• No results found

Italsoin reasesthe entralvalueofthepolaraxisratio

q

withintheun ertainties, fromaweighted

q = 0.77 ± 0.04

toa weighted

q = 0.79 ± 0.02

. Globally,thedisk

axisratioseemsto bethemoststableparameterthroughout thedierentmodel

tstoourdata, returninga moderatelyoblatehalo.

Finally we x the break distan e at the best t value found by the broken

power law model (

R break = 19

kp and

20

kp for the

0 .2

and

0 .4

mag binned

data,respe tively)andaddanotherparametertoit,allowingnotonly

n

,butalso

q

to hangeatthebreakdistan e. Wendthatthebesttstothismodelreturn

su h largeerrorbarsfortheinner halo that,inpra ti e, ityieldsun onstrained

measurements:

∆ ρ 0 ≤ ρ 0

,

∆ n in

is12-18% of

n in

and

∆ q in

is30%of

q in

.

Weexplore ea h modelto investigatepossible parameter degenera ies,

toler-an e rangesand potentiallo al minima in our best ts. For this we x all the

parametersinthefourmodelsex eptthedensitys alefa tor

ρ 0

,andwerunthe

tsa rossa gridofparameter values. Inparti ular, thegridsarebuiltfollowing

q 2 , w 2 ∈ [0.1, 2.0; δ = 0.05]

,

n ∈ [−5.0 − 1.0; δ = 0.1]

,

n in ∈ [−4.0, −1.0; δ = 0.1]

,

n out ∈ [−7.0, −3.0; δ = 0.2]

and

R br ∈ [15, 50; δ = 1]

, where

δ

is thein remental stepforea hparameter. Wendthatthereisadegenera ybetween

R br

and

n in

forthesimplebrokenpowerlawmodelforbothbinnings(seeFigure2.7).

Finallyourmeasurementsforthedensitys alefa tor

ρ 0

(

ρ

at

R GC = 1

kp ) aretheresultoflargeextrapolationsandmerelyserveas normalizationsforour

ts. Forthat reasonwedonotdis ussthese valuesin detail.

(a)

χ 2 red

mapfortheltered

0.2

magbinneddataset.

(b)

χ 2 red

mapfortheltered

0.4

magbinneddataset.

Figure2.7:

χ 2 red

iso ontoursmapsfor

n in

and

R br

fromthesimplebrokenpower

law model. The minimum is indi ated with a white star. The bla k solid

iso- ontours rangefrom

min(χ 2 red ) + 0.1

to the maximumvalue, whereasthewhite

dashediso ontours rangefrom

min(χ 2 red ) + 0.01

to

min(χ 2 red ) + 0.05

. Themaps

illustrateadegenera ybetweenbothparametersin thebest ts.

alsoinuen e the measurementsof the dierentparameters, but havea smaller

inuen e on thegeneral pi ture we would derive. Overall wesee that the lines

of sight we use an havea drasti ee t on the

w

resultsand a signi ant but

moderateee ton

q

and

n

. Thismeansthataglobalviewofthehaloisessential

owingto its omplexstru ture.

2.4.2 Comparison to previous studies

Previousinvestigationsusingnear-MSTOstarshaveexploredboththeinnerand

the outer halo out to moderate distan es (

30 − 40

kp ), and similar regimes

have been probed with blue horizontal bran h stars and blue struggler stars,

MSTO stars or multiple stellar halo tra ers. Studies involving RRLyrae stars

haverea hed furtheroutto

50

kp . Remarkably, thedepthof ourdataallowsus

to probe further than any previous study (out to

60

kp ) in several dire tions, independentlyofthestellartra er.

In this se tionwe ompare our ndingsregarding thestru tural parameters

ofthestellarhalo tothoseofthefollowingresultsin theliterature:

- Juri¢et al. (2008) use near-MSTOstars from theSDSS-DR3 and DR4as

stellartra ers, and over the

5 kpc < R GC < 15

kp range. They omprise

5450

deg

2

inthenorthernGala ti hemisphereand

1088

deg

2

inthesouth.

- Sesar et al. (2011) use as well near-MSTO stars from the CFHT Lega y

Survey, and explore the

5 kpc < R GC < 35

kp range. Two of their four

eldsexploretheSouthGala ti Cap.

- Deason et al. (2011) use type A blue horizontal bran h (BHB) stars and

bluestragglers (BS),rea hingoutto

R GC = 40

kp .

