• No results found

Une nouvelle formule d’induction canonique pour modules de p-permutation

N/A
N/A
Protected

Academic year: 2022

Share "Une nouvelle formule d’induction canonique pour modules de p-permutation"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Group theory

A new canonical induction formula for p-permutation modules

Une nouvelle formule d’induction canonique pour modules de p-permutation

Laurence Barker, Hatice Mutlu

DepartmentofMathematics,BilkentUniversity,06800Bilkent,Ankara,Turkey

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received1October2018

Acceptedafterrevision9April2019 Availableonlinexxxx

PresentedbytheEditorialBoard

Applying RobertBoltje’s theoryof canonical induction, wegive arestriction-preserving formulaexpressinganyp-permutationmoduleasaZ[1/p]-linearcombinationofmodules induced and inflated from projective modules associated with subquotient groups. The underlyingconstructionsinclude,foranygivenfinitegroup,aringwithaZ-basisindexed by conjugacyclasses oftriples(U,K,E) where U is a subgroup, K isa p-residue-free normalsubgroupofU ,andE isanindecomposableprojectivemoduleofthegroupalgebra ofU/K .

©2019Académiedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

r é s u m é

Enapplication de lathéoriedel’induction canonique deRobert Boltje,nous présentons uneformule stable par restrictionau moyendelaquelle tout modulede p-permutation estexprimésousformedecombinaisonZ[1/p]-linéairedesinductionsdesinflationsdes modulesprojectifsassociésàdesgroupesdesous-quotients.Lesconstructionsconcernées comprennent,pourtoutgroupefini,unanneauquiauneZ-baseindexéeparlesclassesde conjugaisondestriplets(U,K,E)avecU unsous-groupe,Op(K)=KU etE unmodule projectifindécomposabledel’algèbredegroupedeU/K .

©2019Académiedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

1. Introduction

WeshallbeapplyingBoltje’stheoryofcanonicalinduction[2] totheringof p-permutation modules.Ofcourse, p isa prime.Weshallbeconsidering p-permutationmodulesforfinitegroupsoveranalgebraicallyclosedfield

F

ofcharacteris- tic p.A reviewofthetheoryofp-permutationmodulescanbefoundinBouc–Thévenaz[6,Section2].

E-mailaddresses:barker@fen.bilkent.edu.tr(L. Barker),hatice.mutlu@bilkent.edu.tr(H. Mutlu).

https://doi.org/10.1016/j.crma.2019.04.004

1631-073X/©2019Académiedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

(2)

Acanonicalinductionformulaforp-permutationmoduleswasgivenbyBoltje[3,Section4] andshowntobe

Z

-integral.

Itexpressesany p-permutationmodule,uptoisomorphism,asa

Z

-linearcombinationofmodulesinducedfromaspecial kindofp-permutationmodule,namely,the1-dimensionalmodules.

We shallbe inducingfromanotherspecial kindof p-permutationmodule. LetG bea finitegroup. Weunderstandall

F

G-modulestobefinite-dimensional.Anindecomposable

F

G-moduleM issaidtobe exprojective providedthefollowing equivalent conditions hold up to isomorphism: there exists a normal subgroup K



G such that M is inflated from a projective

F

G

/

K -module;thereexistsK



G suchthatM isadirectsummandofthepermutation

F

G-module

F

G

/

K ;every vertexof M acts triviallyon M;some vertexofM actstrivially on M. Generally,an

F

G-module X iscalled exprojective providedeveryindecomposabledirectsummandof X isexprojective.

Theexprojectivemodulesdoalreadyplayaspecialroleinthetheoryofp-permutationmodules.Indeed,theparametriza- tionoftheindecomposable p-permutationmodules,recalledinSection2,characterizesanyindecomposablep-permutation moduleasaparticulardirectsummandofamoduleinducedfromanexprojectivemodule.

We shallgive a

Z [

1

/

p

]

-integral canonicalinductionformula,expressingany p-permutation

F

G-module,uptoisomor- phism,asa

Z [

1

/

p

]

-linearcombinationofmodulesinducedfromexprojectivemodules.Moreprecisely,weshallbeworking withtheGrothendieckringforp-permutation modulesT

(

G

)

andweshallbeintroducinganothercommutativering

T (

G

)

which, roughly speaking,has a free

Z

-basis consistingoflifts ofinduced modules of indecomposableexprojective mod- ules. We shallconsider a ringepimorphism linG

: T (

G

)

T

(

G

)

and its

Q

-linear extension linG

: QT (

G

) → Q

T

(

G

)

. The latter is split by a

Q

-linear map canG

: Q

T

(

G

) → QT (

G

)

which, as we shall show, restricts to a

Z [

1

/

p

]

-linear map canG

: Z[

1

/

p

]

T

(

G

) → Z[

1

/

p

]T (

G

)

.

