• No results found

Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls

N/A
N/A
Protected

Academic year: 2021

Share "Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Case

Study

Characterizing

material

properties

of

cement-stabilized

rammed

earth

to

construct

sustainable

insulated

walls

Rishi

Gupta

*

CivilandEnvironmentalEngineeringProgram,DepartmentofMechanicalEngineering,UniversityofVictoria,Victoria,BCV8W2Y2, Canada

1. Researchsignificance

Productionandtransportationofmanyengineeringconstructionmaterialsrequireshighamountsofenergyandhashigh levelsofGHG(greenhousegas)emissionsassociatedwithit.Thiscanhaveadetrimentalimpactontheenvironmentespecially withtherecentrealizationoftheseverityofclimatechangeandglobalwarming.Concreteisoneofthemostwidelyused constructionmaterialsandhasCO2emissionsassociatednotjustwiththemanufacturingprocessofcement,butalsotransport

ofingredientsoverlongdistances. Oneofthesolutionstoreduce theenvironmentalimpact ofconcreteistousemore environmentallyfriendlyingredientsandreducetheamountoftransportationrequiredinshippingtheseingredientsand/or thefinishedmaterial. Oneofthe buildingmaterials,RammedEarth(RE)alsoknownas‘‘Pise´ deterre’’orsimply‘‘Pise´’’ (Anderson,2000)isthematerialthatEcosolDesign&Construction(ED&C)LtdandthebuildermembersoftheNorthAmerican RammedEarthBuildersAssociation(NAREBA)havebeenusingforconstructioninNorthWesternWashingtonState,USA;and SouthernAlbertaandBritishColumbia,Canada.Thematerialtypicallyusedconsistsoflocallyavailablesand,soil,orgraveland isstabilizedusingnominalquantitiesofcement.TheauthorwasapproachedwasapproachedbytheCementAssociationof Canada(CAC)toundertakearesearchprojecttostudymechanicalpropertiesofRE.Intherecentyears,REwallsconstructionhas

ARTICLE INFO

Articlehistory:

Received6January2014

Receivedinrevisedform29March2014 Accepted7April2014

Availableonline24April2014 Keywords:

Rammedearth Insulatedconcretewalls

Mechanicalandstructuralproperties oframmedearth

Sustainableconstruction

ABSTRACT

Useoflocalmaterialscanreducethehaulingofconstructionmaterialsoverlongdistances, thusreducingthegreenhousegasemissionsassociatedwithtransportingsuchmaterials. Useoflocallyavailablesoils(earth)forconstructionofwallshasbeenusedinmanyparts oftheworld.Owingtothethermalmassofthesewallsandthepotentialtohaveinsulation embeddedinthewallsectionhasbroughtthisconstructionmaterial/technologyatthe forefrontinrecentyears.However,themechanicalpropertiesoftherammedearthandthe parametersrequiredfordesignofsteelreinforcedwallsarenotfullyunderstood.Inthis paper,theauthorpresentsacasestudywherefull-scalewallswereconstructedusing rammedearthtounderstandtheeffectoftwodifferenttypesofsheardetailingonthe structuralperformanceofthewalls.Themechanicalpropertiesofthematerialessential fordesignsuchascompressivestrengthofthematerialincludingeffectofcoringonthe strength,pulloutstrengthofdifferentrebardiameters,flexuralperformanceand out-of-planebendingonwallswasstudied.Theseresultsarepresentedinthiscasestudy. ß2014TheAuthor.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC

BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/3.0/).

*Tel.:+12507217033. E-mailaddress:guptar@uvic.ca

ContentslistsavailableatScienceDirect

Case

Studies

in

Construction

Materials

j o urn a lhom e pa g e : ww w . e l se v i e r. c om / l oca t e / cs cm

http://dx.doi.org/10.1016/j.cscm.2014.04.002

2214-5095/ß2014TheAuthor.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/3.0/).

(2)

becomepopular.However,thestructuralperformanceofsuchcompositewallswhenbentout-of-planewasnotunderstood. ThiswasthemotivationbehindperformingmaterialandstructuraltestsonRE.Thisarticleoutlinesthebackground,methods, andproceduresusedtoconstructandstudythebehaviorofinsulatedREspecimens.

