• No results found

VU Research Portal

N/A
N/A
Protected

Academic year: 2021

Share "VU Research Portal"

Copied!
26
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Facing the issues of deep grey matter segmentation in MS

de Sitter, A.

2020

document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

de Sitter, A. (2020). Facing the issues of deep grey matter segmentation in MS.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

(2)

Appendix

(3)

volume and structure of interest volume. This suggests that MS pathology may contribute to the impaired performance.

In Chapter 3 we investigated several aspects of the WM lesions in MS, divided over two sub-chapters. In Chapter 3.1 we discussed the performance of five automated WM lesion segmentation methods on a multi-center MS dataset (70 MS subjects). On the 2D fluid attenuated inversion recovery (FLAIR) images, manual lesion segmentation was performed and the segmentations of five automated methods (Cascade, LST-LGA, LST-LPA, Lesion TOADS and kNN-TTP) were compared to the manual outlines. Both volumetric (ICC) and spatial agreements (DSC and false positive and false negative volumes) were analysed. Furthermore, analyses were repeated using a leave-one-center-out design to exclude the center of interest from the training phase, in order to evaluate the performance of the method on ‘unseen’ centers. We concluded that the performance of the methods in this multi-center MS dataset was moderate, but appeared to be robust even with new datasets from centers not included in training the automated methods.

In Chapter 3.2 we developed a lesion simulation method (LESIM) to improve objective investigations of the effects of WM lesions on image analyses methods and to facilitate the development of segmentation methods that are robust to the presence of WM lesions. The LESIM software simulates lesions from an MS patient into a 3D T1-weighted (3DT1) image of a healthy control (HC), which results in a modified HC 3DT1 image with realistic lesions. We evaluated LESIM by visual inspection as well as a quantitative analysis of the effect of simulated lesions on FSL-SIENAX GM segmentations. We concluded that LESIM is a new, robust, and flexible tool for reliable WM MS lesion simulation that produces realistic lesions in healthy control images. Moreover, we showed that the simulated WM lesions have the expected effect on GM segmentation using FSL-SIENAX.

In Chapter 4 we addressed the issue of open science in the field of neuro-radiology. Firstly, by assessing the impact of facial features removal on clinically relevant outcome measurements (Chapter 4.1) and secondly, by developing and evaluating a standardized protocol for manual delineations of dGM structures (Chatper 4.2).

So, in Chapter 4.1 we investigated if removing facial features would affect subsequent automated image analyses. To do so, we tested the effect of three facial features removal methods (QuickShear, FaceMasking, and Defacing) on automated image analyses methods that give clinically relevant outcome measurements. We used three datasets of different diseases: Alzheimer’s Disease, MS, and patients with a glioblastoma. Therefore, we also used three different clinically relevant outcome measurements, respectively, normalized brain volume, white matter lesion volume and tumor volume. Differences between outcomes

English Summary

The aim of this study was to improve the measurement of deep grey matter (dGM) atrophy in multiple sclerosis (MS) with the use of magnetic resonance imaging (MRI). For this we started with discussing the challenges of measuring GM in MS in Chapter 1. One of the conclusions was that more accurate automated segmentations methods are needed. Therefore, in Chapter 2, we evaluated the relation of the performance of well-established automated segmentation software with MS pathology. In Chapter 3 we addressed the white matter (WM) lesions, as WM lesions play an important role in diagnosis of MS and also affect brain image analyses in MS. To further stimulate methodological improvements in measurement of dGM atrophy in MS, we discussed in Chapter 4 how to improve open science in this field. Lastly, in Chapter 5 we developed an MS-specific automated segmentation software, MS-SMART, and an open reference dataset.

In Chapter 1 we discussed the urgent challenges of measuring grey matter (GM) atrophy in MS, distinguishing two main fields; i. pathology, physiology, and treatment effects and ii. measurement challenges. We discussed in more detail the pathological substrate, evolution of GM atrophy, influence of physiological variability, and evaluation of treatment response. Regarding technical measurement challenges, we discussed the influence of WM lesions on the measurement of GM atrophy. Moreover the influence of atrophy itself, the influence of other MS pathology, and technical variability. For every discussion point, we provided specific recommendations (summarized in Box 1 of Chapter 1) to improve measurements and interpretation of GM atrophy in individual MS patients. Two of these recommendations provide the basis for the rest of this thesis; the need of a public available reference data set and improvement of segmentation methods for MS.

In Chapter 2, we investigated the performance of existing automated dGM segmentation methods compared to a manual reference. Moreover, we evaluated whether there was a relation of the performance of those automated dGM segmentation methods with WM lesions and GM volume. We evaluated four different automated segmentation methods (FSL-FIRST, FreeSurfer, GIF and volBrain) on a multi-center dataset (21 MS subjects and 11 healthy controls). The performance of the methods was evaluated to manual reference on both volumetric (intraclass correlation (ICC)) and spatial (dice similarity coefficient (DSC)) agereement. The relation between segmentation accuracy of the methods, as expressed by their DSC with the manual outlines, and the global and local lesion volumes, region of interest volume, and normalized brain volume, was assessed. We concluded that existing automated methods have impaired performance on data of MS subjects, specifically, that the accuracy of the segmentations is reduced. Moreover, it was observed that performance generally deteriorated with higher lesion volume, and with lower normalized brain

(4)

Nederlandse Samenvatting

Achtergrond

MS

In Nederland wordt ongeveer 1 op de 1000 mensen gediagnostiseerd met Multiple Sclerosis (MS). Meestal krijgen ze de diagnose tussen de leeftijd van 20 en 50 jaar en het komt vaker voor bij vrouwen dan mannen (1). MS is een neurologische aandoening van het centrale zenuwstelsel en de symptomen en ziekteverloop zijn zeer verschillend voor elke individu. De meest voorkomende symptomen bij MS zijn vermoeidheid, zwakke en stijve spieren, oogproblemen (zichtverlies, dubbel of wazig zien), tintelingen en gevoelsstoornis in armen en benen, spraakproblemen en balansproblemen. Recentelijke studies laten daarnaast zien dat door MS ook geheugen- en concentratieproblemen kunnen ontstaan (2, 3).

De oorzaak van MS is nog niet bekend maar wel is duidelijk dat MS wordt gekenmerkt door focale inflammatoire, demyeliniserende laesies in voornamelijk de witte stof (WS) en degeneratie en volumeverlies van grijze stof (GS) in het centrale zenuwstelsel (de hersenen en ruggenmerg) (6, 7). Deze veranderingen kunnen in vivo zichtbaar worden gemaakt door gebruik van Magnetic Resonance Imaging (MRI) (8, 9).

De degeneratie en volumeverlies van de GS wordt vaak GS atrofie (krimping) genoemd en kan bij MS zowel corticaal als subcorticaal plaatsvinden (2, 7, 10, 11). De subcorticale atrofie treedt op in de diepe GS (dGS) structuren zoals nucleus caudatus, putamen en thalamus (3, 11-15). De precieze oorzaak en gevolgen van atrofie van de (d)GS is helaas niet bekend en daarom stellen verschillende onderzoeksgroepen voor dat er meer studies moeten komen naar de oorzaak en de impact van dGS atrofie bij MS (16, 17).

MRI

MRI kan gebruikt worden om de laesies en atrofie in vivo zichtbaar te maken en speelt daarom een belangrijke rol in diagnosticeren van en onderzoek naar MS. Om MS te diagnosticeren kijken artsen naar de combinatie van de hoeveelheid WS laesies en verloop van de ziekte (klinische terugvallen) in een bepaalde periode. Er zijn duidelijke criteria en richtlijnen opgesteld voor de diagnose door het medische veld (18, 19). De richtlijnen adviseren ook dat conventionele MRI technieken worden gebruikt voor de diagnose van MS, dus T1-gewogen en T2-gewogen beelden (fluid-attenuated inversion recovery (FLAIR) of proton density (PD)). Door het gebruik van deze beelden kunnen de WS laesies goed zichtbaar worden gemaakt en kan de GS en WS goed worden onderscheiden. In Figuur 1 zijn duidelijke onderscheidbare MS WS laesies weergegeven op een axiale MRI slice van zowel een T1-gewogen beeld en FLAIR beelden. In Figuur 2, een T1-gewogen beeld is zichtbaar met daarbij de duidelijk onderscheidbare dGS van de WS. Door op het obtained from images from which facial features were removed and those obtained from full

images were assessed by quantifying the intra-class correlation coefficient (ICC) for absolute agreement, and by testing for systematic differences using paired t-tests. We conclude that all three outcome measures were affected, although all differently, by the facial features removal methods. This included both failures of analyses methods and altered values for the outcome measures, including both “random” variation and systematic differences.

