• No results found

Jacobi iterations for spatially constrained Independent Component Analysis

N/A
N/A
Protected

Academic year: 2021

Share "Jacobi iterations for spatially constrained Independent Component Analysis"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Jacobi iterations for spatially constrained Independent Component Analysis 

M. De Vos*, L. De Lathauwer†, A. Vergult*, W. De Clercq*, W. Van Paesschen§, S. Van Huffel* *Department of Electrical Engineering, ESAT­SCD, Katholieke Universiteit Leuven, Leuven, Belgium † ETIS (CNRS, ENSEA, UCP), Cergy­Pontoise, France § Neurology Department, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven,  Belgium Electroencephalography (EEG) is a non­invasive tool that offers millisecond temporal resolution for  the study of neural mechanisms underlying mental activity.    Eye movement and blink artifacts often  contaminate EEG recordings, which complicate the interpretation.   Several techniques have already  been proposed to remove eye artifacts from the EEG.  However, most of them require the availability  of peri­ocular electrooculographic (EOG) electrodes, which is not always recorded simultaneously with  the EEG in an Epilepsy Monitoring Unit.    Recently,  Independent Component Analysis (ICA) is introduced in order to blindly separate interesting  brain signals from artifacts in EEG  recordings.  Especially SOBI (Second Order Blind Identification),  which exploits the temporal correlation of the source signals,  has been shown to accurately separate  eye artifacts from the EEG.   A disadvantage of blind techniques is that the extracted sources have to be  inspected afterwards, which is time­consuming and rater­dependent.   In the case of ocular artifacts,  there is a strong  a priori  knowledge about the spatial distribution of eye movement and blinking  artifacts.   An objective way to automate eye artifact rejection is to incorporate the knowledge of a  mixing vector in a constrained ICA algorithm.  This algorithm will extract independent components,  but the last source will have a spatial distribution similar to the known one.  

In this study, we developed two new, spatially constrained ICA algorithms.  A first algorithm can be  used when one or more mixing vectors are exactly known.  In this case, solving the ICA problem can  be   reduced   to   solving   an   ICA   problem   of   a   lower   dimension.   When   a   mixing   vector   is   only  approximately known, another algorithm is required.  In this case, the cost function of ICA has to be  modified.  SOBI is computed by means of joint approximate diagonalization of correlation matrices.  This joint diagonalization criterion is iteratively optimized under plane rotations.  In the unconstrained  ICA problem, the optimal Jacobi angles are given as the solution of an eigenvalue problem [1].  In  order to solve the (weighted) constrained ICA problem, an extra term is added to the cost function of  unconstrained ICA.  This extra term is the projection of the computed mixing vector on the known  spatial distribution, multiplied with a weighting factor.   The new cost function is maximised by means  of the technique of Lagrange multipliers. We also explain how prior knowledge about the mixing  vector can be incorporated in the prewhitening step for the case that there are more sensors than  sources.  A new method for eye artifact removal from EEG recordings is developed based on constrained ICA.  We demonstrate this method on simulations, and show also that it  accurately removes ocular artifacts  in in vivo recordings. [1]  J­F Cardoso, A. Souloumiac. Blind beamforming for non gaussian signals.  IEE­ Proceedings­F,  140 (6): 362­370 (1993)

Referenties

GERELATEERDE DOCUMENTEN

Contrary to real variables, there is not a unique way of defining a cumulant (or a moment) of order r of a complex random variable; in fact, it depends on the number of

(There are quite a lot of people at the cocktail party and yet we have only two ears.) In this thesis, we will develop a state-of-the- art algorithm for underdetermined ICA.. The

In Section II we introduce the convex feasibility problem that we want to solve, we provide new reformulations of this problem as separable optimization problems, so that we can

For the 40 Hz MFTF dataset containing large EASSRs, ICA was capable of removing CI artifacts from all ipsilateral recording channels, without distorting the EASSR in the

1) ECG template subtraction: ECG template subtraction uses the ECG signal’s periodic characteristics and the heart rate measured. An ECG template is subtracted

Then, an algorithm based on second order statistics can be used to estimate the underlying sources, Second Order Blind Identification (Sobi) [2].. In the following we start with a

This algorithm was called tensor pICA, but, roughly speak- ing it is ordinary ICA, with afterwards the best rank-1 approx- imation of the mixing vectors, interpreted as (I ×

3.2 Results separation step: simulation study In order to quantify the accuracy of the artifact removal by SCICA, we selected 100 different signals with a time- length of 5