• No results found

University of Groningen Structural plasticity of the social brain Patel, Deepika

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Structural plasticity of the social brain Patel, Deepika"

Copied!
44
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Structural plasticity of the social brain

Patel, Deepika

DOI:

10.33612/diss.133472775

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Patel, D. (2020). Structural plasticity of the social brain: Social stress-induced adaptations in dendritic remodeling and behavior. University of Groningen. https://doi.org/10.33612/diss.133472775

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

[1] H.M. Van Praag, Can stress cause depression?, Prog. Neuro-Psychopharmacology Biol. Psychiatry. (2004). doi:10.1016/j.pnpbp.2004.05.031.

[2] F. Chaouloff, Social stress models in depression research: What do they tell us?, Cell Tissue Res. 354 (2013) 179–190. doi:10.1007/s00441-013-1606-x.

[3] E. Fuchs, B. Czéh, M.H.P. Kole, T. Michaelis, P.J. Lucassen, Alterations of neuroplasticity in depression: The hippocampus and beyond, Eur. Neuropsychopharmacol. 14 (2004). doi:10.1016/j.euroneuro.2004.09.002.

[4] N. V. Malykhin, R. Carter, P. Seres, N.J. Coupland, Structural changes in the hippocampus in major depressive disorder: Contributions of disease and treatment, J. Psychiatry Neurosci. 35 (2010) 337–343. doi:10.1503/jpn.100002.

[5] X. Shen, L.M. Reus, S.R. Cox, M.J. Adams, D.C. Liewald, M.E. Bastin, D.J. Smith, I.J. Deary, H.C. Whalley, A.M. McIntosh, Subcortical volume and white matter integrity abnormalities in major depressive disorder: Findings from UK Biobank imaging data, Sci. Rep. 7 (2017) 1–10. doi:10.1038/s41598-017-05507-6.

[6] M. Pandya, M. Altinay, D.A. Malone, A. Anand, Where in the brain is depression?, Curr. Psychiatry Rep. 14 (2012) 634–642. doi:10.1007/s11920-012-0322-7.

[7] C. Pittenger, R.S. Duman, Stress, depression, and neuroplasticity: A convergence of mechanisms, Neuropsychopharmacology. 33 (2008) 88–109. doi:10.1038/sj.npp.1301574.

[8] D. Arnone, S. Mckie, R. Elliott, G. Juhasz, E.J. Thomas, D. Downey, S. Williams, J.F.W. Deakin, I.M. Anderson, State-dependent changes in hippocampal grey matter in depression, Mol. Psychiatry. 18 (2013) 1265–1272. doi:10.1038/mp.2012.150. [9] Y.I. Sheline, M.H. Gado, H.C. Kraemer, Untreated depression and hippocampal volume

loss, Am. J. Psychiatry. (2003). doi:10.1176/appi.ajp.160.8.1516.

[10] M.J. Kempton, Structural Neuroimaging Studies in Major Depressive Disorder, Arch. Gen. Psychiatry. 68 (2011) 675. doi:10.1001/archgenpsychiatry.2011.60.

[11] C.A. Stockmeier, G.J. Mahajan, L.C. Konick, J.C. Overholser, G.J. Jurjus, H.Y. Meltzer, H.B.M. Uylings, L. Friedman, G. Rajkowska, Cellular changes in the postmortem hippocampus in major depression, Biol. Psychiatry. 56 (2004) 640–650. doi:10.1016/j.biopsych.2004.08.022.

[12] V. Krishnan, E.J. Nestler, The molecular neurobiology of depression, Nature. 455 (2008) 894–902. doi:10.1038/nature07455.

[13] M. Boldrini, A.N. Santiago, R. Hen, A.J. Dwork, G.B. Rosoklija, H. Tamir, V. Arango, J. John Mann, Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression, Neuropsychopharmacology. 38 (2013) 1068–1077. doi:10.1038/npp.2013.5.

[14] Y.M. Ulrich-Lai, J.P. Herman, Neural regulation of endocrine and autonomic stress responses., Nat. Rev. Neurosci. 10 (2009) 397–409. doi:10.1038/nrn2647.

[15] B.S. Mcewen, P.J. Gianaros, Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease, Ann. N. Y. Acad. Sci. 1186 (2010) 190–222. doi:10.1111/j.1749-6632.2009.05331.x.

[16] L. Altshuler, G. Bartzokis, T. Grieder, J. Curran, J. Mintz, Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity, Arch. Gen. Psychiatry. 55 (1998) 663–664. doi:10.1001/archpsyc.55.7.663.

[17] V. Lorenzetti, N.B. Allen, A. Fornito, C. Pantelis, G. De Plato, A. Ang, M. Yücel, Pituitary gland volume in currently depressed and remitted depressed patients, Psychiatry Res. - Neuroimaging. 172 (2009) 55–60. doi:10.1016/j.pscychresns.2008.06.006.

(4)

D.S. Charney, E. Leibenluft, J. Blair, M. Ernst, D.S. Pine, Increased Amygdala Activity During Successful Memory Encoding in Adolescent Major Depressive Disorder: An fMRI Study, Biol. Psychiatry. 60 (2006) 966–973. doi:10.1016/j.biopsych.2006.02.018. [19] T.A. Kimbrell, T.A. Ketter, M.S. George, J.T. Little, B.E. Benson, M.W. Willis, P. Herscovitch, R.M. Post, Regional cerebral glucose utilization in patients with a range of severities of unipolar depression, Biol. Psychiatry. 51 (2002) 237–252. doi:10.1016/S0006-3223(01)01216-1.

[20] S. Rigucci, G. Serafini, M. Pompili, G.D. Kotzalidis, R. Tatarelli, Anatomical and functional correlates in major depressive disorder: The contribution of neuroimaging studies, World J. Biol. Psychiatry. 11 (2010) 165–180. doi:10.3109/15622970903131571.

[21] S. Desmyter, C. van Heeringen, K. Audenaert, Structural and functional neuroimaging studies of the suicidal brain, Prog. Neuro-Psychopharmacology Biol. Psychiatry. 35 (2011) 796–808. doi:10.1016/j.pnpbp.2010.12.026.

[22] K.T. Kronmüller, J. Pantel, S. Köhler, D. Victor, F. Giesel, V.A. Magnotta, C. Mundt, M. Essig, J. Schröder, Hippocampal volume and 2-year outcome in depression, Br. J. Psychiatry. 192 (2008) 472–473. doi:10.1192/bjp.bp.107.040378.

[23] S. Campbell, M. Marriott, C. Nahmias, G.M. MacQueen, Lower Hippocampal Volume in Patients Suffering from depression: A Meta-Analysis, Am. J. Psychiatry. 161 (2004) 598–607. doi:10.1176/appi.ajp.161.4.598.

[24] L. C, I. E, Enlarged amygdala volume and reduced hippocampal volume in young women with major depression, Psychol. Med. 34 (2004) 1059–64.

[25] J.P. Hamilton, M. Siemer, I.H. Gotlib, Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies, Mol. Psychiatry. 13 (2008) 993–1000. doi:10.1038/mp.2008.57.

[26] J.D. Bremner, M. Narayan, E.R. Anderson, L.H. Staib, D. Ph, H.L. Miller, D.S. Charney, W. Haven, Bremner (2000) hippocampal volume reduciton Dep.pdf, (2000) 115–117. doi:10.1176/ajp.157.1.115.

[27] M.P. Bowley, W.C. Drevets, O. Dost, J.L. Price, Low Glial Numbers in the Amygdala in Major, System. (2002). doi:10.1016/S0006-3223(02)01404-X.

[28] G.M. MacQueen, S. Campbell, B.S. McEwen, K. Macdonald, S. Amano, R.T. Joffe, C. Nahmias, L.T. Young, Course of illness, hippocampal function, and hippocampal volume in major depression., Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 1387–92. doi:10.1073/pnas.0337481100.

[29] B. Czéh, P.J. Lucassen, What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated?, Eur. Arch. Psychiatry Clin. Neurosci. 257 (2007) 250–260. doi:10.1007/s00406-007-0728-0.

[30] G. MacQueen, T. Frodl, The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research?, Mol. Psychiatry. 16 (2011) 252–264. doi:10.1038/mp.2010.80.

[31] W. Sutanto, E.R. de Kloet, The use of various animal models in the study of stress and stress-related phenomena, Lab. Anim. 28 (1994) 293–306. doi:10.1258/002367794780745092.

[32] J.M. Koolhaas, C.M. Coppens, S.F. de Boer, B. Buwalda, P. Meerlo, P.J.A. Timmermans, The Resident-intruder Paradigm: A Standardized Test for Aggression, Violence and Social Stress, J. Vis. Exp. (2013) 1–7. doi:10.3791/4367.

[33] B. Buwalda, M. Geerdink, J. Vidal, J.M. Koolhaas, Social behavior and social stress in adolescence: A focus on animal models, Neurosci. Biobehav. Rev. 35 (2011) 1713– 1721. doi:10.1016/j.neubiorev.2010.10.004.

(5)

and tree shrews, Neurobiol. Stress. 6 (2017) 94–103. doi:10.1016/j.ynstr.2016.10.001. [35] N.N. Kudryavtseva, A sensory contact model for the study of aggressive and submissive

behavior in male mice, Aggress. Behav. 17 (1991) 285–291. doi:10.1002/1098-2337(1991)17:5<285::AID-AB2480170505>3.0.CO;2-P.

[36] N.N. Kudryavtseva, I. V. Bakshtanovskaya, L.A. Koryakina, Social model of depression in mice of C57BL/6J strain, Pharmacol. Biochem. Behav. 38 (1991) 315–320. doi:10.1016/0091-3057(91)90284-9.

[37] H.M. Chao, C.D. Blanchard, R.J. Blanchard, B.S. McEwen, R.R. Sakai, The Effect of Social Stress on Hippocampal Gene Expression, Mol. Cell. Neurosci. 4 (1993) 543–548. doi:10.1006/mcne.1993.1067.