2. Background

ConstructionusingRammedEarth(RE)thatincludesuseoflocallyavailablesoilsstabilizedwithbinderssuchaslime datesbackmanycenturies.REstructuresincludingwallshavebeenbuiltinnumerouscountriessincethe1800s(Earth MaterialsGuidelines,1996).ResearchindicatesthattheUSAandAustraliahavebeenthepioneersinusingthissustainable materialin buildingconstruction(Nelson,1976).REstructuresutilizelocallyavailable materialswithlowerembodied energyandwastedmaterialsthantraditionalmethod(EarthMaterialsGuidelines,1996).ThesoilusedforREbuildingisa widelyavailableresourcewithlittleornosideeffectsassociatedwithharvestingforuseinconstruction.Thesoilsusedare typicallysubsoil,leavingtopsoilreadilyavailableforagriculturaluses.Oftensoilofreasonablequalitycanbefoundcloseto thelocationofconstruction,thusreducingthecostandenergyfortransportation.Significantcostsavingscanbeachieved whenearth(aggregatesorsoil)isusedforconstructionsincethematerialisgenerallyinexpensiveandreadilyavailable.If theamountofcementusedinREiscarefullycontrolled,morecostsavingscanbeachieved.Todaymorethan30percentof theworld’spopulationusesearthasabuildingmaterial(Anderson,2000).Inaddition,REprovidesgoodthermalmass,with inherentgoodheatretentioninbuildingsandcost-savings.

OncetheingredientsforREhavebeenselected,compressionorrammingofthematerialcanbedonemanuallyusinga tamper (made of a heavy flat bottom plateconnected to a long vertical handle). However, RE construction without mechanicaltoolscanbeverytimeconsumingandlaborintensive.BuildingsconstructedusingREreducetheneedforlumber becausetheformworkisnormallyremovedandreused.Theformsareusuallymadeofform-plyandendpanelsreinforced andsecuredbyasystemofwhalers,strongbacksandintegratedscaffolding.Thefaceformworkissecuredtoendpanels.The spacingbetweentheendpanelsisdeterminedbythewalllength.Thespacingbetweenthefaceform-ply,whichformsthe facesofthewall,isdeterminedbythewallthickness.InREconstruction,onefaceofthewallisusuallyformedtothefull heightofthefinishedwall.Theotherface,thefaceofthewallatwhichmaterialwillbedelivered,isformeduptothefinal heightinsuccessive2000to6000(500–1500mm)sections.Thewalllengthandotherformingdetailsgovernthelengthofthese

panels.Thisstepbystepprocessallowsfortheplacementofsoilin800(200mm)lifts.Italsofacilitatestheplacementof

horizontal reinforcing, additional vertical reinforcing, insulation panels, and miscellaneous electrical, plumbing and mechanical elementsaswellasblocksoutsforarchitecturalcavities andmechanicalservices.Eachlooseliftofsoilis rammedwithpneumatictampersorhandtampersafterdeliveryintotheforms.

InaprojectinitiatedattheBritishColumbiaInstituteofTechnology(BCIT),REspecimenswereconstructedbyusingvery loww/cratiosandabout10%cementbymass.Thespecimenswereconstructedtosimulatefieldconditionsbyfieldexperts inthisindustry.Specimenswereconstructedtoevaluatecompressivestrength,pull-outstrength,flexuralstrength,and out-of-planebendingofRE.

3. Methodandtestset-up

Therammedearthspecimenswereconstructedbyusingtwolocallysourcedsoilsthatwereblendedina1:1ratio.Based ontheinformationprovidedbythesupplier,thefinenessmodulusofthesoilwas3.59.Theclaycontentwasapproximately 6.55% byweight.During constructionof thespecimens, formswithsecured scaffoldswereset-up.The mixcontained aggregatewithamaximumaggregatesizeof5/800(14mm)andwasmixedwith10%cementbymass(batchedbyvolume).

Theamountofwaterrequiredinthebatchwasdeterminedbasedonthemixeroperator’sexperienceandhencetheexact amountofwatertocementratioineachbatchcouldnotbedetermined.Postconstruction,thespecimensweremoistcured bymistingfrequentlyforaminimumof28days.Thedetailsaboutpreparationofspecimenandconstructionisdescribedin thesubsequentsections.