Let

K

beafieldofcharacteristiczerothatissufficientlylargeforourpurposes.Tomotivatefurtherstudyofthealgebras

Z [

1

/

p

]T (

G

)

and

K T (

G

)

,wementionthat,notwithstandingtheformulasfortheprimitiveidempotentsof

K

T

(

G

)

inBoltje [4,3.6],Bouc–Thévenaz[6,4.12] and[1],therelationshipbetweenthoseidempotentsandthebasis

{[

MGP,E

: (

P

,

E

)

G

P(

E

)}

remains mysterious. In Section 4,we shallprove that

K T (

G

)

is

K

-semisimple aswell as commutative,in other words, the primitive idempotents of

K T (

G

)

comprise a basis for

K T (

G

)

. We shall also describe how, via linG, each primitive idempotentof

K

T

(

G

)

liftstoaprimitiveidempotentof

K T (

G

)

.

2. Exprojectivemodules

Weshallestablishsomegeneralpropertiesofexprojectivemodules.

Given H

G, we write GIndH and HResG to denotethe inductionand restrictionfunctors between

F

G-modules and

F

H -modules.WhenH



G,wewriteGInfG/H todenotetheinflationfunctorto

F

G-modulesfrom

F

G

/

H -modules.Givena finitegroup L andanunderstoodisomorphismL

G,wewrite LIsoG todenotetheisogationfunctorto

F

L-modulesfrom

F

G-modules,wemeantosay,LIsoG

(

X

)

isthe

F

L-moduleobtainedfroman

F

G-module X bytransportofstructureviathe understoodisomorphism.

Letusclassifytheexprojective

F

G-modulesuptoisomorphism.Wesaythat G is p-residue-free providedG

=

Op

(

G

)

, equivalently, G is generated by the Sylow p-subgroups of G. Let

Q(

G

)

denote the set of pairs

(

K

,

F

)

, where K is a p-residue-free normalsubgroup of G and F is an indecomposableprojective

F

G

/

K -module,two such pairs

(

K

,

F

)

and

(

K

,

F

)

being deemed the same provided K

=

K and F

∼ =

F. We define an indecomposable exprojective

F

G-module MKG,F

=

GInfG/K

(

F

)

.Byconsideringvertices,weobtainthefollowingresult.

Proposition2.1.TheconditionM

∼ =

MGK,Fcharacterizesabijectivecorrespondencebetween:

(a) theisomorphismclassesofindecomposableexprojective

F

G-modulesM, (b) theelements

(

K

,

F

)

of

Q(

G

)

.

In particular, for a p-subgroup P of G, the condition E

∼ =

NG(P)InfNG(P)/P

(

E

)

characterizes a bijective correspondence between, uptoisomorphism,theindecomposableexprojective

F

NG

(

P

)

-modules E withvertex P andtheindecomposable projective

F

NG

(

P

)/

P -modulesE.Itfollowsthatthewell-knownclassificationoftheisomorphismclassesofindecomposable p-permutation

F

G-modules, asinBouc–Thévenaz [6, 2.9] for instance,can be expressedas inthe next result. Let

P(

G

)

denotethesetofpairs

(

P

,

E

)

where P isa p-subgroupofG and E isanexprojective

F

NG

(

P

)

-modulewithvertex P ,two suchpairs

(

P

,

E

)

and

(

P

,

E

)

beingdeemedthesameprovided P

=

PandE

∼ =

E.Wemake

P(

G

)

becomea G-setviathe actions onthecoordinates.Wedefine MGP,E tobe theindecomposable p-permutation

F

G-modulewithvertex P inGreen correspondencewithE.

Theorem2.2.TheconditionM

∼ =

MGP,Echaracterizesabijectivecorrespondencebetween:

(a) theisomorphismclassesofindecomposablep-permutation

F

G-modulesM, (b) theG-conjugacyclassesofelements

(

P

,

E

)P(

G

)

.

WenowgiveanecessaryandsufficientconditionforMGP,E tobeexprojective.