[38] D.C. Blanchard, R.L. Spencer, S.M. Weiss, R.J. Blanchard, B. McEwen, R.R. Sakai, Visible burrow system as a model of chronic social stress: Behavioral and neuroendocrine correlates, Psychoneuroendocrinology. 20 (1995) 117–134. doi:10.1016/0306-4530(94)E0045-B.

[39] J.P. Herman, K.L. Tamashiro, The visible burrow system: A view from across the hall, Physiol. Behav. 178 (2017) 103–109. doi:10.1016/j.physbeh.2017.01.021.

[40] B. Buwalda, M.H.P. Kole, A.H. Veenema, M. Huininga, S.F. De Boer, S.M. Korte, J.M. Koolhaas, Long-term effects of social stress on brain and behavior: A focus on hippocampal functioning, Neurosci. Biobehav. Rev. 29 (2005) 83–97. doi:10.1016/j.neubiorev.2004.05.005.

[41] E. Fuchs, G. Flügge, Stress, glucocorticoids and structural plasticity of the hippocampus, Neurosci. Biobehav. Rev. 23 (1998) 295–300. doi:10.1016/S0149-7634(98)00031-1. [42] C. Hammels, E. Pishva, J. De Vry, D.L.A. van den Hove, J. Prickaerts, R. van Winkel,

J.P. Selten, K.P. Lesch, N.P. Daskalakis, H.W.M. Steinbusch, J. van Os, G. Kenis, B.P.F. Rutten, Defeat stress in rodents: From behavior to molecules, Neurosci. Biobehav. Rev. 59 (2015) 111–140. doi:10.1016/j.neubiorev.2015.10.006.

[43] J.M. Koolhaas, A. Bartolomucci, B. Buwalda, S.F. de Boer, G. Flügge, S.M. Korte, P. Meerlo, R. Murison, B. Olivier, P. Palanza, G. Richter-Levin, A. Sgoifo, T. Steimer, O. Stiedl, G. van Dijk, M. Wöhr, E. Fuchs, Stress revisited: A critical evaluation of the stress concept, Neurosci. Biobehav. Rev. 35 (2011) 1291–1301. doi:10.1016/j.neubiorev.2011.02.003.

[44] S.C. Motta, N.S. Canteras, Restraint stress and social defeat: What they have in common, Physiol. Behav. 146 (2015) 105–110. doi:10.1016/j.physbeh.2015.03.017. [45] A.N. Hoffman, D.P. Anouti, M.J. Lacagnina, E.M. Nikulina, R.P. Hammer, C.D.

Conrad, Experience-dependent effects of context and restraint stress on corticolimbic c-Fos expression, Stress. 16 (2013) 587–591. doi:10.3109/10253890.2013.804505. [46] M. Martinez, Adaptation in patterns of c-fos expression in the brain associated with

exposure to either single or repeated social stress in male rats, Eur. J. Neurosci. 10 (1998) 20–33. doi:10.1046/j.1460-9568.1998.00011.x.

[47] E.S. Wohleb, M.L. Hanke, A.W. Corona, N.D. Powell, L.T. M, M.T. Bailey, R.J. Nelson, J.P. Godbout, F. John, Knockdown of Interleukin-1 Receptor Type-1 on Endothelial Cells Attenuated Stress-Induced Neuroinflammation and Prevented Anxiety-Like Behavior, J. Neurosci. 31 (2011) 6277–6288. doi:10.1523/JNEUROSCI.0450-11.2011.

[48] R.J. Tynan, S. Naicker, M. Hinwood, E. Nalivaiko, K.M. Buller, D. V. Pow, T.A. Day, F.R. Walker, Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions, Brain. Behav. Immun. 24 (2010) 1058–1068. doi:10.1016/j.bbi.2010.02.001.

[49] R.M. Sapolsky, L.C. Krey, B.S. McEwen, Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging, J. Neurosci. 5 (1985) 1222–1227.

(6)

doi:10.1016/j.cmet.2007.09.011.

[50] S. Chattarji, A. Tomar, A. Suvrathan, S. Ghosh, M.M. Rahman, Neighborhood matters: divergent patterns of stress-induced plasticity across the brain, Nat. Publ. Gr. 18 (2015) 1364–1375. doi:10.1038/nn.4115.

[51] Y. Watanabe, E. Gould, B.S. McEwen, Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons, Brain Res. 588 (1992) 341–345. doi:10.1016/0006-8993(92)91597-8.

[52] B.S. McEwen, Stress-induced remodeling of hippocampal CA3 pyramidal neurons, Brain Res. 1645 (2016) 50–54. doi:10.1016/j.brainres.2015.12.043.

[53] B.S. McEwen, Stress and Hippocampal Plasticity, Annu. Rev. Neurosci. 22 (1999) 105– 122. doi:10.1146/annurev.neuro.22.1.105.

[54] C.L. Wellman, Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration Dendritic Reorganization in Pyramidal Neurons in Medial Prefrontal Cortex after Chronic Corticosterone Administration ABSTRACT :, (2014) 245–253. doi:10.1002/neu.1079.

[55] S.C. Cook, C.L. Wellman, Chronic stress alters dendritic morphology in rat medial prefrontal cortex, J. Neurobiol. 60 (2004) 236–248. doi:10.1002/neu.20025.

[56] J.J. Radley, H.M. Sisti, J. Hao, A.B. Rocher, T. McCall, P.R. Hof, B.S. McEwen, J.H. Morrison, Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex, Neuroscience. 125 (2004) 1–6. doi:10.1016/j.neuroscience.2004.01.006.

[57] A. Vyas, R. Mitra, B.S. Shankaranarayana Rao, S. Chattarji, Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons., J. Neurosci. 22 (2002) 6810–6818. doi:20026655.

[58] S.B. McHugh, M. Fillenz, J.P. Lowry, J.N.P. Rawlins, D.M. Bannerman, Brain tissue oxygen amperometry in behaving rats demonstrates functional dissociation of dorsal and ventral hippocampus during spatial processing and anxiety, Eur. J. Neurosci. 33 (2011) 322–337. doi:10.1111/j.1460-9568.2010.07497.x.

[59] M.S. Fanselow, H.W. Dong, Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures?, Neuron. 65 (2010) 7–19. doi:10.1016/j.neuron.2009.11.031. [60] M. Segal, G. Richter-Levin, N. Maggio, Stress-induced dynamic routing of hippocampal

connectivity: A hypothesis, Hippocampus. 20 (2010) 1332–1338. doi:10.1002/hipo.20751.

[61] V. Pinto, J.C. Costa, P. Morgado, C. Mota, A. Miranda, F. V. Bravo, T.G. Oliveira, J.J. Cerqueira, N. Sousa, Differential impact of chronic stress along the hippocampal dorsal– ventral axis, Brain Struct. Funct. 220 (2015) 1205–1212. doi:10.1007/s00429-014-0713-0.

[62] A.M. Magariños, B.S. McEwen, Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors., Neuroscience. 69 (1995) 83–8. http://www.ncbi.nlm.nih.gov/pubmed/8637635 (accessed November 8, 2017).

[63] E. Gould, B.S.S. McEwen, P. Tanapat, L.A.M. a Galea, E. Fuchs, Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation., J. Neurosci. 17 (1997) 2492–2498.

[64] A.M. Magariños, B.S. McEwen, G. Flügge, E. Fuchs, Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews., J. Neurosci. 16 (1996) 3534–40. http://www.jneurosci.org/content/16/10/3534.abstract%5Cnhttp://www.ncbi.nlm.nih.g ov/pubmed/8627386.

[65] C.R. McKittrick, A.M. Magariños, D.C. Blanchard, R.J. Blanchard, B.S. McEwen, R.R. Sakai, Chronic social stress reduces dendritic arbors in CA3 of hippocampus and

(7)

decreases binding to serotonin transporter sites, Synapse. 36 (2000) 85–94. doi:10.1002/(SICI)1098-2396(200005)36:2<85::AID-SYN1>3.0.CO;2-Y.

[66] D. Patel, S. Anilkumar, S. Chattarji, B. Buwalda, Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus, Behav. Brain Res. 347 (2018) 314–324. doi:10.1016/j.bbr.2018.03.034.

[67] M.H.P. Kole, T. Costoli, J.M. Koolhaas, E. Fuchs, Bidirectional shift in the cornu ammonis 3 pyramidal dendritic organization following brief stress, Neuroscience. 125 (2004) 337–347. doi:10.1016/j.neuroscience.2004.02.014.

[68] B. Czéh, M. Simon, B. Schmelting, C. Hiemke, E. Fuchs, Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment, Neuropsychopharmacology. 31 (2006) 1616–1626. doi:10.1038/sj.npp.1300982.

[69] H. Qiao, M.X. Li, C. Xu, H. Bin Chen, S.C. An, X.M. Ma, Dendritic Spines in Depression: What We Learned from Animal Models, Neural Plast. 2016 (2016) 20–24. doi:10.1155/2016/8056370.

[70] R. Pawlak, B.S.S. Rao, J.P. Melchor, S. Chattarji, B. McEwen, S. Strickland, Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus., Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 18201–6. doi:10.1073/pnas.0509232102.

[71] A.M. Magariños, C.J. Li, J. Gal Toth, K.G. Bath, D. Jing, F.S. Lee, B.S. McEwen, Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons, Hippocampus. 21 (2011) 253–264. doi:10.1002/hipo.20744. [72] Y. Qu, C. Yang, Q. Ren, M. Ma, C. Dong, K. Hashimoto, Regional differences in

dendritic spine density confer resilience to chronic social defeat stress, Acta Neuropsychiatr. 30 (2018) 117–122. doi:10.1017/neu.2017.16.

[73] S.D. Iñiguez, A. Aubry, L.M. Riggs, J.B. Alipio, R.M. Zanca, F.J. Flores-Ramirez, M.A. Hernandez, S.J. Nieto, D. Musheyev, P.A. Serrano, Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice, Neurobiol. Stress. 5 (2016) 54–64. doi:10.1016/j.ynstr.2016.07.001.

[74] A. Soetanto, R.S. Wilson, K. Talbot, A. Un, J.A. Schneider, M. Sobiesk, J. Kelly, S. Leurgans, D.A. Bennett, S.E. Arnold, Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans, Arch Gen Psychiatry. 67 (2010) 448– 457. doi:10.1001/archgenpsychiatry.2010.48.

