• No results found

Embedded optimization algorithms for multi-microphone dereverberation

N/A
N/A
Protected

Academic year: 2021

Share "Embedded optimization algorithms for multi-microphone dereverberation"

Copied!
19
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Embedded optimization algorithms for

multi-microphone dereverberation

Toon van Waterschoot, Bruno Defraene,

Moritz Diehl, and Marc Moonen

STADIUS Center for Dynamical Systems,

Signal Processing, and Data Analytics

ESAT – Department of Electrical Engineering

KU Leuven, Belgium

(2)

0 – Outline

2/19

1

Introduction

2

Problem statement

3

Embedded optimization algorithms

4

Evaluation

(3)

1 – Outline

3/19

1

Introduction

2

Problem statement

3

Embedded optimization algorithms

4

Evaluation

(4)

1 – Multi-microphone dereverberation

4/19

Overview of dereverberation methods

beamforming approach speech enhancement approach

blind system identification and inversion approach

Blind system identification and inversion

two-stepprocedure:

I blind room impulse responses (RIRs) identification I inverse filter design using identifed RIRs

inversion step is oftenill-posed(high sensitivity to RIR estimation errors, near-common RIR zeros, ...)

(5)

1 – Embedded optimization

5/19

Multi-microphone dereverberation by embedded optimization

direct estimationof source signal of interest (jointly with auxiliary variables such as RIRs)

“intermediate” inverse filter design step is skipped, thusavoiding ill-posedness

more flexibilitythan “traditional” recursive implementations of closed-form estimators

(6)

2 – Outline

6/19

1

Introduction

2

Problem statement

3

Embedded optimization algorithms

4

Evaluation

(7)

2 – Problem statement

7/19

Multi-microphone sound acquisition

Assumptions

batch operation (t = 1, . . . , N ), zero initial source signal conditions time-invariant RIRs, with fixed and known length L ≤ N

no measurement noise

Problem (Multi-microphone dereverberation)

Given a length-M N vector y of microphone signals,

(8)

2 – Data model

8/19

True system

y =

y

1

..

.

y

M

=

H

1,0

..

.

H

M,0

s

0

= H

0

s

0

(1)

Parameter vectors to be estimated

RIRs: h =

h

T

1

. . . h

TM



T

source signal vector: s =

s(1) . . . s(N )

T

estimation error signal vector: e =

e

T

1

. . . e

TM



T

Data model (two equivalent formulations)

y = Hs + e

(2)

(9)

3 – Outline

9/19

1

Introduction

2

Problem statement

3

Embedded optimization algorithms

4

Evaluation

(10)

3 – Embedded optimization algorithms

10/19

Rationale

joint estimationof unknown parameter vectors h and s incorporate prior knowledge throughregularization

adopt sequential minimization approach (block coordinate descent, BCD) to deal with nonlinearity

solve linearized subproblems using (convex)numerical optimization tools

Proposed problem formulations

NLS: nonlinear least squares

`2-RNLS: `2-regularized NLS, exploiting prior knowledge on h

(11)

3 – NLS problem

11/19

Problem (NLS)

min

h,s,e

kek

2 2

(4)

s. t.

y = Hs + e

(5)

= (I

M

⊗ S) h + e.

(6)

BCD Solution strategy

minimize (4),(5) w.r.t. {s, e} for a fixed value of h = ˆh minimize (4),(6) w.r.t. {h, e} for a fixed value of s = ˆs repeat this procedure for a number of iterations

Properties

multiplelocal solutionsto NLS problem exist

(12)

3 – `

2

-regularized NLS problem

12/19

Problem (`

2

-RNLS)

min

h,s,e

kek

2 2

+ λ

1

khk

2W

(7)

s. t.

y = Hs + e

(8)

= (I

M

⊗ S) h + e

(9)

Properties

`2-norm regularization results insmoothingeffect, facilitating

convergence to meaningful local solution

regularization matrix W allows to incorporate prior knowledge on h, e.g., using Polack’smodel for late reverberation(with fixed decay α)

W = IM ⊗ diag

n

(13)

3 – `

1

/`

2

-regularized NLS problem

13/19

Problem (`

1

/`

2

-RNLS)

min

h,s,e

kek

2 2

+ λ

1

khk

2W

+ λ

2

kDsk

1

(11)

s. t.

y = Hs + e

(12)

= (I

M

⊗ S) h + e.