(3)

Proposition2.3.Let

(

P

,

E

)P(

G

)

.LetK bethenormalclosureofP inG.ThenMGP,EisexprojectiveifandonlyifNK

(

P

)

actstrivially onE.Inthatcase,K isp-residue-free,P isaSylowp-subgroupofK ,wehaveG

=

NG

(

P

)

K ,theinclusionNG

(

P

) 

G inducesan isomorphismNG

(

P

)/

NK

(

P

) ∼ =

G

/

K ,andMGP,E

∼ =

MGK,F,whereF istheindecomposableprojective

F

G

/

K -moduledetermined,upto isomorphism,bytheconditionE

∼ =

NG(P)InfNG(P)/NK(P)IsoG/K

(

F

)

.

Proof. WriteM

=

MGP,E.IfM isexprojectivethen K actstriviallyonM and,perforce,NK

(

P

)

actstriviallyon E.

Conversely,supposeNK

(

P

)

actstriviallyonE.ThenP ,beingavertexofE,mustbeaSylowp-subgroupofNK

(

P

)

.Hence, P isaSylow p-subgroupofK .ByaFrattiniargument,G

=

NG

(

P

)

K andwehaveanisomorphismNG

(

P

)/

NK

(

P

) ∼ =

G

/

K as specified.Let X

=

GIndNG(P)

(

E

)

.Theassumptionon E impliesthat X haswell-defined

F

-submodules

Y

= 

kk

NG(P)x

:

x

E



,

Y

= 

kk

NG(P)xk

:

xk

E

, 

kxk

=

0



summed over a left transversalkNK

(

P

)

K . Making use of thewell-definedness, an easy manipulation shows that the actionof NG

(

P

)

on X stabilizes Y andY.Similarly, K stabilizes Y andY.So Y andY are

F

G-submodulesof X .Since

|

K

:

NK

(

P

)|

is coprime to p, we have Y

Y

=

0. Since

|

K

:

NK

(

P

)| = |

G

:

NG

(

P

)|

, a consideration ofdimensions yields X

=

Y

Y.

Fixalefttransversal

L

forNK

(

P

)

inK .Forg

NG

(

P

)

and

L

,wecanwrite g

 = 

ghg with



g

L

andhg

NK

(

P

)

. Bytheassumptionon E again,hgx

=

x forallx

E.So

g







x

= 



g



gx

= 





g

gx

= 





gx

summedover

L

.Wehaveshownthat NG(P)ResG

(

Y

) ∼ =

E.Asimilarargumentinvolvingasumover

L

showsthat K acts trivially onY .Therefore,Y

∼ =

MKG,F.Ontheotherhand,Y is indecomposablewithvertex P and,bytheGreencorrespon- dence,Y

∼ =

MGP,E.

2

Weshallbemakinguseofthefollowingclosureproperty.

Proposition2.4.Givenexprojective

F

G-modulesX andY ,thenthe

F

G-moduleX

FY isexprojective.

Proof. Wemayassumethat X andY areindecomposable.Then X andY are,respectively,directsummandsofpermutation

F

G-moduleshavingtheform

F

G

/

K and

F

G

/

L whereK



G



L.ByMackeydecompositionandtheKrull–SchmidtTheorem, everyindecomposabledirectsummandof X

Y isadirectsummandof

F

G

/(

K

L

)

.

2

3. Acanonicalinductionformula

Throughout,welet

K

beaclassoffinitegroupsthatisclosedundertakingsubgroups.WeshallunderstandthatG

∈ K

. Weshallabusenotation,neglectingtousedistinct expressionstodistinguishbetweena linearmap andits extensiontoa largercoefficientring.

Specializingsome generaltheory in Boltje[2], we shallintroduce a commutative ring

T (

G

)

anda ring epimorphism linG

: T (

G

)

T

(

G

)

.Weshallshowthatthe

Z [

1

/

p

]

-linearextensionlinG

: Z[

1

/

p

]T (

G

) → Z[

1

/

p

]

T

(

G

)

hasasplittingcanG

: Z [

1

/

p

]

T

(

G

) → Z[

1

/

p

]T (

G

)

.Asweshallsee,canG istheuniquesplittingthatcommuteswithrestrictionandisogation.