In Chapter 4.2 we discussed the development and evaluation of a manual segmentation protocol of dGM structures in MS. Next, we evaluated the accuracy of FASTSURF, a semi-automated segmentation method, in which sparse delineations serve as input. The standardized protocol was specifically developed for manually tracing dGM structures on 3D T1-weighted MRI scans of MS patients, by neurologists and neuroradiologists with broad experience in the field of MS and MRI. Aanatomical definitions were specified for each structure and alongside these landmarks, strict guidelines on how to recognize the outermost edges of the structures on orthogonal planes were described. To evaluate the protocol, three raters delineated dGM structures bilaterally on 3D-T1-weighted multi-center MRI scans of 23 MS patients and 12 controls. Intra- and inter-rater agreements? were assessed through volumetric (ICC) and spatial (JI and CIgen) agreement. Segmentations made with FASTSURF were also evaluated in terms of both volumetric and spatial agreement. We showed that raters achieved good to excellent intra- and inter-rater agreement and that these agreements were similar with use of FASTSURF. We concluded that the dGM manual segmentation protocol showed good reproducibility within and among raters. Moreover, this protocol could be combined with FASTSURF to produce a reference set of dGM structures with a lower workload.

In Chapter 5 we discussed the development of an MS-specific dGM automated segmentation method. MS-SMART is an open source automated segmentation method and is an atlas-based approach. The atlases for MS-SMART were manual outlined on 120 (100 MS subjects and 20 healthy controls) T1 MR images with use of the protocol developed in Chapter 4.2. The use of MS-specific atlases (images and labels) could help reduce the influence of MS pathology during alignment of the atlases to the target (input) image. In total, 60 images were used as an? atlas and training set for SMART and the other 60 were used for the evaluation of SMART and two well-established automated segmentation methods (FSL-FIRST and FreeSurfer). Evaluation was performed on both volumetric (ICC) and spatial (DSC) agreement compared to the manual outlines. We concluded that SMART outperformed the two well-established methods on this MS data set. However, we expect that with use of the shared atlas set and software code of SMART more methodological improvements in segmentation of dGM structures in MS could be made.

(5)

Figure 1: Een axiale snede van een T1-gewogen en FLAIR beeld met duidelijk onderscheidbare MS witte stof laesie.

Figure 2: Een axiale snede van T1-gewogen beeld, met drie diepe grijze stof structuren en witte stof aangegeven.

T1-gewogen beeld de dGS structuren plak voor plak uit te lijnen, ook wel segmenteren genoemd, kan het volume van de structuren worden berekend. Door het berekenen van volumeverschil van twee of meerdere segmentaties op beelden van 1 persoon na verloop van tijd, kan de hoeveelheid dGS atrofie worden berekend. Het segmenteren kan handmatig of automatisch worden gedaan.

Open science en privacy van patiënten

Open science is een ontwikkeling in het openbaar maken van je onderzoeksdoelen, resultaten en artikelen, en wordt afgelopen jaren aangemoedigd door vele tijdschriften en onderzoeksgroepen. Open science behelst ook het delen van ruwe data, bijvoorbeeld de gebruikte patiëntendata (demografische en klinische data, MRI). Het delen van deze data maakt niet alleen meta- en mega-analyse mogelijk, maar ook methodologische studies en/of samenwerkingen tussen groepen. Het delen van patiëntendata opent echter ook een ethische discussie. Zonder toestemming van de patiënt zou de data namelijk volledig anoniem moeten worden gedeeld. Dit betekent voor het delen van MRI beelden van de hersenen dat naast het verwijderen van metadata (gegevens zoals naam, geboortedatum, burgerservicenummer en/of registratienummer van ziekenhuis) ook gezichtskenmerken van het beeld verwijderd moeten worden. Door het goede huid-tot-luchtcontrast en ruimtelijke resolutie van MRI is het namelijk mogelijk om van een 3D MRI beeld iemand te herkennen (25-29). Het verwijderen van gezichtskenmerken kan op verschillende manieren en helpt om de data meer anoniem te maken, maar voor correct delen van data is het ook nodig om overeenkomsten met patiënten en centra op te stellen.

(6)

In Hoofdstuk 3.2 hebben we een laesie simulatiesoftware (LESIM) ontwikkeld. Door laesie te simuleren in MRI beelden van gezonde controles kunnen we op een meer objectieve manier de effecten van WS laesies op beeld analyse methods analyseren. De software kan helpen bij het ontwikkelen van automatische segmentatiemethodes die geen effect hebben van WS laesies. LESIM simuleert laesies van T1-gewogen of FLAIR beelden van mensen met MS in T1-gewogen beelden van gezonde controles. We hebben de software geëvalueerd door zowel visueel het resultaat te beoordelen als het effect van gesimuleerde laesies op GS segmentatie met FSL-SIENAX te evalueren. De verwachting is dat door de gesimuleerde laesies de GS segmentatie verandert, zoals door echte laesies ook gebeurt. De evaluatie van de software laat zien dat LESIM een nieuwe, goedwerkende software is voor het simuleren van realistische WS laesies en dat de gesimuleerde laesies het verwachte effect hebben op GS segmentatie van FSL-SIENAX.

Hoofdstuk 4 staat in het teken van de open science en privacy van patiënten. Eerst hebben

we in Hoofdstuk 4.1 gekeken naar de invloed van verwijderen van gezichtskenmerken van een MRI op beeldanalyse methodes. Met beeldanalyse methodes kunnen klinische maten gemeten worden, die voor diagnose en/of onderzoek naar verschillende ziektes kunnen worden gebruikt. In deze studie hebben we niet alleen naar MS gekeken maar ook naar de ziekte van Alzheimer en mensen met een glioblastoma (hersentumor). De drie gebruikte klinische maten waren (respectievelijk) WS laesievolume, genormaliseerd breinvolume en volume van de tumor. Door de gezichtskenmerken te verwijderen met drie verschillende methodes (QuickShear, FaceMasking en Defacing) konden we het verschil meten tussen gemeten klinische waarden, op beelden met en zonder gezichtskenmerken. We hebben het verschil gekwantificeerd met de intraclass correlatie coëfficiënt (ICC) en door te testen voor een systematisch verschil met gepaarde t-test. We zagen dat alle drie de klinische maten anders waren na het verwijderen van de gezichtskenmerken ten opzichte van de scans met gezichtskenmerken. Dit heeft als gevolg dat in het onderzoeksveld goed moet worden nagedacht over hoe data kan worden gedeeld zonder dat de privacy van patiënten in gevaar is, maar dat de analyses betrouwbaar blijven.

In Hoofdstuk 4.2 hebben we een protocol gemaakt en geëvalueerd voor het handmatig segmenteren van dGS structuren. Het protocol is ontwikkeld door neurologen en neuro-radiologen en is bedoeld voor het segmenteren van de thalamus, putamen en caudates nucleus op 3DT1 beelden van mensen met MS. Door gebruik van anatomische definities voor elke structuur konden er duidelijke richtlijnen worden opgesteld om de structuren te segmenteren. Drie raters, ook wel tekenaars, hebben op 35 beelden (23 van mensen met MS en 12 gezonde controles) de drie structuren zowel links als rechts

Doel en overzicht resultaten

Met deze studie wilden we het meten van de dGS atrofie bij MS verbeteren. Daarvoor hebben we eerst onderzocht wat de problemen en uitdagingen zijn bij het meten van GS atrofie bij MS, zie Hoofdstuk 1. We verdeelden de problemen en uitdagingen in twee groepen; i. de uitdagingen door pathologie, fysiologie en effect van behandelingen en ii. de uitdagingen door het meten zelf, dus software- en hardware-uitdagingen. In

Hoofdstuk 1 geven we voor elke uitdaging aanbevelingen om de meting en interpretatie

van GS atrofie te verbeteren. Twee van deze aanbevelingen zijn de basis van deze studie geworden: de noodzaak van een openbare referentieset met handmatige segmentaties van dGS structureren van mensen met MS en verbeteringen van automatische segmentatiemethodes voor dGS van mensen met MS.