[75] E. Gould, P. Tanapat, T. Rydel, N. Hastings, Regulation of hippocampal neurogenesis in adulthood, Biol. Psychiatry. 48 (2000) 715–720. doi:10.1016/S0006-3223(00)01021-0.

[76] J. Alfonso, F. Agüero, D.O. Sanchez, G. Flugge, E. Fuchs, A.C.C. Frasch, G.D. Pollevick, Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol, J. Neurosci. Res. 78 (2004) 702–710. doi:10.1002/jnr.20328.

[77] E. Gould, P. Tanapat, B.S. McEwen, G. Flügge, E. Fuchs, Proliferation of granule cell precursors in the dentate gyrus of, Proc. Natl. Acad. Sci. 95 (1998) 3168–3171. [78] B. Czeh, T. Michaelis, T. Watanabe, J. Frahm, G. de Biurrun, M. van Kampen, A.

Bartolomucci, E. Fuchs, Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine, Proc. Natl. Acad. Sci. 98 (2001) 12796–12801. doi:10.1073/pnas.211427898.

[79] B. Czéh, T. Welt, A.K. Fischer, A. Erhardt, W. Schmitt, M.B. Müller, N. Toschi, E. Fuchs, M.E. Keck, Chronic psychosocial stress and concomitant repetitive transcranial

(8)

magnetic stimulation: Effects on stress hormone levels and adult hippocampal neurogenesis, Biol. Psychiatry. 52 (2002) 1057–1065. doi:10.1016/S0006-3223(02)01457-9.

[80] M.W. Marlatt, I. Philippens, E. Manders, B. Czéh, M. Joels, H. Krugers, P.J. Lucassen, Distinct structural plasticity in the hippocampus and amygdala of the middle-aged common marmoset (Callithrix jacchus), Exp. Neurol. 230 (2011) 291–301. doi:10.1016/j.expneurol.2011.05.008.

[81] C. Sørensen, I.B. Johansen, Ø. Øverli, Neural plasticity and stress coping in teleost fishes, Gen. Comp. Endocrinol. 181 (2013) 25–34. doi:10.1016/j.ygcen.2012.12.003. [82] E. Solano-Castiella, A. Anwander, G. Lohmann, M. Weiss, C. Docherty, S. Geyer, E.

Reimer, A.D. Friederici, R. Turner, Diffusion tensor imaging segments the human amygdala in vivo, Neuroimage. 49 (2010) 2958–2965. doi:10.1016/j.neuroimage.2009.11.027.

[83] J. LeDoux, The amygdala, Curr. Biol. 17 (2007) 868–874. doi:10.1016/j.cub.2007.08.005.

[84] A.A. Rasia-filho, R.G. Londero, M. Achaval, Functional activities of the amygdala : an overvieew, 25 (2000) 14–23.

[85] G.D. Gale, Role of the Basolateral Amygdala in the Storage of Fear Memories across the Adult Lifetime of Rats, J. Neurosci. 24 (2004) 3810–3815. doi:10.1523/JNEUROSCI.4100-03.2004.

[86] N.H. Kalin, The Role of the Central Nucleus of the Amygdala in Mediating Fear and Anxiety in the Primate, J. Neurosci. 24 (2004) 5506–5515. doi:10.1523/JNEUROSCI.0292-04.2004.

[87] I.S. McGregor, Neural Correlates of Cat Odor-Induced Anxiety in Rats: Region-Specific Effects of the Benzodiazepine Midazolam, J. Neurosci. 24 (2004) 4134–4144. doi:10.1523/JNEUROSCI.0187-04.2004.

[88] P.A. Brennan, F. Zufall, Pheromonal communication in vertebrates, Nature. 444 (2006) 308–315. doi:10.1038/nature05404.

[89] S. Science, N. Series, N. Oct, Medial Nucleus of the Amygdala Mediates Chemosensory Control of Male Hamster Sexual Behavior Author ( s ): Michael N . Lehman , Sarah S . Winans and J . Bradley Powers, 210 (2015) 557–560.

[90] A. Vyas, A.G. Pillai, S. Chattarji, Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior, Neuroscience. 128 (2004) 667–673. doi:10.1016/j.neuroscience.2004.07.013.

[91] a Vyas, S. Bernal, S. Chattarji, Effects of chronic stress on dendritic aborization in the central and extended amygdala, Brain Res. 965 (2003) 290–294.

[92] R. Mitra, S. Jadhav, B.S. McEwen, A. Vyas, S. Chattarji, Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 9371–9376. doi:10.1073/pnas.0504011102.

[93] R. Pawlak, A.M. Magarinos, J. Melchor, B. McEwen, S. Strickland, Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior, Nat. Neurosci. 6 (2003) 168–174. doi:10.1038/nn998.

[94] S. Bennur, B.S. Shankaranarayana Rao, R. Pawlak, S. Strickland, B.S. McEwen, S. Chattarji, Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator, Neuroscience. 144 (2007) 8–16. doi:10.1016/j.neuroscience.2006.08.075.

[95] S.-F. Tsai, T.-Y. Huang, C.-Y. Chang, Y.-C. Hsu, S.-J. Chen, L. Yu, Y.-M. Kuo, C.J. Jen, Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats, Front. Behav. Neurosci. 8 (2014) 1– 8. doi:10.3389/fnbeh.2014.00027.

(9)

[96] D.J. Christoffel, S.A. Golden, D. Dumitriu, A.J. Robison, W.G. Janssen, H.F. Ahn, V. Krishnan, C.M. Reyes, M.-H. Han, J.L. Ables, A.J. Eisch, D.M. Dietz, D. Ferguson, R.L. Neve, P. Greengard, Y. Kim, J.H. Morrison, S.J. Russo, I B Kinase Regulates Social Defeat Stress-Induced Synaptic and Behavioral Plasticity, J. Neurosci. 31 (2011) 314–321. doi:10.1523/JNEUROSCI.4763-10.2011.

[97] I. Vidal-Gonzalez, B. Vidal-Gonzalez, S.L. Rauch, G.J. Quirk, Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear, Learn. Mem. 13 (2006) 728–733. doi:10.1101/lm.306106.

[98] M.R. Gilmartin, M.D. McEchron, Single neurons in the medial prefrontal cortex of the rat exhibit tonic and phasic coding during trace fear conditioning, Behav. Neurosci. 119 (2005) 1496–1510. doi:10.1037/0735-7044.119.6.1496.

[99] D. Sierra-Mercado, N. Padilla-Coreano, G.J. Quirk, Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear, Neuropsychopharmacology. 36 (2011) 529–538. doi:10.1038/npp.2010.184.

[100] B. Czéh, J.I.H. Müller-Keuker, R. Rygula, N. Abumaria, C. Hiemke, E. Domenici, E. Fuchs, Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: Hemispheric asymmetry and reversal by fluoxetine treatment, Neuropsychopharmacology. 32 (2007) 1490–1503. doi:10.1038/sj.npp.1301275. [101] E.B. Bloss, W.G. Janssen, B.S. McEwen, J.H. Morrison, Interactive Effects of Stress

and Aging on Structural Plasticity in the Prefrontal Cortex, J. Neurosci. 30 (2010) 6726– 6731. doi:10.1523/JNEUROSCI.0759-10.2010.

[102] J.J. Radley, C.M. Arias, P.E. Sawchenko, Regional Differentiation of the Medial Prefrontal Cortex in Regulating Adaptive Responses to Acute Emotional Stress, J. Neurosci. 26 (2006) 12967–12976. doi:10.1523/JNEUROSCI.4297-06.2006.

[103] J.E. Garrett, C.L. Wellman, Chronic stress effects on dendritic morphology in medial prefrontal cortex: Sex differences and estrogen dependence, Neuroscience. 162 (2009) 195–207. doi:10.1016/j.neuroscience.2009.04.057.Chronic.

[104] A. Holmes, C.L. Wellman, Stress-induced prefrontal reorganization and executive dysfunction in rodents, Neurosci. Biobehav. Rev. 33 (2009) 773–783. doi:10.1016/j.neubiorev.2008.11.005.

[105] R.M. Shansky, C. Hamo, P.R. Hof, B.S. McEwen, J.H. Morrison, Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific, Cereb. Cortex. 19 (2009) 2479–2484. doi:10.1093/cercor/bhp003.

[106] L.A.. Galea, B.. McEwen, P. Tanapat, T. Deak, R.. Spencer, F.. Dhabhar, Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress, Neuroscience. 81 (1997) 689–697. doi:10.1016/S0306-4522(97)00233-9.

[107] J.J. Radley, J.H. Morrison, Repeated stress and structural plasticity in the brain, Ageing Res. Rev. 4 (2005) 271–287. doi:10.1016/j.arr.2005.03.004.

[108] J.J. Radley, A.B. Rocher, M. Miller, W.G.M. Janssen, C. Liston, P.R. Hof, B.S. McEwen, J.H. Morrison, Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex, Cereb. Cortex. 16 (2006) 313–320. doi:10.1093/cercor/bhi104. [109] P. Chakraborty, S. Chattarji, Timing is everything: differential effects of chronic stress

on fear extinction, Psychopharmacology (Berl). (2018). doi:10.1007/s00213-018-5053-y.

[110] E.B. Bloss, W.G. Janssen, D.T. Ohm, F.J. Yuk, S. Wadsworth, K.M. Saardi, B.S. McEwen, J.H. Morrison, Evidence for Reduced Experience-Dependent Dendritic Spine Plasticity in the Aging Prefrontal Cortex, J. Neurosci. 31 (2011) 7831–7839. doi:10.1523/JNEUROSCI.0839-11.2011.

(10)

[111] J.J. Radley, A.B. Rocher, A. Rodriguez, B. Douglas, M. Dammann, B.S. Mcewen, J.H. Morrison, L. Susan, P.R. Hof, Repeated Stress Alters Dendritic Spine Morphology, J. Comp. Neurol. 507 (2009) 1141–1150. doi:10.1002/cne.21588.REPEATED.