(13)

Properties

`1-norm regularization results inadditional smoothingeffect

kDsk1 promotessource signal sparsityin basis defined by D

sparsity inspectral basis(DFT, DCT, ...) is meaningful for speech/audio minimization w.r.t. {s, e} does not yield closed-form solution, but allows

efficient numerical solutionusing convex optimization tools (e.g., interior point method, method of multipliers, ...)

(14)

4 – Outline

14/19

1

Introduction

2

Problem statement

3

Embedded optimization algorithms

4

Evaluation

(15)

4 – Simulation setup

15/19

Acoustic scenario

source signal = quasi-stationary voiced speech segment source signal length N = 1024 at fs= 8 kHz

M = 5 microphones

RIRs = GWN shaped by Polack’s model envelope (α = 0.025) RIRs length L = 100

Algorithm parameters

regularization parameters λ1= λ2= 0.1

D = DCT matrix

random (GWN) initialization of RIRs parameter vector estimate fixed number of kmax= 10 iterations

(16)

4 – RIR estimation results

16/19

Estimated RIR for microphone m = 2

Observations

NLS estimate corresponds to erroneouslocal solution

`2-norm regularization improvesoverall estimation performance

= improved RIR envelope

`1-norm regularization improveslocal estimation performance

(17)

4 – Source signal estimation results

17/19

Estimated source signal magnitude spectrum

Observations

NLS estimate corresponds to inaccuratelocal solution

`2-norm regularization improvesoverall estimation performance

= improved source signal spectrum envelope

`1-norm regularization improveslocal estimation performance

(18)

5 – Outline

18/19

1

Introduction

2

Problem statement

3

Embedded optimization algorithms

4

Evaluation

(19)

5 – Conclusion

19/19

Multi-microphone dereverberation by embedded optimization

allowsmore generalproblem formulations (6= closed-form estimators) achievesdirectsource signal estimation (6= inverse filter design) facilitates use ofprior knowledge

yieldspromisingsimulation results

Future research challenges

batch →online(frame-based) processing synthetic →realisticRIRs

zero → non-zero measurementnoise

general-purpose →fastdedicated numerical optimization tools includeperceptualcriteria in problem formulation

Referenties

GERELATEERDE DOCUMENTEN

Maar verder is de situatie in de kalkrijke duinen van het Renodunaal district veel gunstiger dan in het Waddendistrict, dankzij de optelsom van (1) hogere maximum hoogte,

Gezien de einddata van de complexen geplaatst worden rond 1750/60, voor de walgracht, en rond 1760/70, voor de beerput, kan het gebruik van het meeste porselein gesitueerd worden

Detailed techno-economic eval- uation and Life Cycle Assessment (LCA) were applied to model alternative routes for converting sugarcane residues (bagasse and trash) to selected

Visualization of the number of breakpoints per chromosome and the length of all recurrent copy number losses (RCNL) and gains (RCNG) separately for the BRCA1 and sporadic

Abstract This paper first introduces the centralized generalized eigenvalue decomposition (GEVD) based multichannel Wiener filter (MWF) with prior knowledge for node-specific

Voor de constructie van een hoek van 108 0 = 72 0 + 36 0 kun je in de algemene constructies die bij deze uitwerkingen bijgeleverd zijn nadere informatie vinden.. De

The rationale of embedded optimization in performing online signal processing tasks, is to replace tra- ditional adaptive filtering algorithms based on closed-form estimators by