3.1. ProductionofREspecimens

Assoonasthefirsttrialmixwaspreparedusingarotarydrummixer,atestcylinderwasmadetomakesurethemixmet expectationsintermsofcohesivenessandworkability.Fig.1showsthefirsttrialspecimenconstructedinitsfreshstate.The generalprinciplefollowedbythefieldrepresentativesforrammingwastousealiftof800(200mm)andthencompactthe

materialtoaheightofapproximately600(150mm).

3.2. Cylinders

Cylindersof600(150mm)diameterand1200(300mm)inheightwerecastusing200mmdiameterPVCpipes.Cylinders

weremadeusingliftsof6–800(150–200mm),whichwerecompacteddowntoabout400(100mm).ArectangularblockofRE

wasalsoconstructedfromwhichcylinderswerecoredbythird-partycontractorstocomparetheeffectofcoringonthe compressivestrengthofRE.Beforetesting,allcylinderswereweighedanddimensionsmeasuredtodeterminethedensityof RE.TheywerelatercappedusingsulphurcompoundaccordingtoCSA4.2.4.2requirements.Specimensweretestedusinga

(3)

400kipForneymachineintheconcretelabasshowninFig.2.Thespecimenswereloadedatarateof50–80psi/s(0.35– 0.55MPa/s).Note:1kip(kilopound)=4459N.

3.3. Pull-out

Todeterminethepull-outstrengths,threerebardiameters((#3)10M,(#5)15M,and(#6)20M)wereused.Somewere orientedvertically(alongthedirectionoframming)andsomewereorientedhorizontally(perpendiculartocompaction direction).Thevariousspecimensalongwiththeirdesignationsareshowninthetablebelow.Also,Fig.3illustratesthe

Fig.1.Firstprototypetestcylinder.

(4)

productionofpulloutsamples.TheactualmeasuredembedmentlengthsarereportedinTable1.Thespecimensweretested usingaBaldwinmachine(set-upasshowninFig.4).Therateofloadingwas0.56kips/min(2.5kN/min)approximately.

3.4. Flexuralspecimens(beams)

TodeterminetheflexuralcapacityofREbeams,twobeamsofsize8001000(200mm300mm)and6000(1500mm)in

lengthwereconstructed;onewith2–#3(2–10M)rebarsandtheotherwith2–#5(2–15M)steelrebars2.500(64mm)above

thebottomedge.ThetwotypesofbeamsduringtheconstructionstageareshowninFig.5.

Fig.3.Rebarslayoutinverticalandhorizontaldirections. Table1

Pull-outtestspecimens.

Specimen Bardiameter(mm) Embeddedlength(in) Orientation

VPO10M_A 10 11.25 Vertical

VPO10M_B 10 11.25 Vertical

HPO10M_A 10 16 Horizontal

HPO10M_B 10 16 Horizontal

VPO15M_A 15 12.125 Vertical

VPO20M_A 20 10.5 Vertical

VPO20M_B 20 10.125 Vertical

Fig.4.Pull-outspecimenloadedinaBaldwinmachine.

(5)

Thebeams wereloaded undera modified 3-pointloadingset-upasshown inFig.6.Toavoid large bearingstress concentrationsonthebeams,thebeamsweresupportedon300(75mm)widesteelplatesandtheloadwasappliedthrougha

200(50mm)widesteelplate.Note,thatinatypical3-pointloadingtest,loadisappliedasalineloadandthespecimensare

alsogenerallysupportedoverrollersupports.Themodifiedset-upresultedinaclearspanofthebeamof40600(1420mm).

Beam1with2–#3(2–15M)rebarswastestedinloadcontrolataspeedof1kN/min,sincetheultimateloadcapacityofthe beamwasnotknown.Thisspeedwasincreasedto0.45kips/min(2kN/min)afterthebeamreachedaloadof17kips(75kN).

3.5. Columns(out-of-planebending)

Twofull-scalecompositeREcolumns(representingasectionofawall)wereconstructedusingtwodifferenttypesof stirrupconfigurations.Therewerefour#6(20M)verticalrebarsrunningthefullheightofthecolumninbothspecimens,but

Fig.5.(A)Beam2with2–#3(2–10M)rebars,(B)Beam1with2–#5(2–15M)rebars.