[112] E.A. van der Zee, Synapses, spines and kinases in mammalian learning and memory, and the impact of aging, Neurosci. Biobehav. Rev. 50 (2015) 77–85. doi:10.1016/j.neubiorev.2014.06.012.

[113] H.J. Kang, B. Voleti, T. Hajszan, G. Rajkowska, C.A. Stockmeier, P. Licznerski, A. Lepack, M.S. Majik, L.S. Jeong, M. Banasr, H. Son, R.S. Duman, Decreased expression of synapse-related genes and loss of synapses in major depressive disorder, Nat. Med. 18 (2012) 1413–1417. doi:10.1038/nm.2886.

[114] M.M. McEwen, Bruce S, Eiland, Lisa, Hunter, Richard G, Miller, Regulation As a Consequence of Stress, Neuropharmacology. 62 (2012) 3–12. doi:10.1016/j.neuropharm.2011.07.014.Stress.

[115] D. TG, Glucocorticoids and the genesis of depressive illness: a psychobiological model., Br. J. Psychiatry. 146 (1994) 365-371.

[116] J. Haller, É. Mikics, G.B. Makara, The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings, Front. Neuroendocrinol. 29 (2008) 273–291. doi:10.1016/j.yfrne.2007.10.004. [117] F.L. Groeneweg, H. Karst, E.R. de Kloet, M. Joëls, Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling, Mol. Cell. Endocrinol. 350 (2012) 299–309. doi:10.1016/j.mce.2011.06.020.

[118] F. ter Heegde, R.H. De Rijk, C.H. Vinkers, The brain mineralocorticoid receptor and stress resilience, Psychoneuroendocrinology. 52 (2015) 92–110. doi:10.1016/j.psyneuen.2014.10.022.

[119] J.P. Herman, J.M. Mcklveen, M.B. Solomon, E. Carvalho-Netto, B. Myers, Neural regulation of the stress response: Glucocorticoid feedback mechanisms, Brazilian J. Med. Biol. Res. 45 (2012) 292–298. doi:10.1590/S0100-879X2012007500041. [120] B.S. McEwen, C. Nasca, J.D. Gray, Stress Effects on Neuronal Structure: Hippocampus,

Amygdala, and Prefrontal Cortex, Neuropsychopharmacology. 41 (2016) 3–23. doi:10.1038/npp.2015.171.

[121] X.D. Wang, Y. Chen, M. Wolf, K. V. Wagner, C. Liebl, S.H. Scharf, D. Harbich, B. Mayer, W. Wurst, F. Holsboer, J.M. Deussing, T.Z. Baram, M.B. Müller, M. V. Schmidt, Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling, Neurobiol. Dis. 42 (2011) 300–310. doi:10.1016/j.nbd.2011.01.020.

[122] K.P. Martin, C.L. Wellman, NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex, Cereb. Cortex. 21 (2011) 2366–2373. doi:10.1093/cercor/bhr021.

[123] S.J. Russo, J.W. Murrough, M.-H. Han, D.S. Charney, E.J. Nestler, Neurobiology of resilience, Nat. Neurosci. 15 (2012) 1475–1484. doi:10.1038/nn.3234.

[124] M.T. Lowy, L. Wittenberg, B.K. Yamamoto, Effect of Acute Stress on Hippocampal Glutamate Levels and Spectrin Proteolysis in Young and Aged Rats, J. Neurochem. 65 (1995) 268–274. doi:10.1046/j.1471-4159.1995.65010268.x.

[125] H. Bölcskei, E. Gács-Baitz, C. Szántay, A new oxidative rearrangement of vindoline, Tetrahedron Lett. 30 (1989) 7245–7248. doi:10.1016/S0040-4039(01)93949-8. [126] E.Y. Yuen, W. Liu, I.N. Karatsoreos, Y. Ren, J. Feng, B.S. McEwen, Z. Yan,

Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory, Mol. Psychiatry. 16 (2011) 156–170. doi:10.1038/mp.2010.50. [127] C.L. Bender, G.D. Calfa, V.A. Molina, Astrocyte plasticity induced by emotional stress:

(11)

A new partner in psychiatric physiopathology?, Prog. Neuro-Psychopharmacology Biol. Psychiatry. 65 (2016) 68–77. doi:10.1016/j.pnpbp.2015.08.005.

[128] W.J. Friedman, I.B. Black, D.R. Kaplan, Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: An immunocytochemical study, Neuroscience. 84 (1998) 101–114. doi:10.1016/S0306-4522(97)00526-5.

[129] H.H. Althaus, C. Richter-Landsberg, Glial cells as targets and producers of neurotrophins., Int. Rev. Cytol. 197 (2000) 203–77. doi:10.1021/jo034230i.

[130] R. Lamprecht, J. LeDoux, Structural plasticity and memory, Nat. Rev. Neurosci. 5 (2004) 45–54. doi:10.1038/nrn1301.

[131] A.K. McAllister, D.C. Lo, L.C. Katz, Neurotrophins regulate dendritic growth in developing visual cortex., Neuron. 15 (1995) 791–803. doi:10.1016/0896-6273(95)90171-X.

[132] Y. Fukazawa, Y. Saitoh, F. Ozawa, Y. Ohta, K. Mizuno, K. Inokuchi, Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo, Neuron. 38 (2003) 447–460. doi:10.1016/S0896-6273(03)00206-X.

[133] M. Nibuya, S. Morinobu, R.S. Duman, Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments., J. Neurosci. 15 (1995) 7539–7547.

[134] M.A. Smith, S. Makino, R. Kvetnansky, R.M. Post, Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus., J. Neurosci. 15 (1995) 1768–1777.

[135] H. Lakshminarasimhan, S. Chattarji, Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala, PLoS One. 7 (2012) 1–6. doi:10.1371/journal.pone.0030481.

[136] A. Govindarajan, B.S.S. Rao, D. Nair, M. Trinh, N. Mawjee, S. Tonegawa, S. Chattarji, Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 13208–13213. doi:10.1073/pnas.0605180103.

[137] J.M. Pizarro, L.A. Lumley, W. Medina, C.L. Robison, W.E. Chang, A. Alagappan, M.J. Bah, M.Y. Dawood, J.D. Shah, B. Mark, N. Kendall, M.A. Smith, G.A. Saviolakis, J.L. Meyerhoff, Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice, Brain Res. 1025 (2004) 10–20. doi:10.1016/j.brainres.2004.06.085.

[138] C.M. Coppens, T. Siripornmongcolchai, K. Wibrand, M.N. Alme, B. Buwalda, S.F. de Boer, J.M. Koolhaas, C.R. Bramham, Social Defeat during Adolescence and Adulthood Differentially Induce BDNF-Regulated Immediate Early Genes, Front. Behav. Neurosci. 5 (2011) 1–8. doi:10.3389/fnbeh.2011.00072.

[139] G. Zhao, C. Zhang, J. Chen, Y. Su, R. Zhou, F. Wang, W. Xia, J. Huang, Z. Wang, Y. Hu, L. Cao, X. Guo, C. Yuan, Y. Wang, Z. Yi, W. Lu, Y. Wu, Z. Wu, W. Hong, D. Peng, Y. Fang, Ratio of mBDNF to proBDNF for Differential Diagnosis of Major Depressive Disorder and Bipolar Depression, Mol. Neurobiol. 54 (2017) 5573–5582. doi:10.1007/s12035-016-0098-6.

[140] P.T. Pang, Hippocampal Plasticity Cleavage of proBDNF by tPA / Plasmin Is Essential for Long-Term Hippocampal Plasticity, 487 (2014) 487–492. doi:10.1126/science.1100135.

[141] F. Zhang, J. Luo, X. Zhu, Ketamine ameliorates depressive-like behaviors by tPA-mediated conversion of proBDNF to mBDNF in the hippocampus of stressed rats, Psychiatry Res. 269 (2018) 646–651. doi:10.1016/j.psychres.2018.08.075.

(12)

[142] Agonistic Behavior of Mice and Rats : A Review Author ( s ): J . P . Scott Published by : Oxford University Press Stable URL : http://www.jstor.org/stable/3881483 REFERENCES Linked references are available on JSTOR for this article : You may need to log i, 6 (2016) 683–701.

[143] J.F. Debold, K.A. Miczek, Sexual Dimorphism in the Hormonal Control of Aggressive Behavior of Rats, Pharmacol. Biochem. Behav. 14 (1981) 89–93. doi:10.1016/S0091-3057(81)80015-9.

[144] C.M. Bowler, B.S. Cushing, C. Sue Carter, Social factors regulate female-female aggression and affiliation in prairie voles, Physiol. Behav. 76 (2002) 559–566. doi:10.1016/S0031-9384(02)00755-2.

[145] T.R. De Jong, D.I. Beiderbeck, I.D. Neumann, Measuring virgin female aggression in the Female Intruder Test (FIT): Effects of oxytocin, estrous cycle, and anxiety, PLoS One. 9 (2014). doi:10.1371/journal.pone.0091701.

[146] J.S. Lonstein, S.C. Gammie, Sensory, hormonal, and neural control of maternal aggression in laboratory rodents, Neurosci. Biobehav. Rev. 26 (2002) 869–888. doi:10.1016/S0149-7634(02)00087-8.

[147] B.C. Nephew, R.S. Bridges, B.C. Nephew, R.S. Bridges, Effects of chronic social stress during lactation on maternal behavior and growth in rats, 3890 (2011). doi:10.3109/10253890.2011.605487.

[148] S.F. De Boer, B.J. Van der Vegt, J.M. Koolhaas, Individual variation in aggression of feral rodent strains: A standard for the genetics of aggression and violence?, Behav. Genet. 33 (2003) 485–501. doi:10.1023/A:1025766415159.

[149] S.F. de Boer, B. Buwalda, J.M. Koolhaas, Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility, Neurosci. Biobehav. Rev. 74 (2017) 401–422. doi:10.1016/j.neubiorev.2016.07.008.

[150] J.M. Koolhaas, S.F. De Boer, B. Buwalda, K. Van Reenen, Individual Variation in Coping with Stress : A Multidimensional Approach of Ultimate and Proximate Mechanisms, 2007 (2007) 218–226. doi:10.1159/000105485.