- deJongetal.(2010)useCMDttingofSEGUEstellarphotometrytoprobe

thetotalstellarmassdensityfrom

R GC = 7

kp to

R GC = 30

kp alonga

"pi ketfen e"of

2.5

degreewidestripsatxedGala ti longitudespanning

alargerangeofGala ti latitudes.

- Chen et al. (2001) use more general MSTO stars from two high latitude

regionsofSDSStotheNorthandtheSouthoftheGala ti plane(

49 deg <

|b| < 64 deg

). Theyexploretheinner haloregime(

R GC . 30

kp ).

- Bellet al.(2008) usealsomoregeneralMSTOstarsfromSDSS-DR5

span-ning

5 < R GC < 40

kp .

- Fa ioli et al. (2014) use RRLyrae in the

9 kpc < R GC < 49

kp range.

Theirmultiepo hdata omesfromtheXuyiS hmidtTeles opePhotometri

Survey(XSTPS)in ombinationwithSDSS olours,and overs

376.75

deg

2

at

RA ≈ 150

deg and

Dec ≈ 27

deg.

- Sesaretal.(2010a)useRRLyraestarsfromSDSS-IIinthestripe82region.

Althoughtheirdataoriginallyspans

5 kpc < R GC < 110

kp ,thereanalysis

performedbyFa iolietal.(2014)toderivestru turalparameterstrun ates

thesampleat

49

kp .

- Watkinset al.(2009) useaswellRRLyraefromSDSSinstripe82,andthe

omparative derivation of stru tural parameters by Fa ioli et al. (2014)

alsotrun atesitat

49

kp . Stripe82islo atedintheSouthGala ti Cap.

Theresultof this omparisonis summarized in Table2.6. Wenote that the

oblatenessvaluesforFa iolietal.(2014),Sesaretal.(2010a)andWatkinsetal.

(2009) are not the result of absolute best ts to a set of free parameters, but

thebest ts to free

R br

,

n in

and

n out

with xed priorvalues for a quite oblate

(

q = 0.59 +0.02 −0.03

)anda moderatelyoblatehalo(

q = 0.70 ± 0.01

).

Allsurveysthatrea hbeyond

R GC = 30

kp oin ideintheneedforabreakin thepower-lawindexofthehalodensity. Regardingpossibletriaxiality,onlyafew

ofthestudiesreport onstraintson

w

. Thosethatdo,haveeitherreported'nding

unreasonable values' (Sesar et al. 2011) or have obtained limits on triaxiality

similartoours(

w > 0.8

,Belletal.(2008)).

On thebreak radius, there is a general onsensus towards

R break ≈ 27

kp .

Theonlyex eptionisthatofBelletal.(2008),whondavaluevery losetoour

measurement(

∼ 20

kp ). Thesedis repan ies,however, anbeexplainedbythe ee tofthe

R break

-

n in

degenera ydis ussedinse tion2.3.3.

Theinnerandouterhalopowerlawindi esmostlyfallinthe

[ −2.3, −3.0]

and

[ −3.6, −5.1]

ranges. Ourinnerpower lawindex

n in = −2.50 ± 0.04

is onsistent

with these results, parti ularly with the lower end. In the ase of the outer

halo power index (

n out = −4.85 ± 0.04

), the omparison is less trivial. First,

only Sesar et al. (2011) and Deason et al. (2011) have provided measurements

for

n out

basedonts with a free

q

parameter (

n out = −3.8 ± 0.1

and

−4.6 +0.2 −0.1

,

respe tively). Se ond,onlyone work with

n out

measurements(Sesaretal.2011) uses a stellar tra er similar to ours (the others use A-BHB and BS stars, or

RRLyraestars). Most important, a good onstraint on

n out

requiresdeep data,

andnoneofthese earliersurveys rea h asdeepas ourdataset. Oursteep outer

index,although well in therangeofprevious measurements, might wellindi ate

aprogressivesteepeningofthehalodensity,thoughitwouldbegoodtotestthis

with additional sight lines of omparable depth. In any ase, it seems safe to

on ludethat

n out < −4.0

.

Thebest t values forthe polaraxis ratioor oblateness

q

range from

0 .5

to

0 .9

,withmostofthemeasurements on entratedwithin

(0 .55, 0.70)

. Thevalues

of

q

donotseemtodepend onwhethera break was dete tedor not,noronthe

limitingdistan eofthesurveyoronthestellartra er. Thedis repan ies anthus

beattributed either tomethodologi al dieren esorto dieren esin thespatial

overage of the data samples. However, it is di ult to determine the a tual

ause. Our results(

q = 0.79 ± 0.02

)do nott well within themost onstri ted rangebut rathermat htheupperpart ofthebroaderrange.