Om de automatische methodes te verbeteren hebben we in Hoofdstuk 2 onderzocht hoe bestaande segmentatie methodes werkten en hun prestatie vergeleken met handmatige segmentaties. Daarnaast hebben we een mogelijke relatie onderzocht tussen de prestatie van de automatische methodes en de volledige en lokale WS laesies volume, de dGS volumes en het genormaliseerde hersenvolume. In totaal hebben we vier automatische segmentatiemethodes geëvalueerd (FSL-FIRST, FreeSurfer, GIF en volBrain) op een dataset van verschillende centra (21 mensen met MS en 11 gezonde controles). De methodes zijn geëvalueerd met de handmatige segmentaties op zowel volume (intra class correlatie (ICC)) als ruimtelijke overeenkomsten (dice similarity coefficient (DSC)). De resultaten laten zien dat de bestaande automatische methodes minder goed werken op data van mensen met MS dan op data van de gezonde controles. Daarnaast zagen we dat de automatische methodes vooral minder goed presenteren als het laesievolume hoger wordt en als het genormaliseerde hersenvolume en dGS volume lager worden. Dit suggereert dat MS pathologie voor de slechtere prestatie van automatische segmentaties zorgt in bij MS data.

Hoofstuk 3 staat in teken van de WS laesies bij MS. In Hoofdstuk 3.1 onderzochten we

de werking en prestatie van automatische WS laesie segmentatiemethodes op een multi-center MS dataset (70 mensen met MS). Op de 2D FLAIR beelden zijn de WS laesies zowel handmatig als met vijf automatische methodes gesegmenteerd (Cascade, LGA, LST-LPA, Lesion TOADS and kNN-TTP). De automatische methodes werden vergeleken met de handmatige segmentaties op zowel volume (ICC) als ruimtelijke overeenkomst (DSC en vals-positieve, en vals-negatieve volumes). Verder onderzochten we, met gebruik van ‘leave-one-center-out’ in het trainingsgedeelte, of methodes opnieuw getraind moeten worden voor een nieuw centrum. We zagen dat de methodes nog niet goed genoeg zijn voor klinisch gebruik maar de methodes zijn wel robuust tegen de nieuwe dataset van een (nieuw) centrum.

(7)

Biography

1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502-17.

2. Bermel RA, Sharma J, Tjoa CW, Puli SR, Bakshi R. A semiautomated measure of whole-brain atrophy in multiple sclerosis. J Neurol Sci. 2003;208(1-2):57-65. 3. Schoonheim MM, Hulst HE, Brandt RB, Strik M, Wink AM, Uitdehaag BM, et al.

Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology. 2015;84(8):776-83.

4. Goodin DS. Chapter 11 - The epidemiology of multiple sclerosis: insights to disease pathogenesis. Handbook of Clinical Neurology. 2014;122:231-66.

5. Jongen PJ, Heerings M, Lemmens WA, Donders R, van der Zande A, van Noort E, et al. A prospective web-based patient-centred interactive study of long-term disabilities, disabilities perception and health-related quality of life in patients with multiple sclerosis in The Netherlands: the Dutch Multiple Sclerosis Study protocol. BMC Neurol. 2015;15:128.

6. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707-17.

7. Bergsland N, Horakova D, Dwyer MG, Uher T, Vaneckova M, Tyblova M, et al. Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study. Neuroimage Clin. 2018;17:444-51.

8. Traboulsee AL, Li DK. The role of MRI in the diagnosis of multiple sclerosis. Adv Neurol. 2006;98:125-46.

9. Barkhof F, Filippi M. MRI--the perfect surrogate marker for multiple sclerosis? Nat Rev Neurol. 2009;5(4):182-3.

10. Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA. Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging. 2010;32(1):223-8.

11. Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85(12):1386-95.

12. Eshaghi A, Marinescu RV, Young AL, Firth NC, Prados F, Jorge Cardoso M, et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain. 2018;141(6):1665-77.

13. Modica CM, Bergsland N, Dwyer MG, Ramasamy DP, Carl E, Zivadinov R, et al. Cognitive reserve moderates the impact of subcortical gray matter atrophy on neuropsychological status in multiple sclerosis. Mult Scler. 2016;22(1):36-42. 14. Schoonheim MM, Ciccarelli O. The value of including thalamic atrophy as a in de hersenen gesegmenteerd. De hoge intra- en interrater overeenkomst, gemeten

met volume (ICC) en ruimtelijke overeenkomst (JI en CIgen) laat zien dat het protocol zorgt voor goede reproduceerbaarheid tussen en door raters. Daarnaast hebben we onderzocht of het protocol ook gebruikt kon worden in samenwerking met FASTSURF, een semiautomatisch segmentatiemethode. We zagen dat FASTSURF ook zorgde voor hoge reproduceerbaarheid tussen en door raters en dat FASTSURF even accuraat was als handmatige segmentaties. We concludeerden dus dat het protocol gebruikt kan worden voor het ontwikkelen van volledig handmatige segmentaties of segmentaties met FASTSURF.

Het laatste hoofdstuk, Hoofstuk 5, staat in teken van het ontwikkelen van een MS-specifiek automatisch dGS (nucleus caudates, putamen en thalamus) segmentatiemethode. We ontwikkelden MS-SMART als een open source methode zodat andere groepen de methode kunnen gaan gebruiken, testen en verder ontwikkelen. MS-SMART maakt gebruik van handmatig gesegmenteerde beelden die samen met de MRI beelden ‘atlassen’ worden genoemd. De segmentaties zijn gedaan via het protocol ontwikkeld in Hoofdstuk

4.2. In totaal is voor deze studie op 120 beelden (100 van mensen met MS en 20 gezonde

controles) gesegmenteerd. Hiervan zijn 60 beelden gebruikt als atlas voor training van MS-SMART en de andere 60 beelden voor het evalueren van MS-SMART en twee vaak gebruikte automatische segmentatiemethodes (FSL-FIRST en FreeSurfer). Voor evaluatie van de methodes keken we naar volume (ICC) en ruimtelijke (DSC) overeenkomst met de handmatige segmentaties. We zagen dat MS-SMART beter presteerde dan FSL-FIRST en FreeSurfer maar verder onderzoek en ontwikkeling zijn nodig om MS-SMART verder te verbeteren. We hopen dat door het openbaar maken van de softwarecode en de atlassen van MS-SMART andere groepen ook worden aangezet om dGS segmentaties bij MS te verbeteren.

(8)

tool for neuroimaging studies. Front Neurosci. 2015;9:325.

30. Langer SG, Shih G, Nagy P, Landman BA. Collaborative and Reproducible Research: Goals, Challenges, and Strategies. J Digit Imaging. 2018;31(3):275-82. 31. Holmes AJ, Hollinshead MO, O’Keefe TM, Petrov VI, Fariello GR, Wald LL, et al.

Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Sci Data. 2015;2:150031.

32. Liew SL, Anglin JM, Banks NW, Sondag M, Ito KL, Kim H, et al. A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci Data. 2018;5:180011.

33. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, et al. The WU-Minn Human Connectome Project: an overview. Neuroimage. 2013;80:62-79. 34. Battaglini M, Jenkinson M, De Stefano N. Evaluating and reducing the impact

of white matter lesions on brain volume measurements. Hum Brain Mapp. 2012;33(9):2062-71.

35. Gonzalez-Villa S, Valverde S, Cabezas M, Pareto D, Vilanova JC, Ramio-Torrenta L, et al. Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation. Neuroimage Clin. 2017;15:228-38.