(6)

thedetailingofthestirrups(#3or10M)wasdifferent;eitherhorizontallylaidordiagonallyplaced.Theseconfigurationsare showninFig.7.Thefigurealsoshowshowtheinsulationwascuttoaccommodatethediagonalandhorizontalstirrups.Also seeninthefigureisthecoverdistanceoftherebarsfromtheformwork.Thestirrupsspannedacrosstheinsulationcoreand wereplacedinconjunctionwithhorizontal10Mbarsplacedevery600mminthefrontandbackofthewythes.

Aspecialtestset-upwasconstructedfortestingthecolumnsasshowninFig.8.Aspecialsteelseatwaspreparedtohold thecolumnsverticallyandtopreventmovementhorizontally.Thesteelseatsupportedthecolumnshorizontallythrougha 300(75mm)highplate.Atthetop,thecolumnwassecuredusinganotherspecialsteelcaparrangement,whichalsosupported

thecolumnthrougha300(75mm)highcollar.Theloadwasappliedalongtheentire20(600mm)widthofthecolumn(at

mid-height)usingaspeciallyconstructedchannelsection200(50mm)wide.Bothcolumnsweretestedindisplacementcontrol.

Sincetheloadordeflectioncapacityofthecolumnswasnotexactlyknown,thefirstcolumnwasloadedatarateofonly 0.24in/s(6mm/s).Thisratewasgraduallyincreasedinstepsupto1mm/minastheendofthetestwasapproached.Also,the secondcolumnwithdiagonalstirrupconfigurationwastestedatrateof0.48in/s(12mm/s)tobeginwithandtheratewas

Fig.7.(a)Columnwithdiagonalstirrups,(b)columnwithhorizontalstirrups.

Fig.8.Set-uptostudybehaviorofREcolumn/wall.

(7)

graduallyincreasedasitapproachedtotheendofthetest.Inadditiontoafewdialgauges,twoLVDTswereplacedalongthe columnwidthtorecordthemid-heightdeflectionofthecolumns(Fig.8).

4. Testresultsanddiscussion

4.1. Cylindercompressiontesting

CylinderswereweighedandtheirdimensionsmeasuredbeforetestingtocalculatethedensityofRE.Theaveragedensity of castand cored specimens after27 days was approximately158lb/ft3 and 148lb/ft3 (2530kg/m3 and 2370kg/m3)

respectively.Cylinderscastinmoldsweretestedatanageof6,12,27,and58daystodeterminethecompressivestrengthin theREcylinderspecimens.Thetestingofsampleswasdividedintotwomaingroups.Thefirstgroupwerethecylinderscast usingthe600(150mm)diameterpipe.Theothertypewere600(150mm)samplescoredfromablockofRE.Theresultsofthese

sampleswerecomparedtothatofthecastspecimenstoinvestigatetheinfluenceofanyboundaryeffectsofthemolds.

Table2 summarizesresultsofthecompressiontestsof castsamples.In thetable, averagecompressive strengthsare presentedalongwiththeCoefficientofVariation(COV).

InTable2,theaveragecompressivestrengthofthesamplesaftersixdayswas1741psi(12MPa).Thisincreasedby 480psi(4MPa)after12days.Theaveragecompressivestrengthunexpectedlyreducedafter27and55days.Manyfactors canbeattributedtothisreductionandthehighCOVinthetestresults(55%at58days).Itishypothesizedthatthevariability inthetestresultscomesfromthevariationin:compactioneffort,flatnessofthetopsurfaceofcylindersandissueswith cappingsuchcylinders,REmaterialproperties,etc.Atotalofsixcoredsamplesweretestedeachat12and27days.The averagecompressivestrengthresultsofthesesamplesarecomparedinTable2.Thestrengthafter6daysincreasedfrom about2176psi(15MPa)toabout2618psi(18MPa)after27 days.AmaximumCOVofonly5%wasrecordedinthese specimens.

TheresultsofcastandcoredsamplescannotbeveryeasilycomparedduetothehighCOVintheresultsofcastspecimens. Inanycase, it seemsthat theaveragecompressive strengthof thecoredspecimens iscomparable tothatof thecast specimensandthatthecoredspecimensresultinslightlyhighercompressivestrengthwhencomparedtocastspecimensat 12and27days.