[151] C. Hammels, E. Pishva, J. De Vry, D.L.A. van den Hove, J. Prickaerts, R. van Winkel, J.P. Selten, K.P. Lesch, N.P. Daskalakis, H.W.M. Steinbusch, J. van Os, G. Kenis, B.P.F. Rutten, Defeat stress in rodents: From behavior to molecules, Neurosci. Biobehav. Rev. 59 (2015) 111–140. doi:10.1016/j.neubiorev.2015.10.006.

[152] B.S. McEwen, Physiology and neurobiology of stress and adaptation: Central role of the brain., Physiol. Rev. 87 (2007) 873–904. doi:10.1152/physrev.00041.2006.

[153] B.S. McEwen, N.P. Bowles, J.D. Gray, M.N. Hill, R.G. Hunter, I.N. Karatsoreos, C. Nasca, Mechanisms of stress in the brain., Nat. Neurosci. 18 (2015) 1353–63. doi:10.1038/nn.4086.

[154] S.M. Southwick, D.S. Charney, The Science of Resilience: Implications for the Prevention and Treatment of Depression, Science (80-. ). 338 (2012) 79–82. doi:10.1126/science.1222942.

[155] A.M. Magariños, J.M. Verdugo, B.S. McEwen, Chronic stress alters synaptic terminal structure in hippocampus., Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 14002–8. doi:10.1073/pnas.94.25.14002.

[156] H. Qiao, S.-C. An, W. Ren, X.-M. Ma, Progressive alterations of hippocampal CA3-CA1 synapses in an animal model of depression., Behav. Brain Res. 275C (2014) 191– 200. doi:10.1016/j.bbr.2014.08.040.

[157] J.J. Radley, R.M. Anderson, B.A. Hamilton, J.A. Alcock, S.A. Romig-Martin, Chronic Stress-Induced Alterations of Dendritic Spine Subtypes Predict Functional Decrements in an Hypothalamo-Pituitary-Adrenal-Inhibitory Prefrontal Circuit, J. Neurosci. 33

(13)

(2013) 14379–14391. doi:10.1523/JNEUROSCI.0287-13.2013.

[158] C. Liston, W.-B. Gan, Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo, Proc. Natl. Acad. Sci. 108 (2011) 16074–16079. doi:10.1073/pnas.1110444108.

[159] H. Kim, J.H. Yi, K. Choi, S. Hong, K.S. Shin, S.J. Kang, Regional differences in acute corticosterone-induced dendritic remodeling in the rat brain and their behavioral consequences, BMC Neurosci. 15 (2014) 1–11. doi:10.1186/1471-2202-15-65. [160] A. Suvrathan, S. Bennur, S. Ghosh, A. Tomar, S. Anilkumar, S. Chattarji, Stress

enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala., Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369 (2014) 20130151. doi:10.1098/rstb.2013.0151.

[161] K.G. Lambert, S.K. Buckelew, G. Staffiso-Sandoz, S. Gaffga, W. Carpenter, J. Fisher, C.H. Kinsley, Activity-stress induces atrophy of apical dendrites of hippocampal pyramidal neurons in male rats., Physiol. Behav. 65 (1998) 43–9. http://www.ncbi.nlm.nih.gov/pubmed/9811363 (accessed November 8, 2017).

[162] N. Sousa, N. V. Lukoyanov, M.D. Madeira, O.F.X. Almeida, M.M. Paula-Barbosa, Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement, Neuroscience. 97 (2000) 253– 266. doi:10.1016/S0306-4522(00)00050-6.

[163] C.D. Conrad, J.E. LeDoux, A.M. Magariños, B.S. McEwen, Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy., Behav. Neurosci. 113 (1999) 902–13. http://www.ncbi.nlm.nih.gov/pubmed/10571474 (accessed November 8, 2017). [164] H. Ranjbar, M. Radahmadi, P. Reisi, H. Alaei, Effects of electrical lesion of basolateral

amygdala nucleus on rat anxiety-like behaviour under acute, sub-chronic, and chronic stresses., Clin. Exp. Pharmacol. Physiol. 44 (2017) 470–479. doi:10.1111/1440-1681.12727.

[165] R. Mitra, R.M. Sapolsky, Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 5573– 8. doi:10.1073/pnas.0705615105.

[166] O. Berton, C.A. McClung, R.J. Dileone, V. Krishnan, W. Renthal, S.J. Russo, D. Graham, N.M. Tsankova, C.A. Bolanos, M. Rios, L.M. Monteggia, D.W. Self, E.J. Nestler, Essential Role of BDNF in the Mesolimbic Dopamine Pathway in Social Defeat Stress, Science (80-. ). 311 (2006) 864–868. doi:10.1126/science.1120972.

[167] F. Hollis, H. Wang, D. Dietz, A. Gunjan, M. Kabbaj, The effects of repeated social defeat on long-term depressive-like behavior and short-term histone modifications in the hippocampus in male Sprague–Dawley rats, Psychopharmacology (Berl). 211 (2010) 69–77. doi:10.1007/s00213-010-1869-9.

[168] J. Vidal, B. Buwalda, J.M. Koolhaas, Male Wistar rats are more susceptible to lasting social anxiety than Wild-type Groningen rats following social defeat stress during adolescence, Behav. Processes. 88 (2011) 76–80. doi:10.1016/j.beproc.2011.08.005. [169] S.L. Taylor, L.M. Stanek, K.J. Ressler, K.L. Huhman, Differential brain-derived

neurotrophic factor expression in limbic brain regions following social defeat or territorial aggression., Behav. Neurosci. 125 (2011) 911–20. doi:10.1037/a0026172. [170] B.N. Dulka, E.C. Ford, M.A. Lee, N.J. Donnell, T.D. Goode, R. Prosser, M.A. Cooper,

Proteolytic cleavage of proBDNF into mature BDNF in the basolateral amygdala is necessary for defeat-induced social avoidance, Learn. Mem. 23 (2016) 156–160. doi:10.1101/lm.040253.115.

[171] N. Spruston, Pyramidal neurons: dendritic structure and synaptic integration., Nat. Rev. Neurosci. 9 (2008) 206–221. doi:10.1038/nrn2286.

(14)

[172] S. Ghosh, T.R. Laxmi, S. Chattarji, Functional connectivity from the amygdala to the hippocampus grows stronger after stress, J Neurosci. 33 (2013) 7234–7244. doi:10.1523/JNEUROSCI.0638-13.2013.

[173] S. Galea, A. Nandi, D. Vlahov, The epidemiology of post-traumatic stress disorder after disasters, Epidemiol. Rev. 27 (2005) 78–91. doi:10.1093/epirev/mxi003.

[174] S. Cohen, D. Janicki-Deverts, E. Miller, Psychological stress and disease, Jama. 298 (2007) 1685. doi:10.1001/jama.298.14.1685.

[175] B.L. Jacobs, H. van Praag, F.H. Gage, Adult brain neurogenesis and psychiatry: a novel theory of depression., Mol. Psychiatry. 5 (2000) 262–269. doi:10.1038/sj.mp.4000712. [176] P. Van Bokhoven, C.A. Oomen, W.J.G. Hoogendijk, A.B. Smit, P.J. Lucassen, S. Spijker, Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment, Eur. J. Neurosci. 33 (2011) 1833–1840. doi:10.1111/j.1460-9568.2011.07668.x.

[177] B. Buwalda, C. Stubbendorff, N. Zickert, J.M. Koolhaas, Adolescent social stress does not necessarily lead to a compromised adaptive capacity during adulthood: A study on the consequences of social stress in rats, Neuroscience. 249 (2013) 258–270. doi:10.1016/j.neuroscience.2012.12.050.

[178] D.J. David, B.A. Samuels, Q. Rainer, J.W. Wang, D. Marsteller, I. Mendez, M. Drew, D.A. Craig, B.P. Guiard, J.P. Guilloux, R.P. Artymyshyn, A.M. Gardier, C. Gerald, I.A. Antonijevic, E.D. Leonardo, R. Hen, Neurogenesis-Dependent and -Independent Effects of Fluoxetine in an Animal Model of Anxiety/Depression, Neuron. 62 (2009) 479–493. doi:10.1016/j.neuron.2009.04.017.

[179] M. Banasr, M. Hery, R. Printemps, A. Daszuta, Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone, Neuropsychopharmacology. 29 (2004) 450–460. doi:10.1038/sj.npp.1300320.

[180] J.E. Malberg, L.E. Schechter, Increasing hippocampal neurogenesis: A novel mechanism for antidepressant drugs., Curr. Pharm. Des. 11 (2005) 145–55. doi:10.2174/1381612053382223.

[181] B. Buwalda, K. Felszeghy, K.M. Horváth, C. Nyakas, S.F. de Boer, B. Bohus, J.M. Koolhaas, Temporal and spatial dynamics of corticosteroid receptor down-regulation in rat brain following social defeat., Physiol. Behav. 72 (2001) 349–54.

[182] P. Meerlo, G.J.F. Overkamp, S. Daan, R.H. van den Hoofdakker, J.M. Koolhaas, Changes in Behaviour and Body Weight Following a Single or Double Social Defeat in Rats, Stress Int. J. Biol. Stress. 1 (1996) 21–32. doi:10.3109/10253899609001093. [183] H.H. Van Dijken, J.A.M. Van Der Heyden, J. Mos, F.J.H. Tilders, Inescapable

footshocks induce progressive and long-lasting behavioural changes in male rats, Physiol. Behav. 51 (1992) 787–794. doi:10.1016/0031-9384(92)90117-K.

[184] T.J. Shors, J. Mathew, H.M. Sisti, C. Edgecomb, S. Beckoff, C. Dalla, Neurogenesis and Helplessness Are Mediated by Controllability in Males But Not in Females, Biol. Psychiatry. 62 (2007) 487–495. doi:10.1016/j.biopsych.2006.10.033.

[185] B. Vollmayr, C. Simonis, S. Weber, P. Gass, F. Henn, Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness, Biol. Psychiatry. 54 (2003) 1035–1040. doi:10.1016/S0006-3223(03)00527-4.