To be clear about the definition of T

(

G

)

, the Grothendieck ring of the category of p-permutation

F

G-modules, we mentionthatthesplitshortexactsequencesarethedistinguishedsequencesdeterminingtherelationson T

(

G

)

.Themul- tiplicationon T

(

G

)

isgivenbytensorproductover

F

.Givena p-permutation

F

G-module X ,we write

[

X

]

todenotethe isomorphismclassof X .Weunderstandthat

[

X

] ∈

T

(

G

)

.ByTheorem2.2,

T

(

G

) = 

(P,E)GP(G)

Z [

MGP,E

]

as a direct sum ofregular

Z

-modules, the notation indicating that the index runs over representatives of G-orbits.Let Tex

(

G

)

denote the

Z

-submodule of T

(

G

)

spanned by the isomorphism classesof exprojective

F

G-modules. ByProposi- tion2.4,Tex

(

G

)

isasubringofT

(

G

)

.ByProposition2.1,

Tex

(

G

) = 

(K,F)∈GQ(G)

Z[

MGK,F

] .

For H

G, theinductionandrestriction functors GIndH andHResG give rise toinductionandrestriction mapsGindH and HresG betweenT

(

H

)

andT

(

G

)

.Similarly, given L

∈ K

andan isomorphism

θ :

L

G,we havean evident isogation map LisoθG

:

T

(

L

)

T

(

G

)

.Inparticular,giveng

G,we haveanevidentconjugationmap gHcongH.Boltjenotedthat,when

K

isthe set ofsubgroups of agiven fixed finitegroup, T is aGreen functor in thesense of [2, 1.1c].Forarbitrary

K

,a classofadmitted isogationsmustbe understood,andthe isogationsandinclusionsbetweengroupsin

K

mustsatisfythe

(4)

axiomsofacategory. Grantedthat,then T is stillaGreenfunctorinan evidentsense wherebytheconjugationsreplaced byisogations.

Followingaconstruction in[2,2.2],adaptationtothecaseofarbitrary

K

beingstraightforward,weformtheG-cofixed quotient

Z

-module

T (

G

) =  

UG

Tex

(

U

) 

G

whereG actsonthedirectsumviatheconjugationmapsgUcongU.HarnessingtheGreenfunctorstructureofT ,therestric- tionfunctorstructureofTexandnotingthat Tex

(

G

)

isasubringofT

(

G

)

,wemake

T

becomeaGreenfunctormuchasin [2,2.2],withtheevident isogationmaps.Inparticular,

T (

G

)

becomesa ring,commutativebecause T

(

G

)

iscommutative.

GivenxU

Tex

(

U

)

,wewrite

[

U

,

xU

]

G todenotetheimageofxU in

T (

G

)

.Anyx

T (

G

)

canbeexpressedintheform

x

= 

UGG

[

U

,

xU

]

G

where thenotationindicates that theindexrunsover representativesofthe G-conjugacyclassesofsubgroupsof G.Note that x determines

[

U

,

xU

]

and xG butnot, in general, xU. Let

R(

G

)

be the G-set of pairs

(

U

,

K

,

F

)

where U

G and

(

K

,

F

)Q(

U

)

.Wehave

T (

G

) = 

UGG,(K,F)∈NG(U)Q(U)

Z [

U

, [

MUK,F

]] = 

(U,K,F)∈GR(G)

Z [

U

, [

MKU,F

]] .

Wedefinea

Z

-linearmaplinG

: T (

G

)

T

(

G

)

suchthat linG

[

U

,

xU

] =

GindU

(

xU

)

.Asnotedin[2,3.1],thefamily

(

linG

:

G

∈ K)

isa morphismofGreenfunctors lin

: T →

T .Inparticular,themap linG

: T (

G

)

T

(

G

)

isa ringhomomorphism.

Extendingtocoefficientsin

Q

,weobtainanalgebramap

linG

: Q T (

G

) → Q

T

(

G

) .

Let

π

G

:

T

(

G

)

Tex

(

G

)

bethe

Z

-linearepimorphismsuch that

π

G actsastheidentity onTex

(

G

)

and

π

G annihilates theisomorphismclassofeveryindecomposablenon-exprojectivep-permutation

F

G-module.By

Q

-linearextensionagain, weobtaina

Q

-linearepimorphism

π

G

: Q

T

(

G

) → Q

Tex

(

G

)

.After[2,5.3a,6.1a],wedefinea

Q

-linearmap

canG

: Q

T

(

G

) → Q T (

G

) , ξ

1

|

G

|



U,VG

|

U

|

möb

(

U

,

V

)[

U

,

UresV

( π

V

(

VresG

(ξ )))]

G wheremöb

()

denotestheMöbiusfunctionontheposetofsubgroupsofG.