4.2. Pull-outtesting

Thepeakloadrequiredeitherforyielding,breaking,orpulling-outtherebarfromtheREspecimenwasrecordedforeach specimen.Thisvalueofloadwasusedtocalculatethebondstrength,basedonthesurfacearea(functionofbardiameterand embeddedlength)ofeachrebar.Fig.9presentsthesebondstrengthvaluesforvariousrebarsalongwiththemodeinwhich theyfailed.The#6(20M)rebarsrecordedthehighestbondstrengthbetween725and870psi(5and6MPa).Highvariability wasobservedwiththe#3(10M)rebarsembeddedvertically.The10Mrebarsembeddedhorizontallyhadabondstrength slightlylessthan363psi(2.5MPa).Somepull-outspecimens(includingoneofthe#5or15M)wereverybrittleandhence werelostduringhandlingandcouldnotbetested.The#5(15M)specimenthatwastestedresultedinaverylowvalueof bondstrength.FuandChung(1998)studiedtheeffectofvariousparametersincludingw/c,additionofadditives,surface treatmentofrebar,andtimeofcuringonbondstrength.Thetypicalbondstrengthobservedbytheauthorsrangedbetween6 and8MPaAscomparedtothesevaluesreportedbyFuandChung,thepull-outstrengthsreportedinFig.9arelower. TreatingVPO15M_Aasanoutlier,alltestedbarshadabondstrengthexceeding1.5MPaThe20mmbarshadabondstrength inexcessof5MPaandbothtestedrebarsofthisdiameteryieldedprovidingadequatebondstrength.

4.3. Beamtesting

Load,displacementofcross-head,anddeflectionsfromtwoLVDTsweremeasuredandrecordedatafrequencyof10Hz Tomaintainbrevity,theplotsarenotincludedinthisarticle.Noinitialflexuralcrackswereobservedandthebeamfailedin shearatapeakloadof17.5kips(78kN).Thedeflectionatthepeakloadwasapproximately0.22in(5.5mm).Theinitial portionofthisloadvs.deflectionplotcanbeusedtodeterminetheelasticmodulusofthebeam,whichcanbeveryusefulfor futureanalysisanddesignusingRE.Sincetheapproximateloadcapacityfromthefirstbeamwasnowknown,thesecond

Table2

Compressivestrengthofcastandcoredsamples.

Ageofcylinders(days) CompressivestrengthinMPa(%COV)

Castsamples Coredcylinders

6 12(22%) –

12 16(11%) 15.5(4%)

27 15.5(52%) 18(5%)

58 12.2(55%) –

(8)

beamwithtwo#3(10M)rebarswasloadedat0.45lb/min(2kN/min).Firstcrackwasrecordedat8.5kips(38kN)and ultimatefailurewasabruptat13.5kips(60kN).

4.4. Columntesting(out-of-planebending)

Significanttimewasspentinsetting-upthesespecimens,asthisrequiredliftingofthespecimensandproperplacement onthetestframe.Thecolumnwiththehorizontalstirrupswastestedfirst.Thefinalresults(loadvs.displacement)ofthis testareshowninFig.10.

AsseeninFig.10,reasonableagreementbetweentheLVDTreadingsandthecross-head(position)displacementwas recorded.DuetothelimitonthedeflectionrangeontheLVDTs,nodatawasrecordedbeyondabout0.6in(15mm).Thetestwas continueduntilthecross-headdisplacementreachedavalueofmorethan1.2in(30mm).Theloadcorrespondingtothisvalue wasalittlelessthan13.5kips(60kN).Developmentofcracksandtheirpropagationwasalsorecordedduringthetest.

Fig.9.Bondstrength(load/surfacearea)forpull-outsamples(1MPa=145psi).

Fig.10.Loadvs.displacementforcolumn1withhorizontalstirrups(1lb=4.45N,1in=25.4mm).

(9)

Theloadvs.deflectionplotofthesecondcolumn(withdiagonalstirrups)ispresentedinFig.11.Ascomparedtothefirst column,significantlyhigherload(36kipsor160kN)wasrecordedatacross-headdisplacementofabout1.2in(30mm).At thispoint,thecenterLVDTandsideLVDTdeflectedalmost100(25mm).Ingeneral,thesecondcolumnwasmuchstifferthan

thefirstone.LVDTsrecordedslightlylowerdisplacementforthesameloadascomparedtothecross-headdisplacement. SincesomenoisewasrecordedintheLVDTreadings,trendlinesarealsoincludedinFig.11foreasyinterpretation.Asinthe caseofcolumn1,locationofvariouscrackswasrecordedonthespecimens.