[186] R.J. Blanchard, C.R. McKittrick, D.C. Blanchard, Animal models of social stress: effects on behavior and brain neurochemical systems, Physiol. Behav. 73 (2001) 261– 271. doi:10.1016/S0031-9384(01)00449-8.

[187] H.-C. Yan, X. Cao, M. Das, X.-H. Zhu, T.-M. Gao, Behavioral animal models of depression, Neurosci. Bull. 26 (2010) 327–337. doi:10.1007/s12264-010-0323-7. [188] J. Vidal, J. de Bie, R.A. Granneman, A.E. Wallinga, J.M. Koolhaas, B. Buwalda, Social

(15)

stress during adolescence in Wistar rats induces social anxiety in adulthood without affecting brain monoaminergic content and activity, Physiol. Behav. 92 (2007) 824–830. doi:10.1016/j.physbeh.2007.06.004.

[189] S. Couillard-Despres, B. Winner, S. Schaubeck, R. Aigner, M. Vroemen, N. Weidner, U. Bogdahn, J. Winkler, H.G. Kuhn, L. Aigner, Doublecortin expression levels in adult brain reflect neurogenesis, Eur. J. Neurosci. 21 (2005) 1–14. doi:10.1111/j.1460-9568.2004.03813.x.

[190] D.J. Saaltink, B. Håvik, C.S. Verissimo, P.J. Lucassen, E. Vreugdenhil, Doublecortin and doublecortin-like are expressed in overlapping and non-overlapping neuronal cell population: Implications for neurogenesis, J. Comp. Neurol. 520 (2012) 2805–2823. doi:10.1002/cne.23144.

[191] T. Scholzen, J. Gerdes, The Ki-67 protein: From the known and the unknown, J. Cell. Physiol. 182 (2000) 311–322. doi:10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9.

[192] S.F. de Boer, P.J.A. Timmermans, B. Buwalda, J.M. Koolhaas, P. Meerlo, C.M. Coppens, The Resident-intruder Paradigm: A Standardized Test for Aggression, Violence and Social Stress, J. Vis. Exp. (2013) 1–7. doi:10.3791/4367.

[193] P. Meerlo, S.F. De Boer, J.M. Koolhaas, A. Sgoifo, Long-lasting consequences of a social conflict in rats: Behavior during the interaction predicts subsequent changes in daily rhythms of heart rate, temperature, and activity, Behav. Neurosci. 113 (1999) 1283–1290. doi:10.1037//0735-7044.113.6.1283.

[194] E.D. Paul, M.W. Hale, J.L. Lukkes, M.J. Valentine, D.M. Sarchet, C.A. Lowry, Repeated social defeat increases reactive emotional coping behavior and alters functional responses in serotonergic neurons in the rat dorsal raphe nucleus., Physiol. Behav. 104 (2011) 272–82. doi:10.1016/j.physbeh.2011.01.006.

[195] S.F. de Boer, B. Buwalda, J.M. Koolhaas, Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility, Neurosci. Biobehav. Rev. 74 (2017) 401–422. doi:10.1016/j.neubiorev.2016.07.008.

[196] B. Buwalda, J. Scholte, S.F. de Boer, C.M. Coppens, J.M. Koolhaas, The acute glucocorticoid stress response does not differentiate between rewarding and aversive social stimuli in rats, Horm. Behav. 61 (2012) 218–226. doi:10.1016/j.yhbeh.2011.12.012.

[197] B.S. McEwen, Plasticity of the hippocampus: adaptation to chronic stress and allostatic load., Ann. N. Y. Acad. Sci. 933 (2001) 265–277. doi:10.1111/j.1749-6632.2001.tb05830.x.

[198] M.J. Bain, S.M. Dwyer, B. Rusak, Restraint stress affects hippocampal cell proliferation differently in rats and mice, Neurosci. Lett. 368 (2004) 7–10. doi:10.1016/j.neulet.2004.04.096.

[199] R. Mitra, K. Sundlass, K.J. Parker, A.F. Schatzberg, D.M. Lyons, Social stress-related behavior affects hippocampal cell proliferation in mice, Physiol. Behav. 89 (2006) 123– 127. doi:10.1016/j.physbeh.2006.05.047.

[200] K. Pham, J. Nacher, P.R. Hof, B.S. McEwen, Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus, Eur. J. Neurosci. 17 (2003) 879–886. doi:10.1046/j.1460-9568.2003.02513.x. [201] G. Dagyte, E.A. Van der Zee, F. Postema, P.G.M. Luiten, J.A. Den Boer, A. Trentani,

P. Meerlo, Chronic but not acute foot-shock stress leads to temporary suppression of cell proliferation in rat hippocampus, Neuroscience. 162 (2009) 904–913. doi:10.1016/j.neuroscience.2009.05.053.

(16)

(2012) 1520–1529. doi:10.1016/j.psyneuen.2011.04.006.Several.

[203] E.D. Kirby, S.E. Muroy, W.G. Sun, D. Covarrubias, M.J. Leong, L.A. Barchas, D. Kaufer, Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2, Elife. 2013 (2013) 1–23. doi:10.7554/eLife.00362.

[204] C. Mirescu, E. Gould, Stress and adult neurogenesis, Hippocampus. 16 (2006) 233–238. doi:10.1002/hipo.20155.

[205] Y. Hsu, R.L. Earley, L.L. Wolf, Modulation of aggressive behaviour by fighting experience: Mechanisms and contest outcomes, Biol. Rev. Camb. Philos. Soc. 81 (2006) 33–74. doi:10.1017/S146479310500686X.

[206] C.R. McKittrick, D.C. Blanchard, M.P. Hardy, R.J. Blanchard, Social stress effects on hormones, brain, and behavior, Horm. Brain Behav. Online. (2009) 333–367. doi:10.1016/B978-008088783-8.00009-7.

[207] O. Berton, C.-G. Hahn, M.E. Thase, Are We Getting Closer to Valid Translational Models for Major Depression?, Science (80-. ). 338 (2012) 75–79. doi:10.1126/science.1222940.

[208] J.M. Koolhaas, S.F. de Boer, B. Buwalda, P. Meerlo, Social stress models in rodents: Towards enhanced validity, Neurobiol. Stress. 6 (2017) 104–112. doi:10.1016/j.ynstr.2016.09.003.

[209] S.L. Gourley, A.M. Swanson, A.J. Koleske, Corticosteroid-Induced Neural Remodeling Predicts Behavioral Vulnerability and Resilience, J. Neurosci. 33 (2013) 3107–3112. doi:10.1523/JNEUROSCI.2138-12.2013.

[210] E.W. Fish, J.F. Debold, K.A. Miczek, Escalated aggression as a reward : corticosterone and GABA A receptor positive modulators in mice, (2005) 116–127. doi:10.1007/s00213-005-0064-x.

[211] B. Bogerts, M. Schöne, S. Breitschuh, Brain alterations potentially associated with aggression and terrorism, (2019) 129–140. doi:10.1017/S1092852917000463.

[212] D. Patel, M.J. Kas, S. Chattarji, B. Buwalda, Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders, Behav. Brain Res. 369 (2019). doi:10.1016/j.bbr.2019.111900.

[213] K.A. Miczek, A. Takahashi, K.L. Gobrogge, L.S. Hwa, R.M.M. de Almeida, Escalated aggression in animal models: Shedding new light on mesocorticolimbic circuits, Curr. Opin. Behav. Sci. 3 (2015) 90–95. doi:10.1016/j.cobeha.2015.02.007.

[214] R.M. Anderson, R.M. Glanz, S.B. Johnson, M.M. Miller, S.A. Romig-Martin, J.J. Radley, Prolonged corticosterone exposure induces dendritic spine remodeling and attrition in the rat medial prefrontal cortex, J. Comp. Neurol. 524 (2016) 3729–3746. doi:10.1002/cne.24027.

[215] A. Takahashi, K. Nagayasu, N. Nishitani, S. Kaneko, T. Koide, Control of intermale aggression by medial prefrontal cortex activation in the mouse, PLoS One. 9 (2014) 1– 10. doi:10.1371/journal.pone.0094657.g001.

[216] A.K. Beery, D. Kaufer, Stress, social behavior, and resilience: Insights from rodents, Neurobiol. Stress. 1 (2015) 116–127. doi:10.1016/j.ynstr.2014.10.004.

[217] F. Fuzzo, J. Matsumoto, Y. Kiyokawa, Y. Takeuchi, T. Ono, H. Nishijo, Social buffering suppresses fear-associated activation of the lateral amygdala in male rats: Behavioral and neurophysiological evidence, Front. Neurosci. 9 (2015) 1–8. doi:10.3389/fnins.2015.00099.

[218] J.J. Day, R.M. Carelli, The Nucleus Accumbens and Pavlovian Reward Learning, Neurosci. 13 (2007) 148–159. doi:10.1177/1073858406295854.

[219] D. Réale, N.J. Dingemanse, A.J.N. Kazem, J. Wright, Evolutionary and ecological approaches to the study of personality, Philos. Trans. R. Soc. B Biol. Sci. (2010).

(17)

doi:10.1098/rstb.2010.0222.

[220] A. Sih, A. Bell, J.C. Johnson, Behavioral syndromes: An ecological and evolutionary overview, Trends Ecol. Evol. (2004). doi:10.1016/j.tree.2004.04.009.

[221] J.M. Koolhaas, S.F. de Boer, C.M. Coppens, B. Buwalda, Neuroendocrinology of coping styles: Towards understanding the biology of individual variation, Front. Neuroendocrinol. 31 (2010) 307–321. doi:10.1016/j.yfrne.2010.04.001.

[222] N.J. Dingemanse, P. De Goede, The relation between dominance and exploratory behavior is context-dependent in wild great tits, Behav. Ecol. (2004). doi:10.1093/beheco/arh115.

[223] J.P. Henry, P.M. Stephens, Stress, Health, and the Social Environment, Springer New York, New York, NY, 1977. doi:10.1007/978-1-4612-6363-0.

[224] T. Steimer, P. Driscoll, Divergent Stress Responses and Coping Styles in Psychogenetically Selected Roman High-(RHA) and Low-(RLA) Avoidance Rats: Behavioural, Neuroendocrine and Developmental Aspects, Stress. 6 (2003) 87–100. doi:10.1080/1025389031000111320.