36. Nakamura K, Fisher E. Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage. 2009;44(3):769-76.

37. Kearney H, Miller DH, Ciccarelli O. Spinal cord MRI in multiple sclerosis--diagnostic, prognostic and clinical value. Nat Rev Neurol. 2015;11(6):327-38. 38. Bergsland N, Horakova D, Dwyer MG, Dolezal O, Seidl ZK, Vaneckova M, et al.

Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol. 2012;33(8):1573-8.

39. Pareto D, Sastre-Garriga J, Aymerich FX, Auger C, Tintore M, Montalban X, et al. Lesion filling effect in regional brain volume estimations: a study in multiple sclerosis patients with low lesion load. Neuroradiology. 2016;58(5):467-74.

40. Riccitelli G, Rocca MA, Pagani E, Rodegher ME, Rossi P, Falini A, et al. Cognitive impairment in multiple sclerosis is associated to different patterns of gray matter atrophy according to clinical phenotype. Hum Brain Mapp. 2011;32(10):1535-43. 41. Nocentini U, Bozzali M, Spano B, Cercignani M, Serra L, Basile B, et al. Exploration

of the relationships between regional grey matter atrophy and cognition in multiple sclerosis. Brain Imaging Behav. 2014;8(3):378-86.

42. Pagani E, Rocca MA, Gallo A, Rovaris M, Martinelli V, Comi G, et al. Regional brain atrophy evolves differently in patients with multiple sclerosis according to clinical phenotype. AJNR Am J Neuroradiol. 2005;26(2):341-6.

clinical trial endpoint in multiple sclerosis. Neurology. 2018;90(15):677-8.

15. Benedict RH, Ramasamy D, Munschauer F, Weinstock-Guttman B, Zivadinov R. Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. J Neurol Neurosurg Psychiatry. 2009;80(2):201-6.

16. Schoonheim MM, Geurts JJG. What Causes Deep Gray Matter Atrophy in Multiple Sclerosis? AJNR Am J Neuroradiol. 2019;40(1):107-8.

17. Pontillo G, Cocozza S, Lanzillo R, Russo C, Stasi MD, Paolella C, et al.

Determinants of Deep Gray Matter Atrophy in Multiple Sclerosis: A Multimodal MRI Study. AJNR Am J Neuroradiol. 2019;40(1):99-106.

18. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-73.

19. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302.

20. Filippi M, Rocca MA. Present and future of fMRI in multiple sclerosis. Expert Rev Neurother. 2013;13(12 Suppl):27-31.

21. Fox RJ, Beall E, Bhattacharyya P, Chen JT, Sakaie K. Advanced MRI in multiple sclerosis: current status and future challenges. Neurol Clin. 2011;29(2):357-80. 22. Stuber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging

with Quantitative Susceptibility Mapping. Int J Mol Sci. 2016;17(1).

23. Amiri H, de Sitter A, Bendfeldt K, Battaglini M, Gandini Wheeler-Kingshott CAM, Calabrese M, et al. Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. Neuroimage Clin. 2018;19:466-75.

24. de Sitter A, Steenwijk MD, Ruet A, Versteeg A, Liu Y, van Schijndel RA, et al. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. Neuroimage. 2017;163:106-14.

25. Gkoulalas-Divanis, Grigorios L. Medical Data Privacy Handbook: Springer; 2015. 26. Budin F, Zeng D, Ghosh A, Bullitt E. Preventing facial recognition when rendering

MR images of the head in three dimensions. Med Image Anal. 2008;12(3):229-39. 27. Prior FW, Brunsden B, Hildebolt C, Nolan TS, Pringle M, Vaishnavi SN, et al. Facial

recognition from volume-rendered magnetic resonance imaging data. IEEE Trans Inf Technol Biomed. 2009;13(1):5-9.

28. Parks CL, Monson KL. Automated Facial Recognition of Computed Tomography-Derived Facial Images: Patient Privacy Implications. J Digit Imaging. 2017;30(2):204-14.

(9)

multiple sclerosis. Neuroimage. 2004;22(1):353-9.

56. Sepulcre J, Sastre-Garriga J, Cercignani M, Ingle GT, Miller DH, Thompson AJ. Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol. 2006;63(8):1175-80.

57. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179-94.

58. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97(20):11050-5. 59. Zijdenbos AP, Forghani R, Evans AC. Automatic “pipeline” analysis of 3-D MRI

data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging. 2002;21(10):1280-91.

60. Nakamura K, Fox R, Fisher E. CLADA: cortical longitudinal atrophy detection algorithm. Neuroimage. 2011;54(1):278-89.

61. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. 2002;17(1):479-89.

62. Dwyer MG, Bergsland N, Zivadinov R. Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model. Neuroimage. 2014;90:207-17.

63. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26(3):839-51. 64. Alemán-Gómez Y, Melie-García L, Valdés-Hernandez P. IBASPM: Toolbox

for automatic parcellation of brain structures 12th Annual Meeting of the

Organization for Human Brain Mapping, June 11-15, 2006, Florence, Italy Available on CD-Rom in NeuroImage, Vol 27, No12006.

65. Hutton C, De VE, Ashburner J, Deichmann R, Turner R. Voxel-based cortical thickness measurements in MRI. Neuroimage. 2008;40(4):1701-10.

66. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006;32(1):180-94. 67. Lerch JP, Evans AC. Cortical thickness analysis examined through power analysis

and a population simulation. Neuroimage. 2005;24(1):163-73.

68. Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage. 2009;48(2):371-80.

69. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341-55.

70. Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation 43. Bermel RA, Innus MD, Tjoa CW, Bakshi R. Selective caudate atrophy in multiple

sclerosis: a 3D MRI parcellation study. Neuroreport. 2003;14(3):335-9. 44. Houtchens MK, Benedict RH, Killiany R, Sharma J, Jaisani Z, Singh B, et al.

Thalamic atrophy and cognition in multiple sclerosis. Neurology. 2007;69(12):1213-23.

45. Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley KJ, Evans AC. Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage. 2007;34(2):509-17.

46. Narayana PA, Govindarajan KA, Goel P, Datta S, Lincoln JA, Cofield SS, et al. Regional cortical thickness in relapsing remitting multiple sclerosis: A multi-center study. Neuroimage Clin. 2012;2:120-31.

47. Prinster A, Quarantelli M, Orefice G, Lanzillo R, Brunetti A, Mollica C, et al. Grey matter loss in relapsing-remitting multiple sclerosis: a voxel-based morphometry study. Neuroimage. 2006;29(3):859-67.

48. Ramasamy DP, Benedict RH, Cox JL, Fritz D, Abdelrahman N, Hussein S, et al. Extent of cerebellum, subcortical and cortical atrophy in patients with MS: a case-control study. J Neurol Sci. 2009;282(1-2):47-54.

49. Sailer M, Fischl B, Salat D, Tempelmann C, Schonfeld MA, Busa E, et al. Focal thinning of the cerebral cortex in multiple sclerosis. Brain. 2003;126(Pt 8):1734-44. 50. Lansley J, Mataix-Cols D, Grau M, Radua J, Sastre-Garriga J. Localized grey matter

atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev. 2013;37(5):819-30.

51. De SN, Matthews PM, Filippi M, Agosta F, De LM, Bartolozzi ML, et al. Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology. 2003;60(7):1157-62.

52. Dalton CM, Chard DT, Davies GR, Miszkiel KA, Altmann DR, Fernando K, et al. Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain. 2004;127(Pt 5):1101-7.

53. Chard DT, Griffin CM, Rashid W, Davies GR, Altmann DR, Kapoor R, et al. Progressive grey matter atrophy in clinically early relapsing-remitting multiple sclerosis. Mult Scler. 2004;10(4):387-91.

54. Chard DT, Griffin CM, Parker GJ, Kapoor R, Thompson AJ, Miller DH. Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain. 2002;125(Pt 2):327-37.

55. Sastre-Garriga J, Ingle GT, Chard DT, Ramio-Torrenta L, Miller DH, Thompson AJ. Grey and white matter atrophy in early clinical stages of primary progressive

(10)

2010;257(2):463-9.

84. Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56(3):907-22. 85. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation,

flattening, and a surface-based coordinate system. Neuroimage. 1999;9(2):195-207. 86. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic

correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17(1):87-97.

87. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage. 2004;22(3):1060-75. 88. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, et al.

Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004;23 Suppl 1:S69-84.

89. Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage. 2010;53(4):1181-96.

90. Bazin PL, Pham DL. Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans Med Imaging. 2007;26(4):487-96.

91. Shiee N, Bazin PL, Ozturk A, Reich DS, Calabresi PA, Pham DL. A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage. 2010;49(2):1524-35.

92. Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50(3):389-400.

93. Dutta R, Chang A, Doud MK, Kidd GJ, Ribaudo MV, Young EA, et al.

Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann Neurol. 2011;69(3):445-54.

94. Popescu V, Klaver R, Voorn P, Galis-de GY, Knol DL, Twisk JW, et al. What drives MRI-measured cortical atrophy in multiple sclerosis? Mult Scler. 2015;21(10):1280-90.

95. Kutzelnigg A, Lassmann H. Cortical lesions and brain atrophy in MS. J Neurol Sci. 2005;233(1-2):55-9.

96. Geurts JJ, Bo L, Pouwels PJ, Castelijns JA, Polman CH, Barkhof F. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am J Neuroradiol. 2005;26(3):572-7.

97. Klaver R, Popescu V, Voorn P, Galis-de Graaf Y, van der Valk P, de Vries HE, et al. Neuronal and axonal loss in normal-appearing gray matter and subpial lesions in multiple sclerosis. J Neuropathol Exp Neurol. 2015;74(5):453-8.

98. Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, for unbiased longitudinal image analysis. Neuroimage. 2012;61(4):1402-18.

71. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000;11(6 Pt 1):805-21.

72. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1 Pt 1):21-36.

73. Horakova D, Cox JL, Havrdova E, Hussein S, Dolezal O, Cookfair D, et al. Evolution of different MRI measures in patients with active relapsing-remitting multiple sclerosis over 2 and 5 years: a case-control study. J Neurol Neurosurg Psychiatry. 2008;79(4):407-14.

74. Dupuy SL, Tauhid S, Hurwitz S, Chu R, Yousuf F, Bakshi R. The Effect of Dimethyl Fumarate on Cerebral Gray Matter Atrophy in Multiple Sclerosis. Neurol Ther. 2016.

75. Battaglini M, Jenkinson M, De Stefano N. SIENA-XL for the assessment of gray matter and white matter volume changes in clinical studies of patients with multiple sclerosis. Paper presented at: 32nd Congress of the European Committee

for Treatment and Research in Multiple Sclerosis. 2016.

76. Penny W, Friston K, Ashburner J, Kiebel S, Nichols TE. Statistical Parametric Mapping: The Analysis of Functional Brain Images Academic Press 2006. 77. Ashburner J, Ridgway GR. Symmetric diffeomorphic modeling of longitudinal

structural MRI. Front Neurosci. 2012;6:197.

78. Ashburner J, Hutton C, Frackowiak R, Johnsrude I, Price C, Friston K. Identifying global anatomical differences: deformation-based morphometry. Hum Brain Mapp. 1998;6(5-6):348-57.

79. Nakamura K, Guizard N, Fonov VS, Narayanan S, Collins DL, Arnold DL. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis. Neuroimage Clin. 2014;4:10-7.

80. Zivadinov R, Havrdova E, Bergsland N, Tyblova M, Hagemeier J, Seidl Z, et al. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology. 2013;268(3):831-41.

81. Zivadinov R, Bergsland N, Dolezal O, Hussein S, Seidl Z, Dwyer MG, et al. Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. AJNR Am J Neuroradiol. 2013;34(10):1931-9. 82. Mesaros S, Rocca MA, Pagani E, Sormani MP, Petrolini M, Comi G, et al. Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol. 2011;32(6):1016-20.

83. Rocca MA, Mesaros S, Pagani E, Sormani MP, Comi G, Filippi M. Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology.

(11)

regional grey and white matter atrophy in relapsing-remitting multiple sclerosis. Mult Scler. 2012;18(7):1027-37.

112. Bodini B, Khaleeli Z, Cercignani M, Miller DH, Thompson AJ, Ciccarelli O. Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM. Hum Brain Mapp. 2009;30(9):2852-61.

113. Battaglini M, Giorgio A, Stromillo ML, Bartolozzi ML, Guidi L, Federico A, et al. Voxel-wise assessment of progression of regional brain atrophy in relapsing-remitting multiple sclerosis. J Neurol Sci. 2009;282(1-2):55-60.

114. Bendfeldt K, Blumhagen JO, Egger H, Loetscher P, Denier N, Kuster P, et al. Spatiotemporal distribution pattern of white matter lesion volumes and their association with regional grey matter volume reductions in relapsing-remitting multiple sclerosis. Hum Brain Mapp. 2010;31(10):1542-55.

115. Steenwijk MD, Daams M, Pouwels PJ, Balk J, Tewarie PK, Geurts JJ, et al.

Unraveling the relationship between regional gray matter atrophy and pathology in connected white matter tracts in long-standing multiple sclerosis. Hum Brain Mapp. 2015;36(5):1796-807.

116. Louapre C, Govindarajan ST, Gianni C, Cohen-Adad J, Gregory MD, Nielsen AS, et al. Is the Relationship between Cortical and White Matter Pathologic Changes in Multiple Sclerosis Spatially Specific? A Multimodal 7-T and 3-T MR Imaging Study with Surface and Tract-based Analysis. Radiology. 2016;278(2):524-35.

117. Bergsland N, Lagana MM, Tavazzi E, Caffini M, Tortorella P, Baglio F, et al. Corticospinal tract integrity is related to primary motor cortex thinning in relapsing-remitting multiple sclerosis. Mult Scler. 2015;21(14):1771-80.

118. Roberto CA, Mayer LE, Brickman AM, Barnes A, Muraskin J, Yeung LK, et al. Brain tissue volume changes following weight gain in adults with anorexia nervosa. Int J Eat Disord. 2011;44(5):406-11.

119. Janowitz D, Wittfeld K, Terock J, Freyberger HJ, Hegenscheid K, Volzke H, et al. Association between waist circumference and gray matter volume in 2344 individuals from two adult community-based samples. Neuroimage. 2015;122:149-57.

120. Thayer RE, Hagerty SL, Sabbineni A, Claus ED, Hutchison KE, Weiland BJ. Negative and interactive effects of sex, aging, and alcohol abuse on gray matter morphometry. Hum Brain Mapp. 2016;37(6):2276-92.

121. Sutherland MT, Riedel MC, Flannery JS, Yanes JA, Fox PT, Stein EA, et al. Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behav Brain Funct. 2016;12(1):16.

synaptic, and glial loss in multiple sclerosis. Neurology. 2006;67(6):960-7.

99. Calabrese M, Atzori M, Bernardi V, Morra A, Romualdi C, Rinaldi L, et al. Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol. 2007;254(9):1212-20.

100. Du Toit G, Katz Y, Sasieni P, Mesher D, Maleki SJ, Fisher HR, et al. Early

consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J Allergy Clin Immunol. 2008;122(5):984-91.

101. Bishop CA, Newbould RD, Lee JS, Honeyfield L, Quest R, Colasanti A, et al. Analysis of ageing-associated grey matter volume in patients with multiple sclerosis shows excess atrophy in subcortical regions. Neuroimage Clin. 2017;13:9-15.

102. Sicotte NL, Kern KC, Giesser BS, Arshanapalli A, Schultz A, Montag M, et al. Regional hippocampal atrophy in multiple sclerosis. Brain. 2008;131(Pt 4):1134-41. 103. Nygaard GO, Celius EG, de Rodez Benavent SA, Sowa P, Gustavsen MW, Fjell AM,

et al. A Longitudinal Study of Disability, Cognition and Gray Matter Atrophy in Early Multiple Sclerosis Patients According to Evidence of Disease Activity. PLoS One. 2015;10(8):e0135974.