5. Concludingremarks

ThisarticlepresentsthefindingsofastudyinitiatedinCanadatodeterminethemechanicalpropertiesoframmedearth includingcompressivestrength,bondstrength,andflexuralstrength.

Thecompressivestrengthtestresultsindicatethatstrengthsinexcessof15MPacanbeeasilyachievedat28days.Cored specimensindicatedamuchlowerstandardvariability.Castspecimensontheotherhandcanbeusedtomeasurethe compressivestrength,butthehighvariability intestresultsneedstobeaccountedfor. Thisstudyalsopresentssome interestingfindingsonthepulloutstrengthofrebarembeddedverticallyorhorizontallyinRE.Rebarwith20mmdiameter embeddedverticallyhadthehighestpulloutstrengthwhencomparedtootherspecimenstestedinthisprogram.Theother specimensthatpulledouthighlighttheneedforlongerembedmentlengthforrebarembeddedinRE.Furtherresearchis neededinthisareatoconfirmthesefindingsincludingthoseoftheflexuraltestresultsanddevelopmodelsthatcanbeused todesign variousmembersusingRE.Twotypesofshearreinforcementdesignswerealsostudiedbyinvestigatingthe behavioroftwofull-scalewallpanelstestedinout-of-planeflexure.Furtherstudiesareunderwaytousethevariousfindings todevelopparametersthatcanbeusedtodesignstructuresusingthisinnovativeandsustainablematerial.

Acknowledgements

TheinvolvementofIrajManshadi(studentresearchassistant)onthisprojectisgreatlyappreciated.Acknowledgements areduetoCementAssociationofCanada(CAC)forsponsoringthisresearchproject.Theassistanceandinvolvementofthe manyindustrypartnersisacknowledged.TheassistanceofMeganChamber(AssistantInstructor,BCIT)duringtestinginthe concretelabisalsoacknowledged.

References

AndersonDW.Rammedearthconstruction.2000.RetrievedMay21,2009,fromAshlandctc:http://webs.ashlandctc.org/jnapora/hum-faculty/syllabi/trad.html. EarthMaterialsGuidelines(1996).Retrieved2009,fromgreenbuilder:http://www.greenbuilder.com/sourcebook/EarthGuidelines.html#Rammed. FuX,ChungDD.Effectsofwater-cementratio,curingage,silicafume,polymeradmixtures,steelsurfacetreatments,andcorrosiononbondbetweenconcreteand

steelreinforcingbars.ACIMaterJ1998;725–33.

NelsonW.Compressedearthblocks.1976.Retrieved2009,fromNetworkearth:http://www.networkearth.org/naturalbuilding/ceb.html. Fig.11.Loadvs.displacementforcolumn2withdiagonalstirrups(1lb=4.45N,1in=25.4mm).

Referenties

GERELATEERDE DOCUMENTEN

In het algemeen is het van belang dat de communicatie-strategie: § aansluit bij de aard van de relatie tussen overheden en doelgroepen ofwel de context van sturing § aansluit bij

werden de twee eerste gemetste graven G 1 en G 2 aangetroffen, dit op een totaal van 147 graven die gewoon in de zavel waren aangelegd. Het grafG 1 was van hetzelfde type

To this end I want to consider the problem of human evolution or ‘the archaeology of personhood’ (cf. Fowler 2004) and its broader impact on theological anthropology, by tracking

Ter hoogte van de derde travee in het huidige kerkschip en aan de binnenzijde van de funderingen  tussen  de  huidige  zuilen  bevonden  zich  resten  van 

Omdat er echter geen E-horizont is aangetroffen in de profielkolommen op het zuidelijk deel van het terrein en de aangetroffen bodems heel fragmentarisch zijn, kan moeilijk iets

[r]

Aan de hand van de gegevens die vorig jaar waren verzameld en die door Martin Cadée tot een profielschets waren verwerkt, werd een aantal boorlokaties vastgesteld. Op deze

In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of