Finally it is noteworthy that the hoi e of stellar tra er a ross the dierent

worksdoesnotseemto auseanysigni antbiasonthebest tparameters.

Dis ussion

ofthe

0 .2

and

0 .4

mag datasets)and thosereported byothergroups inprevious works. Thedierent workshavebeen

labelledasfollows: J08(Juri¢et al.2008),S11(Sesaret al.2011),D11 (Deasonetal.2011),dJ10(deJonget al.2010),

Ch01(Chenetal.2001),B08(Belletal.2008),F14(Fa iolietal.2014),andS10(Sesaretal.2010a)andW09(Watkins

et al.2009) as reanalysedin F14. Thettedmodelsin F14,S10 and W09 havexed oblatenessand testtwo dierent

valuesmotivatedbythepreviousndingsinS11 andD11.

Work stellartra er dist.range(kp )

χ 2 red R br (kpc) n n in n out q w

thiswork-axisym. near-MSTO

[10, 60]

1.9 

−4.28 ± 0.06

 

0.78 ± 0.04



thiswork-triax. near-MSTO

[10, 60]

1.9 

−4.26 ± 0.06

 

0.77 ± 0.04 0.88 ± 0.07

thiswork-broken near-MSTO

[10, 60]

1.5

19.5 ± 0.4



−2.50 ± 0.04 −4.85 ± 0.04 0.79 ± 0.02



J08 near-MSTO

[5, 15] [2, 3]

 

−2.8 ± 0.3



0.65 ± 0.15



S11 near-MSTO

[5, 35] 3.9 27.8 ± 0.8



−2.62 ± 0.04 −3.8 ± 0.1 0.70 ± 0.02

ex luded

D11 A-BHB,-BS

[−, 40]



27.1 ± 1



−2.3 ± 0.1 −4.6 +0.2 −0.1 0.59 +0.02 −0.03



dJ10 multiple

[7, 30] [3.9, 4.2]



−2.75 ± 0.07

 

0.88 ± 0.03



Ch01 MSTO

[−, 30]

 

−2.5 ± 0.3

 

0.55 ± 0.06



B08 MSTO

[5, 40] 2.2 ∼ 20 −3 ± 1

 

[0.5, 0.8] ≥ 0.8

F14 RRLyrae

[9, 49] 0.8 28.5 ± 5.6



−2.8 ± 0.4 −4.4 ± 0.7 q f ix = 0.70 ± 0.01



" RRLyrae

[9, 49] 1.04 26.5 ± 8.9



−2.7 ± 0.6 −3.6 ± 0.4 q f ix = 0.59 +0.02 −0.03



S10 RRLyrae

[9, 49] 1.1 34.6 ± 2.8



−2.8 ± 0.2 −5.8 ± 0.9 q f ix = 0.70 ± 0.01



" RRLyrae

[9, 49] 1.52 26.2 ± 7.4



−3.0 ± 0.3 −3.8 ± 0.3 q f ix = 0.59 +0.02 −0.03



W09 RRLyrae

[9, 49] 1.1 27.6 ± 3.3



−2.5 ± 0.3 −4.3 ± 0.4 q f ix = 0.70 ± 0.01



" RRLyrae

[9, 49] 0.69 26.9 ± 3.1



−2.1 ± 0.3 −4.0 ± 0.3 q f ix = 0.59 +0.02 −0.03



2.4.3 Dete tion of overdensities and identi ation

We analyse the data-to-models residuals for the dierent lines of sight in

Fig-ure 2.6b in sear h for overdensities. We nd that, in general, all the lines of

sightpresentregionswithdata-to-modelsdeviationsofamaximumfa toroftwo.

Additionally, ertainlinesof sightC,D, G,andHpresentmoresigni ant

de-viations spanning from a few kiloparse s to tens ofkiloparse s in distan e. We

dis ussthese overdensitiesin greater detailbelow, and wealso dis uss expe ted

overdensitiesthat shownosignaturein ourdata.