104. Eshaghi A, Bodini B, Ridgway GR, Garcia-Lorenzo D, Tozer DJ, Sahraian MA, et al. Temporal and spatial evolution of grey matter atrophy in primary progressive multiple sclerosis. Neuroimage. 2014;86:257-64.

105. Hofstetter L, Naegelin Y, Filli L, Kuster P, Traud S, Smieskova R, et al. Progression in disability and regional grey matter atrophy in relapsing-remitting multiple sclerosis. Mult Scler. 2014;20(2):202-13.

106. Solomon AJ, Watts R, Dewey BE, Reich DS. MRI evaluation of thalamic volume differentiates MS from common mimics. Neurol Neuroimmunol Neuroinflamm. 2017;4(5):e387.

107. Geurts JJ, Calabrese M, Fisher E, Rudick RA. Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 2012;11(12):1082-92. 108. Roosendaal SD, Bendfeldt K, Vrenken H, Polman CH, Borgwardt S, Radue EW, et

al. Grey matter volume in a large cohort of MS patients: relation to MRI parameters and disability. Mult Scler. 2011;17(9):1098-106.

109. Steenwijk MD, Daams M, Pouwels PJ, Balk LJ, Tewarie PK, Killestein J, et al. What explains gray matter atrophy in long-standing multiple sclerosis? Radiology. 2014;272(3):832-42.

110. Muhlau M, Buck D, Forschler A, Boucard CC, Arsic M, Schmidt P, et al. White-matter lesions drive deep gray-White-matter atrophy in early multiple sclerosis: support from structural MRI. Mult Scler. 2013;19(11):1485-92.

(12)

134. Gelineau-Morel R, Tomassini V, Jenkinson M, Johansen-Berg H, Matthews PM, Palace J. The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum Brain Mapp. 2012;33(12):2802-14.

135. Prados F, Cardoso MJ, MacManus D, Wheeler-Kingshott CA, Ourselin S. A modality-agnostic patch-based technique for lesion filling in multiple sclerosis. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):781-8.

136. Magon S, Gaetano L, Chakravarty MM, Lerch JP, Naegelin Y, Stippich C, et al. White matter lesion filling improves the accuracy of cortical thickness

measurements in multiple sclerosis patients: a longitudinal study. BMC Neurosci. 2014;15:106.

137. Popescu V, Ran NC, Barkhof F, Chard DT, Wheeler-Kingshott CA, Vrenken H. Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks. Neuroimage Clin. 2014;4:366-73.

138. Popescu V, Battaglini M, Hoogstrate WS, Verfaillie SC, Sluimer IC, van Schijndel RA, et al. Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis. Neuroimage. 2012;61(4):1484-94.

139. Doshi J, Erus G, Ou Y, Gaonkar B, Davatzikos C. Multi-atlas skull-stripping. Acad Radiol. 2013;20(12):1566-76.

140. Lutkenhoff ES, Rosenberg M, Chiang J, Zhang K, Pickard JD, Owen AM, et al. Optimized brain extraction for pathological brains (optiBET). PLoS One. 2014;9(12):e115551.

141. Leung KK, Barnes J, Modat M, Ridgway GR, Bartlett JW, Fox NC, et al. Brain MAPS: an automated, accurate and robust brain extraction technique using a template library. Neuroimage. 2011;55(3):1091-108.

142. Eskildsen SF, Coupe P, Fonov V, Manjon JV, Leung KK, Guizard N, et al. BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage. 2012;59(3):2362-73.

143. Pereira JM, Xiong L, Acosta-Cabronero J, Pengas G, Williams GB, Nestor PJ. Registration accuracy for VBM studies varies according to region and degenerative disease grouping. Neuroimage. 2010;49(3):2205-15.

144. Roura E, Schneider T, Modat M, Daga P, Muhlert N, Chard D, et al. Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis. Funct Neurol. 2015;30(4):245-56. 145. Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, et al. Multi-contrast

large deformation diffeomorphic metric mapping for diffusion tensor imaging. Neuroimage. 2009;47(2):618-27.

146. Djamanakova A, Faria AV, Hsu J, Ceritoglu C, Oishi K, Miller MI, et al. Diffeomorphic brain mapping based on T1-weighted images: improvement 122. Sampat MP, Healy BC, Meier DS, Dell’Oglio E, Liguori M, Guttmann CR.

Disease modeling in multiple sclerosis: assessment and quantification of sources of variability in brain parenchymal fraction measurements. Neuroimage. 2010;52(4):1367-73.

123. Nakamura K, Brown RA, Narayanan S, Collins DL, Arnold DL, Alzheimer’s Disease Neuroimaging I. Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations. Neuroimage. 2015;118:126-32.

124. Duning T, Kloska S, Steinstrater O, Kugel H, Heindel W, Knecht S. Dehydration confounds the assessment of brain atrophy. Neurology. 2005;64(3):548-50. 125. Filippi M, Rocca MA, Pagani E, De SN, Jeffery D, Kappos L, et al.

Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry. 2014;85(8):851-8.

126. Perez-Miralles FC, Sastre-Garriga J, Vidal-Jordana A, Rio J, Auger C, Pareto D, et al. Predictive value of early brain atrophy on response in patients treated with interferon beta. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e132.

127. Fisher E, Nakamura K, Lee JC, You X, Sperling B, Rudick RA. Effect of

intramuscular interferon beta-1a on gray matter atrophy in relapsing-remitting multiple sclerosis: A retrospective analysis. Mult Scler. 2016;22(5):668-76.

128. De Stefano N, Airas L, Grigoriadis N, Mattle HP, O’Riordan J, Oreja-Guevara C, et al. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs. 2014;28(2):147-56.

129. Vidal-Jordana A, Sastre-Garriga J, Perez-Miralles F, Tur C, Tintore M, Horga A, et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler. 2013;19(9):1175-81.

130. Vidal-Jordana A, Sastre-Garriga J, Perez-Miralles F, Pareto D, Rio J, Auger C, et al. Brain Volume Loss during the First Year of Interferon-Beta Treatment: Baseline Inflammation and Tissue-Specific Volume Dynamics. J Neuroimaging. 2016. 131. Di Perri C, Battaglini M, Stromillo ML, Bartolozzi ML, Guidi L, Federico A, et

al. Voxel-based assessment of differences in damage and distribution of white matter lesions between patients with primary progressive and relapsing-remitting multiple sclerosis. Arch Neurol. 2008;65(2):236-43.

132. Sdika M, Pelletier D. Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum Brain Mapp. 2009;30(4):1060-7.

133. Ceccarelli A, Jackson JS, Tauhid S, Arora A, Gorky J, Dell’Oglio E, et al. The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. AJNR Am J Neuroradiol. 2012;33(8):1579-85.

(13)

158. Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, et al. Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. AJNR Am J Neuroradiol. 2012;33(10):1918-24.

159. Biberacher V, Schmidt P, Keshavan A, Boucard CC, Righart R, Samann P, et al. Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Neuroimage. 2016.

160. Takao H, Hayashi N, Ohtomo K. Effect of scanner in longitudinal studies of brain volume changes. J Magn Reson Imaging. 2011;34(2):438-44.

161. Cover KS, van Schijndel RA, van Dijk BW, Redolfi A, Knol DL, Frisoni GB, et al. Assessing the reproducibility of the SienaX and Siena brain atrophy measures using the ADNI back-to-back MP-RAGE MRI scans. Psychiatry Res. 2011;193(3):182-90.

162. Mulder ER, de Jong RA, Knol DL, van Schijndel RA, Cover KS, Visser PJ, et al. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage. 2014;92:169-81.

163. Cover KS, van Schijndel RA, Versteeg A, Leung KK, Mulder ER, Jong RA, et al. Reproducibility of hippocampal atrophy rates measured with manual, FreeSurfer, AdaBoost, FSL/FIRST and the MAPS-HBSI methods in Alzheimer’s disease. Psychiatry Res. 2016;252:26-35.

164. Meijerman A, Amiri H, Steenwijk MD, Jonker MA, van Schijndel RA, Cover KS, et al. Reproducibility of Deep Gray Matter Atrophy Rate Measurement in a Large Multicenter Dataset. AJNR Am J Neuroradiol. 2018;39(1):46-53.