Theorem3.1.Considerthe

Q

-linearmapcanG. (1) WehavelinGcanG

=

idQT(G).

(2) ForallH

G,wehaveHresG◦canG

=

canHHresG.

(3) ForallL

∈ K

andisomorphisms

θ :

L

G,wehaveLisoθGcanG

=

canLLisoθG. (4) canG

[

X

] = [

X

]

forallexprojective

F

G-modulesX .

Thosefourproperties,takentogetherforallG

∈ K

,determinethemapscanG.

Proof. By[2,6.4],part(1)willfollowwhenwehavecheckedthat,foreveryindecomposablenon-exprojectivep-permutation

F

G-module M, wehave

[

M

] ∈ 

K<G GindK

(Q

T

(

K

))

.By[3,2.1,4.7],we mayassumethat G is p-hypoelementary.By[3, 1.3(b)], M isinducedfromNG

(

P

)

whereP isavertexofM.ButM isnon-exprojective,so P isnotnormalinG.Thecheck iscomplete.Parts(2),(3),(4)followfromtheproofof[2,5.3a].

2

Parts(2)and(3)ofthetheoremcanbeinterpretedassayingthatcan

:

T

T

isamorphismofrestrictionfunctors.It is nothard tocheckthat, when

K

isclosedunderthe takingofquotientgroups, thefunctors T , Tex,

T

can beequipped withinflationmaps,andthemorphismslinandcanarecompatiblewithinflation.

Thelatesttheoremimmediatelyyieldsthefollowingcorollary.

Corollary3.2.Givenap-permutation

F

G-moduleX ,then

[

X

] =

1

|

G

|



U,VG

|

U

|

möb

(

U

,

V

)

GindUresV

( π

V

(

VresG

[

X

])) .

(5)

Givenp-permutation

F

G-modules M and X ,withM indecomposable,wewritemG

(

M

,

X

)

todenotethemultiplicity of M asadirectsummandof X .Wewrite

π

G

(

X

)

todenotethedirectsummandof X , well-defineduptoisomorphism,such that

[ π

G

(

X

) ] = π

G

[

X

]

.

Lemma3.3.Let

p

beasetofprimes.Supposethat,forallV

∈ K

,allp-permutation

F

V -modulesY ,allU



V suchthatV

/

U isa cyclic

p

-group,andallV -fixedelements

(

K

,

F

)Q(

U

)

,wehave

mU

(

MUK,F

, π

U

(

UResV

(

Y

))) = 

(J,E)∈Q(V)

mU

(

MUK,F

,

UResV

(

MVJ,E

))

mV

(

MVJ,E

, π

V

(

Y

)) .

Then,forallG

∈ K

,wehave

|

G

|

pcanG

[

Y

] ∈ T (

G

)

,where

|

G

|

pdenotesthe

p

-partof

|

G

|

. Proof. Thisisaspecialcaseof[2,9.4].

2

Wecannowprovethe

Z [

1

/

p

]

-integralityofcanG.

Theorem3.4.The

Q

-linearmapcanGrestrictstoa

Z [

1

/

p

]

-linearmap

Z [

1

/

p

]

T

(

G

) → Z[

1

/

p

]T (

G

)

.

Proof. Let

p

be the set of primes distinct from p. Let V , Y , U , K , F be as in the latest lemma. We must obtain the equalityinthelemma.WemayassumethatY isindecomposable.IfY isexprojective,then

π

U

(

UResV

(

Y

)) ∼ =

UResV

(

Y

)

and

π

V

(

Y

) ∼ =

X , whencetherequiredequalityisclear.So wemayassumethat Y is non-exprojective.Then

π

V

(

Y

)

isthe zero module.Itsuffices toshow that MUK,F isnot adirectsummand ofUResV

(

Y

)

.Foracontradiction, supposeotherwise.The hypothesison

|

V

:

U

|

impliesthat U containstheverticesofY .So Y

|

VIndU

(

X

)

forsome indecomposable p-permutation

F

U -module X . Bearing in mind that

(

K

,

F

)

is V -stable, a Mackey decomposition argument shows that MKU,F

∼ =

X . The V -stabilityof

(

K

,

F

)

alsoimpliesthat K



V .So

Y

|

VIndUInfU/K

(

F

) ∼ =

VInfV/KIndU/K

(

F

) .