Themost prominentoverdensities in thedata-to-modelresiduals orrespond

to the northern wrap of the Sagittarius (Sgr) stream. This stream overlaps in

proje tion with groups G and H (see Figure 2.8). For group G, the residuals

indi ateoverdensitiesin thedistan erangewhereweexpe ttondboththeSgr

andthe Orphanstream (

20 < D hC . 40

kp or

25 < D GC . 44

kp ,Pila-Díez

et al. (2014)). The overdensities indeed peak between

R GC = 25

kp and

45

kp , rea hing

ρ/ρ M = 7 ± 2

,and drop sharplyafterwards. GroupH probesthe Sgrstream losertotheGala ti entrebut alsoforlarger distan esthangroup

G. Based both on extensive data (summarized in Pila-Díez et al. (2014)) and

in models (Law & Majewski (2010b) and Peñarrubia et al. (2010)), we expe t

this stream to span the

20 < D hC < 60

kp or

16 < R GC < 55

kp range at

these oordinates. Thisexpe tation ismetallalong: theysteadily in reasefrom

R GC ≈ 15

kp ,departfrom

ρ/ρ M = 3 ± 1

at

R GC = 30

kp ,rea h

ρ/ρ M = 6 ± 2

at

R GC = 40

kp and peak at

R GC = 45

kp with

max(ρ/ρ M ) = (12 , 15) ± 2

.

However,theydonotde reasenear

R GC = 55

kp but seemtostaystable with

a signi ant

ρ/ρ M > 7 ± 2

). This suggests a thi ker bran h than predi ted by

themodels,butin agreementwithpreviousRRLyraemeasurements(Ibataetal.

(2001 ),Totten&Irwin(1998)andDohm-Palmeretal.(2001)assummarizedin

Figure17ofMajewskietal.(2003)).

Twomoremodestoverdensitiesthatdonotappearintheliteratureseemtobe

presentingroups CandD.Ingroup C,a weakbut onsistentoverdensityspans

adistan e rangeof

R GC ≈ 35

kp to

R GC ≈ 60

kp . Ingroup D,asharpbump

extendsoverafewkiloparse s around

R GC ≤ 20

kp .

Wehavelookedforotherknownoverdensitiesthatposition-mat hourlinesof

sight(seeFigure2.8),butfoundnoindi ationofthemintheresiduals. Therst

one orresponds to the tidal tails of the NGC5466 globular luster (Belokurov

etal. 2006a),whi h overlap withone eld in groupA and anotherone ingroup

B (A1361 entred at

(RA, Dec) = (176.09, 46.39)

and A1927 at

(RA, Dec) = (217.92, 25.67)

). Thisisaveryweak oldsubstru turelo atedat

R GC ≈= 16

kp

andextending for

45 deg

with anaverage widthof

1.4 deg

(Grillmair&Johnson

2006). Assu h,itisnotsurprising tondnosignaturein thedensityproles.

These ondone istheensembleof threeknown overdensities inthedire tion

ofgroupE:theAntiCenterStream(

R GC = 18 ± 2

kp ,Ro ha-Pintoetal.(2003) andLietal.(2012)),theMono erosring(

R GC ≈ 18

kp ,Lietal.(2012))andthe

EasternBandStru ture(

R GC = 20 ±2

kp ,Lietal.(2012)). Thesesubstru tures

Dis ussion

−50 0

50 100

150 200

250 RA (degrees)

−40

−20 0 20 40 60 80

D EC ( de gr ee s)

EBS G&D ACS

Pisces NGC5466

Orphan

Tri-And A

B

C D

E

G F H

Figure2.8: Equatorialmapshowingthepositionofalltheeldsusedinthisworkandthe losest oldstellaroverdensities

tothem. Theseoverdensitiesareusedfor omparisonanddis ussionofthestellardensityproledata-to-modelresiduals

throughout se tion 2.4.3. The labels in the gure orrespond to the Anti entre Stru ture (ACS), the Eastern Band

Stru ture (EBS),theNGC5466stream, theGrillmair &Dionatosstream (G&D),theOrphanstream, the

Triangulum-Andromedaoverdensity(Tri-And)andthePis esoverdensity. Theba kgroundimageistheSDSS-DR8mapfromKoposov

et al. (2012), whi h shows the footprint of the Sagittarius stream. The Mono eros ring also appears partially in this

ba kgroundimage,as adarkregionoverlappingthewesternpartoftheGala ti diskintheanti entreregion,eastwards

oftheACS.

aremaskedfrom ourtsandresidualswhenweimpose

|z| > 10

kp toavoidthe

inuen eofthethi kdisk,andtherefore,they annotbedete ted.

TheTriangulum-Andromeda overdensity((Martin et al. 2007)) falls lose to

oneoftheeldsingroupF.Despitethisproximity,theresidualsshownoeviden e

foranoverdensityattheexpe teddistan eof

R GC ≈ 30

kp ,indi atingthatthe

overdensitydoesnotextendfurtherin thisdire tion.