165. Chu R, Hurwitz S, Tauhid S, Bakshi R. Automated segmentation of cerebral deep gray matter from MRI scans: effect of field strength on sensitivity and reliability. BMC Neurol. 2017;17(1):172.

166. Popescu V, Schoonheim MM, Versteeg A, Chaturvedi N, Jonker M, Xavier de Menezes R, et al. Grey Matter Atrophy in Multiple Sclerosis: Clinical Interpretation Depends on Choice of Analysis Method. PLoS One. 2016;11(1):e0143942.

167. Gronenschild EH, Habets P, Jacobs HI, Mengelers R, Rozendaal N, van OJ, et al. The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLoS One. 2012;7(6):e38234.

168. Derakhshan M, Caramanos Z, Giacomini PS, Narayanan S, Maranzano J, Francis SJ, et al. Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. Neuroimage. 2010;52(4):1261-7. 169. Eshaghi A, Prados F, Brownlee WJ, Altmann DR, Tur C, Cardoso MJ, et al. Deep of registration accuracy by multichannel mapping. J Magn Reson Imaging.

2013;37(1):76-84.

147. Deppe M, Marinell J, Kramer J, Duning T, Ruck T, Simon OJ, et al. Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis. Neuroimage Clin. 2014;6:475-87.

148. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(Pt 11):2705-12.

149. Nelson F, Poonawalla A, Datta S, Wolinsky J, Narayana P. Is 3D MPRAGE better than the combination DIR/PSIR for cortical lesion detection at 3T MRI? Mult Scler Relat Disord. 2014;3(2):253-7.

150. Bagnato F, Butman JA, Gupta S, Calabrese M, Pezawas L, Ohayon JM, et al. In vivo detection of cortical plaques by MR imaging in patients with multiple sclerosis. AJNR Am J Neuroradiol. 2006;27(10):2161-7.

151. Raz E, Cercignani M, Sbardella E, Totaro P, Pozzilli C, Bozzali M, et al. Gray- and white-matter changes 1 year after first clinical episode of multiple sclerosis: MR imaging. Radiology. 2010;257(2):448-54.

152. van Munster CE, Jonkman LE, Weinstein HC, Uitdehaag BM, Geurts JJ. Gray matter damage in multiple sclerosis: Impact on clinical symptoms. Neuroscience. 2015;303:446-61.

153. Vrenken H, Seewann A, Knol DL, Polman CH, Barkhof F, Geurts JJ. Diffusely abnormal white matter in progressive multiple sclerosis: in vivo quantitative MR imaging characterization and comparison between disease types. AJNR Am J Neuroradiol. 2010;31(3):541-8.

154. Seewann A, Vrenken H, van der Valk P, Blezer EL, Knol DL, Castelijns JA, et al. Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis. Arch Neurol. 2009;66(5):601-9.

155. Westlye LT, Walhovd KB, Dale AM, Espeseth T, Reinvang I, Raz N, et al. Increased sensitivity to effects of normal aging and Alzheimer’s disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study. Neuroimage. 2009;47(4):1545-57.

156. Mallik S, Muhlert N, Samson RS, Sethi V, Wheeler-Kingshott CA, Miller DH, et al. Regional patterns of grey matter atrophy and magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups: a voxel-based analysis study. Mult Scler. 2015;21(4):423-32.

157. Khaleeli Z, Cercignani M, Audoin B, Ciccarelli O, Miller DH, Thompson AJ. Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability. Neuroimage. 2007;37(1):253-61.

(14)

Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545-56.

184. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829-39.

185. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017;376(3):221-34.

186. La Mantia L, Di Pietrantonj C, Rovaris M, Rigon G, Frau S, Berardo F, et al. Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2016;11:CD009333.

187. Guo C, Ferreira D, Fink K, Westman E, Granberg T. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol. 2019;29(3):1355-64.

188. de Bresser J, Portegies MP, Leemans A, Biessels GJ, Kappelle LJ, Viergever MA. A comparison of MR based segmentation methods for measuring brain atrophy progression. Neuroimage. 2011;54(2):760-8.

189. Power BD, Wilkes FA, Hunter-Dickson M, van Westen D, Santillo AF, Walterfang M, et al. Validation of a protocol for manual segmentation of the thalamus on magnetic resonance imaging scans. Psychiatry Res. 2015;232(1):98-105. 190. Magon S, Gaetano L, Chakravarty MM, Lerch JP, Naegelin Y, Stippich C, et

al. White matter lesion filling improves the accuracy of cortical thickness

measurements in multiple sclerosis patients: a longitudinal study. BMC Neurosci. 2014;15:106.

191. Yablonskiy DA, Luo J, Sukstanskii AL, Iyer A, Cross AH. Biophysical mechanisms of MRI signal frequency contrast in multiple sclerosis. Proc Natl Acad Sci U S A. 2012;109(35):14212-7.

192. Kim H, Mansi T, Bernasconi A, Bernasconi N. Vertex-wise shape analysis of the hippocampus: disentangling positional differences from volume changes. Med Image Comput Comput Assist Interv. 2011;14(Pt 2):352-9.

193. Benedict RH, Bobholz JH. Multiple sclerosis. Semin Neurol. 2007;27(1):78-85. 194. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A

placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387-401.

195. Radue EW, Barkhof F, Kappos L, Sprenger T, Haring DA, de Vera A, et al. gray matter volume loss drives disability worsening in multiple sclerosis. Ann

Neurol. 2018;83(2):210-22.

170. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179-94.

171. Cardoso MJ, Modat M, Wolz R, Melbourne A, Cash D, Rueckert D, et al. Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion. IEEE Trans Med Imaging. 2015;34(9):1976-88.

172. Manjon JV, Coupe P. volBrain: An Online MRI Brain Volumetry System. Front Neuroinform. 2016;10:30.

173. Rocca MA, Valsasina P, Hulst HE, Abdel-Aziz K, Enzinger C, Gallo A, et al. Functional correlates of cognitive dysfunction in multiple sclerosis: A multicenter fMRI Study. Hum Brain Mapp. 2014;35(12):5799-814.

174. Ropele S, Kilsdonk ID, Wattjes MP, Langkammer C, de Graaf WL, Frederiksen JL, et al. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Mult Scler. 2014;20(13):1692-8.

175. Schmidt P, Gaser C, Arsic M, Buck D, Forschler A, Berthele A, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimage. 2012;59(4):3774-83.

176. Coupe P, Manjon JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage. 2011;54(2):940-54.

177. Smith SM, De Stefano N, Jenkinson M, Matthews PM. Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomo. 2001;25(3):466-75.

178. Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC. Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging. 1994;13(4):716-24.

179. Tukey J. Statistical Methods for Research Workers. Econometrica. 1952;20(3):511-2. 180. Corder GW, Foreman DI. Nonparametric Statistics for Non-Statisticians: A

Step-by-Step Approach: Wiley; 2009.

181. Benedict RHB, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman B, et al. Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler J. 2013;19(11):1478-84.

182. Chard DT, Brex PA, Ciccarelli O, Griffin CM, Parker GJ, Dalton C, et al. The longitudinal relation between brain lesion load and atrophy in multiple sclerosis: a 14 year follow up study. J Neurol Neurosurg Psychiatry. 2003;74(11):1551-4.

(15)

Grond J, van Buchem MA, et al. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage. 2005;28(3):607-17. 210. Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J. Probabilistic

segmentation of white matter lesions in MR imaging. Neuroimage. 2004;21(3):1037-44.

211. Khayati R, Vafadust M, Towhidkhah F, Nabavi M. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Comput Biol Med. 2008;38(3):379-90. 212. Roura E, Oliver A, Cabezas M, Valverde S, Pareto D, Vilanova JC, et al. A toolbox

for multiple sclerosis lesion segmentation. Neuroradiology. 2015;57(10):1031-43. 213. Rovira A, Wattjes MP, Tintore M, Tur C, Yousry TA, Sormani MP, et al.

Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol. 2015;11(8):471-82.