[225] L.A. O’Connell, H.A. Hofmann, Evolution of a vertebrate social decision-making network, Science (80-. ). (2012). doi:10.1126/science.1218889.

[226] W. Hong, D.-W. Kim, D.J. Anderson, Antagonistic Control of Social versus Repetitive Self-Grooming Behaviors by Separable Amygdala Neuronal Subsets, Cell. 158 (2014) 1348–1361. doi:10.1016/j.cell.2014.07.049.

[227] H. Aleyasin, M.E. Flanigan, S.J. Russo, Neurocircuitry of aggression and aggression seeking behavior: nose poking into brain circuitry controlling aggression, Curr. Opin. Neurobiol. 49 (2018) 184–191. doi:10.1016/j.conb.2018.02.013.

[228] M.R. Warden, A. Selimbeyoglu, J.J. Mirzabekov, M. Lo, K.R. Thompson, S.Y. Kim, A. Adhikari, K.M. Tye, L.M. Frank, K. Deisseroth, A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge, Nature. 492 (2012) 428–432. doi:10.1038/nature11617.

[229] C. Challis, C. Min, S.G. Beck, O. Berton, Optogenetic modulation of the prefrontocortical-dorsal raphe microcircuit bidirectionally biases socioaffective decisions after social defeat, Neuropsychopharmacology. (2014). doi:10.1038/npp.2014.280.

[230] D. Patel, S. Anilkumar, S. Chattarji, B. Buwalda, Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus, Behav. Brain Res. 347 (2018). doi:10.1016/j.bbr.2018.03.034.

[231] J. Haller, The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches, Neurosci. Biobehav. Rev. (2018). doi:10.1016/j.neubiorev.2017.09.017.

[232] R.O. Becker, A.A. Rasia-Filho, M. Giovenardi, Selective deletion of the oxytocin gene remodels the number and shape of dendritic spines in the medial amygdala of males with and without sexual experience, Neurosci. Lett. (2017). doi:10.1016/j.neulet.2017.08.075.

[233] M. Zancan, R.S.R. da Cunha, F. Schroeder, L.L. Xavier, A.A. Rasia-Filho, Remodeling of the number and structure of dendritic spines in the medial amygdala: From prepubertal sexual dimorphism to puberty and effect of sexual experience in male rats, Eur. J. Neurosci. (2018). doi:10.1111/ejn.14052.

[234] C.D. Gipson, M.F. Olive, Structural and functional plasticity of dendritic spines – root or result of behavior?, Genes, Brain Behav. (2017). doi:10.1111/gbb.12324.

[235] A.A. Rasia-Filho, D. Haas, A.P. de Oliveira, J. de Castilhos, R. Frey, D. Stein, V.M. Lazzari, F. Back, G.N. Pires, E. Pavesi, E.C. Winkelmann-Duarte, M. Giovenardi, Morphological and Functional Features of the Sex Steroid-Responsive Posterodorsal

(18)

Medial Amygdala of Adult Rats, Mini-Reviews Med. Chem. (2012). doi:10.2174/138955712802762211.

[236] J.M. Koolhaas, T.H.C. Van Den Brink, B. Roozendaal, Medial Amygdala and Aggressive Behavior : Interaction Between Testosterone and Vasopressin, 16 (1990) 223–229.

[237] G.J. De Vriest, Androgen and Estrogen Effects on Vasopressin Messenger RNA Expression in the Medial Amygdaloid Nucleus in Male and Female Rats, 7 (1995) 827– 831.

[238] T. Matys, R. Pawlak, E. Matys, C. Pavlides, B.S. McEwen, S. Strickland, Tissue Plasminogen Activator Promotes the Effects of Corticotropin-Releasing Factor on the Amygdala and Anxiety-Like Behavior, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 16345–16350. doi:10.1073/pnas.0407355101.

[239] A.J. Silverman, D.L. Hoffman, E.A. Zimmerman, The descending afferent connections of the paraventricular nucleus of the hypothalamus (PVN), Brain Res. Bull. (1981). doi:10.1016/S0361-9230(81)80068-8.

[240] P.E. Sawchenko, L.W. Swanson, The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat, J. Comp. Neurol. (1983). doi:10.1002/cne.902180202.

[241] J.D. Dunn, J. Whitener, Plasma corticosterone responses to electrical stimulation of the amygdaloid complex: Cytoarchitectural specificity, Neuroendocrinology. (1986). doi:10.1159/000124442.

[242] M.T. Bowen, S.A. Hari, J. Booth, A. Suraev, A. Vyas, I.S. Mcgregor, Hormones and Behavior Active coping toward predatory stress is associated with lower corticosterone and progesterone plasma levels and decreased methylation in the medial amygdala vasopressin system, Horm. Behav. 66 (2014) 561–566. doi:10.1016/j.yhbeh.2014.08.004.

[243] M. Nishi, N. Horii-hayashi, T. Sasagawa, W. Matsunaga, General and Comparative Endocrinology Effects of early life stress on brain activity : Implications from maternal separation model in rodents, Gen. Comp. Endocrinol. 181 (2013) 306–309. doi:10.1016/j.ygcen.2012.09.024.

[244] C.M. Coppens, S.F. De Boer, J.M. Koolhaas, Coping styles and behavioural flexibility: Towards underlying mechanisms, Philos. Trans. R. Soc. B Biol. Sci. (2010). doi:10.1098/rstb.2010.0217.

[245] J.M. Koolhaas, S.M. Korte, S.F. De Boer, B.J. Van Der Vegt, C.G. Van Reenen, H. Hopster, I.C. De Jong, M.A.W. Ruis, H.J. Blokhuis, Coping styles in animals: Current status in behavior and stress- physiology, Neurosci. Biobehav. Rev. (1999). doi:10.1016/S0149-7634(99)00026-3.

[246] P.H. Black, L.D. Garbutt, Stress, inflammation and cardiovascular disease, J. Psychosom. Res. (2002). doi:10.1016/S0022-3999(01)00302-6.

[247] N. Schneiderman, G. Ironson, S.D. Siegel, Stress and Health: Psychological, Behavioral, and Biological Determinants, Annu. Rev. Clin. Psychol. (2005). doi:10.1146/annurev.clinpsy.1.102803.144141.

[248] S. Galea, A. Nandi, D. Vlahov, The epidemiology of post-traumatic stress disorder after disasters, Epidemiol. Rev. (2005). doi:10.1093/epirev/mxi003.

[249] T.B. Franklin, B.J. Saab, I.M. Mansuy, Neural Mechanisms of Stress Resilience and Vulnerability, Neuron. 75 (2012) 747–761. doi:10.1016/j.neuron.2012.08.016. [250] K. Ebner, N. Singewald, Individual differences in stress susceptibility and stress

inhibitory mechanisms, Curr. Opin. Behav. Sci. 14 (2017) 54–64. doi:10.1016/j.cobeha.2016.11.016.

(19)

Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress, Curr. Biol. 27 (2017) 2202-2210.e4. doi:10.1016/j.cub.2017.06.027.

[252] S.K. Wood, S. Bhatnagar, Resilience to the effects of social stress: Evidence from clinical and preclinical studies on the role of coping strategies, Neurobiol. Stress. (2015). doi:10.1016/j.ynstr.2014.11.002.

[253] Q. Yin, L. Wu, X. Yu, W. Liu, Neuroticism Predicts a Long-Term PTSD After Earthquake Trauma: The Moderating Effects of Personality, Front. Psychiatry. 10 (2019) 1–10. doi:10.3389/fpsyt.2019.00657.

[254] R.H. Rosenman, R.J. Brand, R.I. Sholtz, M. Friedman, Multivariate prediction of coronary heart disease during 8.5 year follow-up in the western collaborative group study, Am. J. Cardiol. (1976). doi:10.1016/0002-9149(76)90117-X.

[255] T. Larrieu, C. Sandi, Stress-Induced Depression: Is Social Rank a Predictive Risk Factor?, BioEssays. 40 (2018) 1–10. doi:10.1002/bies.201800012.

[256] G.J. Boersma, M.D. Smeltzer, K.A. Scott, A.J. Scheurink, K.L. Tamashiro, R.R. Sakai, Stress coping style does not determine social status, but influences the consequences of social subordination stress, Physiol. Behav. (2017). doi:10.1016/j.physbeh.2016.12.041. [257] B. Buwalda, J.M. Koolhaas, S.F. de Boer, Trait aggressiveness does not predict social dominance of rats in the Visible Burrow System, Physiol. Behav. 178 (2017) 134–143. doi:10.1016/j.physbeh.2017.01.008.

[258] Q. Li, C. Wichems, A. Heils, L.D. Van De Kar, K.P. Lesch, D.L. Murphy, Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice., J. Pharmacol. Exp. Ther. 291 (1999) 999–1007. http://jpet.aspetjournals.org/content/291/3/999.abstract. [259] K. Mizuno, Signaling mechanisms and functional roles of cofilin phosphorylation and

dephosphorylation, Cell. Signal. (2013). doi:10.1016/j.cellsig.2012.11.001.

[260] V. Fedulov, C.S. Rex, D.A. Simmons, L. Palmer, C.M. Gall, G. Lynch, Evidence that long-term potentiation occurs within individual hippocampal synapses during learning, J. Neurosci. (2007). doi:10.1523/JNEUROSCI.2003-07.2007.

[261] M. Goodson, M.B. Rust, W. Witke, D. Bannerman, R. Mott, C.P. Ponting, J. Flint, Cofilin-1: A Modulator of Anxiety in Mice, PLoS Genet. (2012). doi:10.1371/journal.pgen.1002970.

[262] R.X. Zhang, Y. Han, C. Chen, L.Z. Xu, J.L. Li, N. Chen, C.Y. Sun, W.H. Chen, W.L. Zhu, J. Shi, L. Lu, EphB2 in the Medial Prefrontal Cortex Regulates Vulnerability to Stress, Neuropsychopharmacology. (2016). doi:10.1038/npp.2016.58.

[263] M.L. Seibenhener, M.C. Wooten, Use of the open field maze to measure locomotor and anxiety-like behavior in mice, J. Vis. Exp. (2015). doi:10.3791/52434.

