• No results found

University of Groningen Hemodynamic analysis based on biofluid models and MRI velocity measurements Nolte, David

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Hemodynamic analysis based on biofluid models and MRI velocity measurements Nolte, David"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Hemodynamic analysis based on biofluid models and MRI velocity measurements

Nolte, David

DOI:

10.33612/diss.95571036

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Nolte, D. (2019). Hemodynamic analysis based on biofluid models and MRI velocity measurements. Rijksuniversiteit Groningen. https://doi.org/10.33612/diss.95571036

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Hemodynamic analysis based on biofluid

models and MRI velocity measurements

(3)

The work in this thesis has been carried out at the Faculty of Physical and Math-ematical Sciences, University of Chile and at the Bernoulli Institute, University of Groningen. It was financially supported by the Chilean government through the

Comisión Nacional de Investigación Científica y Tecnológica (CONICYT, grant

num-ber 21151353).

Copyright © 2019 David Nolte

ISBN 978-94-034-1976-3 (printed version) ISBN 978-94-034-1975-6 (electronic version)

(4)

Hemodynamic analysis based on

biofluid models and MRI velocity

measurements

PhD thesis

to obtain the degree of PhD at the University of Groningen

on the authority of the Rector Magnificus Prof. C. Wijmenga

and in accordance with the decision by the College of Deans

and

to obtain the degree of PhD at the University of Chile,

Faculty of Physical and Mathematical Sciences. Double PhD degree

This thesis will be defended in public on Monday 23 September 2019 at 11:00 a.m.

by

David Julian Nolte

born on 16 May 1986 in Berlin, Germany

(5)

Supervisors Prof. A. Osses Prof. R.W.C.P. Verstappen Co-supervisor Dr. C.A. Bertoglio Assessment committee

Prof. M.A. Fernández Prof. V. John

Prof. P.R. Onck Prof. A. Valencia

(6)

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS ESCUELA DE POSTGRADO

HEMODYNAMIC ANALYSIS BASED ON BIOFLUID MODELS AND MRI VELOCITY MEASUREMENTS

TESIS PARA OPTAR AL GRADO DE

DOCTOR EN CIENCIAS DE LA INGENIERÍA, MENCIÓN FLUIDODINÁMICA EN COTUTELA CON LA UNIVERSIDAD DE GRONINGEN

DAVID JULIAN NOLTE

PROFESOR GUÍA: AXEL OSSES PROFESOR GUÍA 2: ROEL VERSTAPPEN

MIEMBROS DE LA COMISIÓN: M.A. FERNÁNDEZ V. JOHN P.R. ONCK A. VALENCIA SANTIAGO DE CHILE MARZO 2019

(7)
(8)

Contents

Contents 7

1 Introduction 9

1.1 Clinical motivation . . . 9

1.2 Research questions . . . 11

1.3 Blood flow modelling . . . 11

1.4 Direct pressure gradient estimation . . . 13

1.5 Patient-specific hemodynamics . . . 15

1.6 Thesis overview . . . 22

2 Data assimilation: reducing geometric errors 25 2.1 Introduction . . . 25

2.2 Methodology . . . 26

2.3 Setup of the numerical experiments . . . 33

2.4 Numerical results . . . 38

2.5 Conclusions . . . 48

2.A Slip boundary condition for the Poiseuille flow . . . 51

3 Validation of 4D-flow-based pressure difference estimators 53 3.1 Introduction . . . 53

3.2 Theory . . . 53

3.3 Methods . . . 56

3.4 Results . . . 60

3.5 Discussion . . . 67

4 Multiscale Modeling of Vascular Trees 71 4.1 Introduction . . . 71

4.2 The full dimensional fluid flow problem in a tube structure . . . 72

4.3 MAPDD: the new junction conditions . . . 75

4.4 Numerical examples . . . 77

4.5 Conclusion . . . 82

5 Conclusion 85

(9)

8 CONTENTS 5.1 Summary . . . 85 5.2 Perspectives . . . 86 Summary 89 Samenvatting 91 Resumen 93 Acknowledgements 95 Curriculum vitae 97 Bibliography 99

Referenties

GERELATEERDE DOCUMENTEN

In Chapter 2 of this thesis a method was presented to improve the accuracy of hemodynamic data recovery from partial 2D PC-MRI measurements by means of solving an inverse problem of

In Hoofdstuk 2 van dit proefschrift werd een methode gepresenteerd om de nauw- keurigheid van hemodynamische gegevensherstel van gedeeltelijke 2D PC-MRI-me- tingen te verbeteren

En el Capítulo 2, se presenta un método para mejorar la precisión en la recons- trucción de datos hemodinámicos, usando medidas 2D en PC-MRI.. A partir de las ecuaciones

I am grateful to my supervisors, Axel Osses at the University of Chile and Roel Verstappen at the University of Groningen, for their help, for making everything possible, and

He holds a Bachelor of Science in mechanical engineering (2011) and a Master of Science in engineering science (2013) from the Technical University Berlin, Germany. During his

“On the Choice of Outlet Boundary Conditions for Patient-Specific Analysis of Aortic Flow Using Computational Fluid Dynamics”.. Cambridge ; New York: Cambridge Univer- sity

For MRI-based pressure drop estimation, data assimilation in comparison with direct methods can reduce scan times at the cost of computational and mod- elling complexity, i.e.,

The research presented in this thesis was carried out at the Software Engineering and Architecture group, at the Bernoulli Institute for Math, CS, AI at the University of