214. Vrenken H, Jenkinson M, Horsfield MA, Battaglini M, van Schijndel RA, Rostrup E, et al. Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. J Neurol. 2013;260(10):2458-71. 215. Wattjes MP, Rovira A, Miller D, Yousry TA, Sormani MP, de Stefano MP, et al.

Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis--establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015;11(10):597-606.

216. Weeda MM, Brouwer I, de Vos ML, de Vries MS, Barkhof F, Pouwels PJW, et al. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. Neuroimage Clin. 2019;24:102074.

217. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143-55.

218. Zhang J, Jiang W, Wang R, Wang L. Brain MR image segmentation with spatial constrained K-mean algorithm and dual-tree complex wavelet transform. J Med Syst. 2014;38(9):93.

219. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825-41.

220. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143-56.

221. Zheng W, Chee MW, Zagorodnov V. Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. Neuroimage. 2009;48(1):73-83. 222. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. elastix: a toolbox

Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis. Neurology. 2015;84(8):784-93.

196. Grimaud J, Lai M, Thorpe J, Adeleine P, Wang L, Barker GJ, et al. Quantification of MRI lesion load in multiple sclerosis: a comparison of three computer-assisted techniques. Magn Reson Imaging. 1996;14(5):495-505.

197. Paty E, De Blic D, Scheinmann P, Jaubert F, Paupe J. [Eosinophilic lung in children]. Arch Fr Pediatr. 1986;43(4):243-8.

198. Mortazavi D, Kouzani AZ, Soltanian-Zadeh H. Segmentation of multiple sclerosis lesions in MR images: a review. Neuroradiology. 2012;54(4):299-320.

199. Damangir S, Manzouri A, Oppedal K, Carlsson S, Firbank MJ, Sonnesyn H, et al. Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines. J Neurol Sci. 2012;322(1-2):211-6.

200. Damangir S, Westman E, Simmons A, Vrenken H, Wahlund LO, Spulber G. Reproducible segmentation of white matter hyperintensities using a new statistical definition. MAGMA. 2017;30(3):227-37.

201. P. S. Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. PhD thesis, LudwigMaximilians-Universität München, Januar 2017. URL http://nbn-resolving. de/

urn:nbn:de:bvb:19-203731.

202. Steenwijk MD, Pouwels PJ, Daams M, van Dalen JW, Caan MW, Richard E, et al. Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). Neuroimage Clin. 2013;3:462-9.

203. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-52.

204. Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging. 2004;23(7):903-21.

205. Koch GG. Intraclass correlation coefficient. In: Samuel K. and Norman L.J. Encyclopedia of Statistical Sciences 4. New York, John Wiley & Sons; 1982;213–17. 206. Dice LR. Measures of the amount of ecologic association between species. Ecology

1945;26:297-302.

207. Wack DS, Dwyer MG, Bergsland N, Di Perri C, Ranza L, Hussein S, et al. Improved assessment of multiple sclerosis lesion segmentation agreement via detection and outline error estimates. BMC Med Imaging. 2012;12:17.

208. Rocca MA, Battaglini M, Benedict RH, De Stefano N, Geurts JJ, Henry RG, et al. Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology. 2017;88(4):403-13.

(16)

LudwigMaximilians-Universität München URL http://nbn-resolving de/ urn:nbn:de:bvb:19-203731. Januar 2017.

236. Bauer S, Fejes T, Slotboom J, Wiest R, Nolte LP, Reyes M. Segmentation of Brain Tumor Images Based on Integrated Hierarchical Classification and Regularization. MICCAI BraTS Work. 2012:10-3.

237. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231-40.

238. Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment. 1994;6(4):284-90.

239. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1954;26:297-302.

240. Dadar M, Fonov VS, Collins DL, Alzheimer’s Disease Neuroimaging I. A comparison of publicly available linear MRI stereotaxic registration techniques. Neuroimage. 2018;174:191-200.

241. Abramian D, Eklund A. “Refacing: reconstructing anonymized facial features using GANs” arXiv preprint arXiv:1810.06455, 2018.

242. Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology. 2005;236(1):254-60.

243. Paty DWI, C. D.; Grochowski, E.; Palmer, M. R.; Oger, J.; Kastrukoff, L. F. . Magnetic resonance imaging (MRI) in multiple sclerosis (MS): a serial study in relapsing and remitting patients with quantitative measurements of lesion size. Neurology. 1986;36(4):177.

244. Bartel F, Vrenken H, van Herk M, de Ruiter M, Belderbos J, Hulshof J, et al. FAst Segmentation Through SURface Fairing (FASTSURF): A novel semi-automatic hippocampus segmentation method. PLoS One. 2019;14(1):e0210641.

245. Kouwenhoven E, Giezen M, Struikmans H. Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol. 2009;54(9):2863-73.

246. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420-8.

247. Koch GG. Intraclass correlation coefficient. In: Samuel K. and Norman L.J. Encyclopedia of Statistical Sciences 4. New York, John Wiley & Sons; 213–17. 1982. 248. Bartko JJ. Measurement and reliability: statistical thinking considerations.

Schizophr Bull. 1991;17(3):483-9.

249. Cicchetti DV. Multiple comparison methods: establishing guidelines for their valid application in neuropsychological research. J Clin Exp Neuropsychol. for intensity-based medical image registration. IEEE Trans Med Imaging.

2010;29(1):196-205.

223. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208-19.

224. da S Senra Filho ACS, F.H.; dos Santos, A.C.; Murta Junior, L.O. Multiple Sclerosis multimodal lesion simulation tool (MS-MIST). Biomedical Physics & Engineering Express. 2019;5.

225. Amiri H, Brouwer I, Kuijer JPA, de Munck JC, Barkhof F, Vrenken H. Novel imaging phantom for accurate and robust measurement of brain atrophy rates using clinical MRI. Neuroimage Clin. 2019;21:101667.

226. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121-7.

227. Kushida CA, Nichols DA, Jadrnicek R, Miller R, Walsh JK, Griffin K. Strategies for de-identification and anonymization of electronic health record data for use in multicenter research studies. Med Care. 2012;50 Suppl:S82-101.

228. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci. 2007;19(9):1498-507.

229. Schimke N, Hale J. Quickshear defacing for neuroimages Proceedings of the 2nd USENIX conference on Health security and privacy USENIX Association. 2011. 230. Milchenko M, Marcus D. Obscuring surface anatomy in volumetric imaging data.

Neuroinformatics. 2013;11(1):65-75.

231. Bischoff-Grethe A, Ozyurt IB, Busa E, Quinn BT, Fennema-Notestine C, Clark CP, et al. A technique for the deidentification of structural brain MR images. Hum Brain Mapp. 2007;28(9):892-903.

232. Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O, Cole PE, et al. Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimers Dement. 2013;9(3):332-7.

233. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms, second edition. The MIT Press. 2007:947-57.

234. Andrew AM. Another efficient algorithm for conex hills in two dimensions Information Processing Letters. 1979;9(5):216-9.

235. Schmidt P. Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. . PhD thesis,

Referenties

GERELATEERDE DOCUMENTEN

Frederik Barkhof Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - location VUmc, Amsterdam, the Netherlands, and

The work presented in this thesis was performed at the department of Pulmonary Medicine of the Amsterdam UMC, location VUmc/ Amsterdam Cardiovasc Sciences, Amsterdam,

The research described in this thesis was performed at the Amsterdam Rheumatology and immunology Center, the Department of Radiology & Nuclear Medicine and VUmc Cancer Center,

1 VU University Medical Center Amsterdam, Department of Nutrition and Dietetics, Internal Medicine, Amsterdam, Netherlands; 2 Amsterdam University of Applied Sciences,

Department of Neurology, Onze Lieve Vrouwe Gasthuis (OLVG), Location OLVG West, Amsterdam, The

van Poppel, PhD Department of Public Health Research, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands, and Institute of Sport Science, University of

The research described in this thesis was performed at the Department of Otolaryngology/Head and Neck Surgery, section tumor biology of the Amsterdam UMC, location VUmc, Amsterdam,

Visser P.J; MD, PhD; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Department