WededucethatY isexprojective.Thisisacontradiction,asrequired.

2

Proposition3.5.The

Z

-linear maplinG

: T (

G

)

T

(

G

)

issurjective.However,the

Z [

1

/

p

]

-linear mapcanG

: Z[

1

/

p

]

T

(

G

) → Z [

1

/

p

]T (

G

)

neednotrestricttoa

Z

-linearmapT

(

G

)T (

G

)

.Indeed,puttingp

=

3 andG

=

SL2

(

3

)

,lettingY betheisomorphi- callyuniqueindecomposablenon-simplenon-projectivep-permutation

F

G-moduleandX theisomorphicallyunique2-dimensional simple

F

Q8-module,thenthecoefficientofthestandardbasiselement

[

Q8

,

X

]

GincanG

([

Y

])

isequalto2

/

3.

Proof. Sinceevery 1-dimensional

F

G-moduleisexprojective,thesurjectivityofthe

Z

-linearmap linG followsfromBoltje [3,4.7].Routinetechniquesconfirmthecounter-example.

2

4. The

K

-semisimplicityofthecommutativealgebra

K

T (G)

Let

I(

G

)

betheG-setofpairs

(

P

,

s

)

where P isap-subgroupofG ands isap-elementofNG

(

P

)/

P .Let

K

beafieldof characteristiczerosuchthat

K

hasrootsofunitywhose orderisthe p-partoftheexponentofG.Choosingandfixingan arbitraryisomorphismbetweenasuitable torsionsubgroupof

K − {

0

}

andasuitabletorsionsubgroupof

F − {

0

}

,wecan understandBrauercharactersof

F

G-modulestohavevaluesin

K

.Forap-elements

G,wedefineaspecies



1G,sof

K

T

(

G

)

, we mean,an algebra map

K

T

(

G

) → K

, such that



1G,s

[

M

]

is thevalue, at s, ofthe Brauer character ofa p-permutation

F

G-moduleM.Generally,for

(

P

,

s

)I(

G

)

,we defineaspecies



PG,s of

K

T

(

G

)

suchthat



GP,s

[

M

] = 

1N,Gs(P)/P

[

M

(

P

) ]

,where M

(

P

)

denotesthe P -relativeBrauerquotientof MP.Thenext result,well-known,canbefoundinBouc–Thévenaz[6,2.18, 2.19].

Theorem4.1.Given

(

P

,

s

), (

P

,

s

)I(

G

)

,then



GP,s

= 

PG,s ifandonlyifwehaveG-conjugacy

(

P

,

s

) =

G

(

P

,

s

)

.Theset

{ 

GP,s

: (

P

,

s

)

G

I(

G

) }

isthesetofspeciesof

K

T

(

G

)

anditisalsoabasisforthedualspaceof

K

T

(

G

)

.Thedualbasis

{

eGP,s

: (

P

,

s

)

G

I(

G

) }

isthesetofprimitiveidempotentsof

K

T

(

G

)

.Asadirectsumoftrivialalgebrasover

K

,wehave

K

T

(

G

) = 

(P,s)∈GI(G)

K

eGP,s

.

Let

J (

G

)

betheG-setofpairs

(

L

,

t

)

whereL isap-residue-freenormalsubgroupofG andt isap-elementofG

/

L.We defineaspecies



GL,t of

K

Tex

(

G

)

suchthat,givenanindecomposableexprojective

F

G-moduleM,then



GL,t

[

M

] =

0 unlessM

(6)

istheinflationofan

F

G

/

L-module M,inwhichcase,



GL,t isthevalue,att,oftheBrauercharacterofM.Itiseasytoshow that,givena p-subgroup P

G anda p-element s

NG

(

P

)/

P ,then



PG,s

[

M

] = 

GL,t

[

M

]

forallexprojective

F

G-modulesM ifandonlyifL isthenormalclosureofP inG andt isconjugatetotheimage ofs inG

/

L.Hence,viathelatesttheorem, weobtainthefollowinglemma.

Lemma4.2.Given

(

L

,

t

), (

L

,

t

)J (

G

)

,then



GL,t

= 

GL,tifandonlyifL

=

Landt

=

G/Lt,inotherwords,

(

L

,

t

) =

G

(

L

,

t

)

.Theset

{ 

GL,t

: (

L

,

t

)

G

J (

G

) }

isthesetofspeciesof

K

Tex

(

G

)

anditisalsoabasisforthedualspaceof

K

Tex

(

G

)

.

