the foreground level) and dete t the next prominent

mainsequen efeature. Wenamethesemainsequen edete tionsasprimary,

se -ondary, et ., ranked by their signal to noise. We require the signal to noise to

be

> 3.5σ

for primary MSs and

> 4σ

for the se ondary or tertiary MSs after

partiallyremovingtheprimaryone.

Shape ofthe template main sequen efun tion

When onstru tingthetemplatemainsequen e-shaped2Dfun tion(fromnowon,

'template-MS'),weusetwoingredients. Therstoneisatheoreti aliso hrone 3

of

age

t = 10Gyr

andmetalli ity

[F e/H] = −1.58

,whi hisusedtodenethe entral

spineofthetemplate-MS.Thepositionofthis entralspineislatershiftedin

mag-nitudeand olourstepsduringthe ross- orrelation. Sin eweareonlyinterested

intheshapeofthisiso hrone(itsabsolutevaluesareirrelevantbe auseitwillbe

shifted)andsin ewearesear hingforhalosubstru tures,we hoosetheaboveage

andmetalli ityvaluesbe ausetheyyieldaniso hroneshaperepresentativeofold

metal-poorstellarpopulations. These ond ingredientisa magnitude-dependent

olour-width, whi h is used to broaden the iso hrone template as illustratedin

theleftpanelofg.4.5).

3

Through all this work we use a subset of theoreti al iso hrones from

http://stev.oapd.inaf.it/ md. The theoreti al iso hrones (Marigo et al. (2008), with the

Figure 4.5: Left: Dereddened CMD (bla k dots) with the sear h region (pink

solid-line re tangle) for the ross- orrelation and the template main

sequen e-shaped fun tion(green solid line) at theposition of maximum density(peak of

the ross- orrelation). Right: Binned diagramrepresentingtheweighteddensity

of stars resulting from the ross- orrelation pro ess. The density in ea h bin

orrespondsto theintegral ofthe templatemain sequen e-shaped fun tionwith

topleft ornerinthepositionofthebin.

Thewidthisingeneraldire tlyderivedfromthewidthofthelo usofnearby

M-dwarfs (

1 .0 < g − r < 1.4

). The width of this feature is al ulated for a

number of magnitude bins as three times the standard deviation in olour for

ea h bin. Then a fun tional form dependent on magnitudeis obtained through

polynomial tting. Ina few ases, minor tweaking isneeded to ompensate for

extremelylargewidths ( olourshiftsbe omeinsensitiveto any substru ture)or

forextremelysmallwidths(densityvaluesbe omemeaninglessduetothebuilt-in

weight[seebelow℄). Thiswayofdening thewidthofthetemplate-MSa ounts

for the observational broadening of intrinsi ally well dened stellar lo i due to

in reasingphotometri un ertainties atfaintmagnitudes.

Weights within the templateMS-fun tion

Inadditiontoatheoreti allyandobservationallymotivatedshapeforthe

template-MS,wealso givea dierentweightto ea h region ofthe template. This means

that,for ea h step of the ross- orrelation, the stars ontained within will

on-tributedierently tothe en losedstellar density dependingon howfar theyare

fromthespineofthetemplate-MS.

orre tionsfrom Case Ain Girardi et al. (2010) and the bolometri orre tionsfor Carbon

starsfromLoidletal.(2001))areprovidedasobservablequantitiestransformedintotheCFHT

photometri system.

Theweightin olour(starsnearthespineofthetemplate-MSaremorelikely

to belong to the main sequen e than stars lose to the boundaries) is assigned

throughtheexponentialtermina gaussianweightfun tion. Wemat hthe

stan-darddeviationofthegaussianweighttothestandarddeviation ofthe

template-MSwidth(

3 σ = ω M S

)sothatallthestars ontainedwithinthetemplate-MSare assignedaweight. To guaranteethat theweightdoesnotfavourbrightfeatures,

we hoosetheamplitudeofthegaussian fun tionto besu hthat theintegral of

theweight fun tionbetween theedges of thetemplate-MS fun tionis thesame

forallmagnitudes.

Theresultingweightfun tionfora givenstarinthetemplate-MSata

parti -ularstepofthe ross- orrelationthenfollows:

W ∗ ( mag, colour) = A

√ 2 πσ(mag) · exp



− [ colour − η CC ( mag)] 2 2[ σ(mag)] 2



(4.1)

where

mag

and

colour

arethemagnitudeand olouroftheweightedstar,

η CC ( mag)

representsthetheoreti aliso hroneatthatparti ularstepofthe ross- orrelation,

and

σ(mag) = 1 3 ω M S ( mag)

isproportionaltothewidthofthetemplate-MS fun -tionforthatparti ularCMD.

4.2.4 Un ertainties in the turno point

The olourandmagnitudevalues fortheturno pointofagivenmain sequen e,

(

c T O

,

mag T O

),arederivedfrom theposition ofthetemplateatwhi hthe

ross- orrelationpeaks. Thereforetheun ertaintiesfortheseturnopointvaluesderive

from the ontribution of individual stars to theposition and shapeof themain

sequen e(theun ertaintyfromtheCMDitself). Toevaluatethisun ertainty,we

arryout a bootstrappingpro ess. In this pro ess rstwegenerate re-sampled

stellar ataloguesbyrandomlywithdrawingstarsfromoneofourtrue atalogues.

Se ond we run the ross- orrelation and obtain the turno points for ea h of

thesere-samples. Third we onsidertheosets betweentheseturno pointsand

theoriginal turno point and derive thestandard deviation of thedistribution.

The ontributionofanyCMDtotheun ertaintyofitsturnopoint anthenbe

al ulatedasa fun tionofa referen e(bootstrapped)standarddeviation,

s

:

E mag,CMD = f mag,BS · ( s mag,BS )

2 ρ CC

2 mag

TO

, E c,CMD = f c,BS · ( s c,BS )

2 ρ CC

2 c

TO

,

where, in pra ti e,

s mag,BS

and

s c,BS

are the standard deviations al ulated

foranumberofrepresentativeelds,

f mag,BS

and

f c,BS

ares alefa torsthatallow

toobtain the un ertainty foranyeld from thestandard deviation of the

boot-strappedelds, and

2 ρ CC

2 mag

and

2 ρ CC

2 c

evaluatethe prominen eofthe parti ular

overdensity as a fun tionof magnitude or as a fun tionof olour. In pra ti e,

E mag,CMD = s mag,BS

and

E c,CMD = s c,BS

for the bootstrapped elds used as a referen e.

Thephotometri turno pointdistan esarederivedfromthedistan e

modu-lus. Thereforetheun ertainties inthedistan es an be al ulatedasa

ombina-tionoftwosour esoferror: theun ertaintyderivedfromtheobservedbrightness

of the turno point (

E mag,CMD

, dis ussed above) and the un ertainty derived fromtheabsolutebrightnessoftheturnopoint,whi hdependsonthe hoi eof

iso hrone(andthusontheun ertaintyintheageor inthemetalli ity).

E µ,TO = q

E mag,CMD 2 + E mag,isoch 2 ;

(4.2)