Let

K(

G

)

betheG-setoftriples

(

V

,

L

,

t

)

whereV

G and

(

L

,

t

)J (

V

)

.Given

(

L

,

t

)J (

G

)

,wedefineaspecies



GG,L,t

of

K T (

G

)

suchthat,forx

T (

G

)

expressedasasumasinSection3,



GG,L,t

(

x

) = 

GL,t

(

xG

) .

Generally,for

(

V

,

L

,

t

)K(

G

)

,wedefineaspecies



GV,L,t of

K T (

G

)

suchthat



GV,L,t

(

x

) = 

VV,L,t

(

VresG

(

x

)) .

Using Lemma4.2,astraightforward adaptationofthe argumentin[6,2.18] gives thenext result. Thisresultalsofollows fromBoltje—Raggi-Cárdenas—Valero-Elizondo[5,7.5].

Theorem 4.3.Given

(

V

,

L

,

t

), (

V

,

L

,

t

)K(

G

)

,then



VG,L,t

= 

GV,L,t if andonly if

(

V

,

L

,

t

) =

G

(

V

,

L

,

t

)

.Theset

{ 

VG,L,t

: (

V

,

L

,

t

)

G

K(

G

) }

isthesetofspeciesof

K T (

G

)

anditisalsoabasisforthedualspaceof

K T (

G

)

.Thedualbasis

{

eGV,L,t

: (

V

,

L

,

t

)

G

K(

G

)}

isthesetofprimitiveidempotentsof

K T (

G

)

.Asadirectsumoftrivialalgebrasover

K

,wehave

K T (

G

) = 

(V,L,t)∈GK(G)

K

eGV,L,t

.

WehavethefollowingeasycorollaryonliftsoftheprimitiveidempotentseGP,s.

Corollary4.4.Given

(

P

,

s

)I(

G

)

,theneGP,s,P,sistheuniqueprimitiveidempotente of

K T (

G

)

suchthatlinG

(

e

) =

eGP,s.

References

[1] L.Barker,Aninversionformulafortheprimitiveidempotentsofthetrivialsourcealgebra,J.PureAppl.Math.(2019),https://doi.org/10.1016/j.jpaa.2019. 04.008,inpress.

[2]R.Boltje,Ageneraltheoryofcanonicalinductionformulae,J.Algebra206(1998)293–343.

[3]R.Boltje,Linearsourcemodulesandtrivialsourcemodules,Proc.Symp.PureMath.63(1998)7–30.

[4] R.Boltje,Representationringsoffinitegroups,theirspeciesandidempotentformulae,preprint.

[5]R.Boltje,G.Raggi-Cárdenas,L.Valero-Elizondo,The+and+constructionsforbisetfunctors,J.Algebra523(2019)241–273.

[6]S.Bouc,J.Thévenaz,Theprimitiveidempotentsofthep-permutationring,J.Algebra323(2010)2905–2915.

Referenties

GERELATEERDE DOCUMENTEN

The block form of Alperin’s Conjecture asserts that, given a block b of kG, then the number of isomorphism classes of simple kGb-modules is equal to the number of isomorphism classes

The two difference signals are voltage analogs of the relative intensity differ- ence of the light sensed by opposing pairs of the photodiode quadrant elements. In addition

Met welke zaken zou er in natuurbeleid rekening kunnen worden gehouden zodat jongeren of al- lochtonen zich er meer door aangetrokken voelen en de afstand tussen natuur en

Daarnaast zijn bestaande populatiedynamische modellen gescreend, waarmee mogelijke preventieve scenario’s doorgerekend kunnen

Aan de variabelen stofreductie, kosten, technisch onderhoud, neveneffecten en overall perspectief zijn scores toegekend van zeer negatief (---) (hoge kosten, veel technisch

These are finding a Gr¨obner basis, computing all affine roots of a polynomial system, solving the ideal membership problem, doing the syzygy analysis, multivariate elimination,

In this section we will describe an adaptation of the Schreier-Sims algorithm that creates a data structure with which an extended memberschip testing algorithm, given as input

15 The proof of Meinshausen’s method that we have given, is still correct for this adaptation of the method... He obtained better lower bounds for larger n. The tables suggest