[264] L. Prut, C. Belzung, The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review, Eur. J. Pharmacol. (2003). doi:10.1016/S0014-2999(03)01272-X.

[265] I. Toth, I.D. Neumann, Animal models of social avoidance and social fear, Cell Tissue Res. (2013). doi:10.1007/s00441-013-1636-4.

[266] K.R. Lezak, G. Missig, W.A. Carlezon, Behavioral methods to study anxiety in rodents, Dialogues Clin. Neurosci. (2017).

[267] L. Lladó-Pelfort, M.B. Assié, A. Newman-Tancredi, F. Artigas, P. Celada, Preferential in vivo action of F15599, a novel 5-HT1A receptor agonist, at postsynaptic 5-HT1A receptors, Br. J. Pharmacol. (2010). doi:10.1111/j.1476-5381.2010.00738.x.

[268] A. Sgoifo, C. Pozzato, P. Meerlo, T. Costoli, M. Manghi, D. Stilli, G. Olivetti, E. Musso, Intermittent exposure to social defeat and open-field test in rats: Acute and long-term effects on ECG, body temperature and physical activity, Stress. (2002).

(20)

doi:10.1080/102538902900012387.

[269] C.J. Barnum, P. Blandino, T. Deak, Adaptation in the corticosterone and hyperthermic responses to stress following repeated stressor exposure, J. Neuroendocrinol. (2007). doi:10.1111/j.1365-2826.2007.01571.x.

[270] A. Sgoifo, J. Koolhaas, E. Alleva, E. Musso, S. Parmigiani, Social stress: Acute and long-term effects on physiology and behavior, Physiol. Behav. (2001). doi:10.1016/S0031-9384(01)00544-3.

[271] A.M. Lenselink, D.C. Rotaru, K.W. Li, P. Van Nierop, P. Rao-Ruiz, M. Loos, R. Van Der Schors, Y. Gouwenberg, J. Wortel, H.D. Mansvelder, A.B. Smit, S. Spijker, Strain differences in presynaptic function: Proteomics, ultrastructure, and physiology of hippocampal synapses in DBA/2J and C57Bl/6J MICE, J. Biol. Chem. (2015). doi:10.1074/jbc.M114.628776.

[272] J.C. Von Frijtag, L.G.J.E. Reijmers, J.E. Van der Harst, I.E. Leus, R. Van den Bos, B.M. Spruijt, Defeat followed by individual housing results in long-term impaired reward- and cognition-related behaviours in rats, Behav. Brain Res. 117 (2000) 137–146. doi:10.1016/S0166-4328(00)00300-4.

[273] Y. Kiyokawa, Y. Takeuchi, M. Nishihara, Y. Mori, Main olfactory system mediates social buffering of conditioned fear responses in male rats, Eur. J. Neurosci. (2009). doi:10.1111/j.1460-9568.2009.06618.x.

[274] E. Fuchs, G. Flügge, Chronic social stress: Effects on limbic brain structures, Physiol. Behav. 79 (2003) 417–427. doi:10.1016/S0031-9384(03)00161-6.

[275] A.L. Garcia-Garcia, A. Newman-Tancredi, E.D. Leonardo, P5-HT1A receptors in mood and anxiety: Recent insights into autoreceptor versus heteroreceptor function, Psychopharmacology (Berl). (2014). doi:10.1007/s00213-013-3389-x.

[276] P.R. Albert, F. Vahid-Ansari, C. Luckhart, Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: Pivotal role of pre- and post-synaptic 5-HT1A receptor expression, Front. Behav. Neurosci. (2014). doi:10.3389/fnbeh.2014.00199. [277] Q. Zhou, K.J. Homma, M.M. Poo, Shrinkage of dendritic spines associated with

long-term depression of hippocampal synapses, Neuron. (2004). doi:10.1016/j.neuron.2004.11.011.

[278] C.G. Pontrello, M.Y. Sun, A. Lin, T.A. Fiacco, K.A. DeFea, I.M. Ethell, Cofilin under control of β-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning, Proc. Natl. Acad. Sci. U. S. A. (2012). doi:10.1073/pnas.1118803109.

[279] P. Sántha, M. Pákáski, Ö.C. Fazekas, E.K. Fodor, J. Kálmán, Z. Janka, G. Szabó, Restraint stress in rats alters gene transcription and protein translation in the hippocampus, Neurochem. Res. (2012). doi:10.1007/s11064-011-0688-7.

[280] N. Nava, G. Treccani, A. Alabsi, H. Kaastrup Mueller, B. Elfving, M. Popoli, G. Wegener, J.R. Nyengaard, Temporal Dynamics of Acute Stress-Induced Dendritic Remodeling in Medial Prefrontal Cortex and the Protective Effect of Desipramine, Cereb. Cortex. (2017). doi:10.1093/cercor/bhv254.

[281] C. Fan, X. Zhu, Q. Song, P. Wang, Z. Liu, S.Y. Yu, MiR-134 modulates chronic stress-induced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats, Neuropharmacology. 131 (2018) 364–376. doi:10.1016/J.NEUROPHARM.2018.01.009.

[282] L.N. Munsie, R. Truant, The role of the cofilin-actin rod stress response in neurodegenerative diseases uncovers potential new drug targets, Bioarchitecture. (2012). doi:10.4161/bioa.22549.

[283] J.R. Bamburg, B.W. Bernstein, Roles of ADF/cofilin in actin polymerization and beyond, F1000 Biol. Rep. 2 (2010) 62. doi:10.3410/B2-62.

(21)

[284] R.J. Blanchard, D.C. Blanchard, K.J. Flannelly, Social stress, mortality and aggression in colonies and burrowing habitats, Behav. Processes. (1985). doi:10.1016/0376-6357(85)90062-2.

[285] K.L.K. Tamashiro, M.M.N. Nguyen, T. Fujikawa, T. Xu, L.Y. Ma, S.C. Woods, R.R. Sakai, Metabolic and endocrine consequences of social stress in a visible burrow system, Physiol. Behav. 80 (2004) 683–693. doi:10.1016/j.physbeh.2003.12.002.

[286] D.C. Blanchard, C. Fukunaga-Stinson, L.K. Takahashi, K.J. Flannelly, R.J. Blanchard, Dominance and aggression in social groups of male and female rats, Behav. Processes. (1984). doi:10.1016/0376-6357(84)90006-8.

[287] R.M. Sapolsky, The Influence of Social Hierarchy on Primate Health, Science (80-. ). (2005). doi:10.1126/science.1106477.

[288] S. Cohen, W.J. Doyle, A. Baum, Socioeconomic Status Is Associated With Stress Hormones, Psychosom. Med. 68 (2006) 414–420. doi:10.1097/01.psy.0000221236.37158.b9.

[289] E. Goodman, G.B. Slap, B. Huang, The public health impact of socioeconomic status on adolescent depression and obesity., Am. J. Public Health. 93 (2003) 1844–50. [290] D.D. Cummins, How the Social Environment Shaped the Evolution of Mind, Synthese.

122 (2000) 3–28. doi:10.1023/A:1005263825428.

[291] F. Wang, H.W. Kessels, H. Hu, The mouse that roared: neural mechanisms of social hierarchy, Trends Neurosci. 37 (2014) 674–682. doi:10.1016/j.tins.2014.07.005. [292] R. Makinson, K.H. Lundgren, K.B. Seroogy, J.P. Herman, Chronic social subordination

stress modulates glutamic acid decarboxylase (GAD) 67 mRNA expression in central stress circuits, Physiol. Behav. 146 (2015) 7–15. doi:10.1016/j.physbeh.2015.04.025. [293] J.P. Herman, Regulation of adrenocorticosteroid receptor mRNA expression in the

central nervous system., Cell. Mol. Neurobiol. 13 (1993) 349–72.

[294] R. Havekes, A.J. Park, J.C. Tudor, V.G. Luczak, R.T. Hansen, S.L. Ferri, V.M. Bruinenberg, S.G. Poplawski, J.P. Day, S.J. Aton, K. Radwańska, P. Meerlo, M.D. Houslay, G.S. Baillie, T. Abel, Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1, Elife. (2016). doi:10.7554/eLife.13424.001.

[295] R.J. Blanchard, D.C. Blanchard, Antipredator defensive behaviors in a visible burrow system, J. Comp. Psychol. (1989). doi:10.1037/0735-7036.103.1.70.

[296] T. Peleh, K.G.O. Ike, E.J. Wams, E.P. Lebois, B. Hengerer, The reverse translation of a quantitative neuropsychiatric framework into preclinical studies: Focus on social interaction and behavior, Neurosci. Biobehav. Rev. (2019). doi:10.1016/j.neubiorev.2018.07.018.

[297] T. Peleh, X. Bai, M.J.H. Kas, B. Hengerer, RFID-supported video tracking for automated analysis of social behaviour in groups of mice, J. Neurosci. Methods. (2019). doi:10.1016/j.jneumeth.2019.108323.

[298] K.L.K. Tamashiro, M.A. Hegeman, M.M.N. Nguyen, S.J. Melhorn, L.Y. Ma, S.C. Woods, R.R. Sakai, Dynamic body weight and body composition changes in response to subordination stress, Physiol. Behav. 91 (2007) 440–448. doi:10.1016/j.physbeh.2007.04.004.

[299] S.J. Melhorn, E.G. Krause, K.A. Scott, M.R. Mooney, J.D. Johnson, S.C. Woods, R.R. Sakai, Meal patterns and hypothalamic NPY expression during chronic social stress and recovery, Am. J. Physiol. - Regul. Integr. Comp. Physiol. (2010). doi:10.1152/ajpregu.00820.2009.

[300] D.C. Blanchard, R.L. Spencer, S.M. Weiss, R.J. Blanchard, B. McEwen, R.R. Sakai, Visible burrow system as a model of chronic social stress: Behavioral and neuroendocrine correlates, Psychoneuroendocrinology. (1995).

Referenties

GERELATEERDE DOCUMENTEN

Chronic social stress and the circadian system: Effects on the central clock and peripheral liver oscillator.. University

Studies in our laboratory have specifically addressed the question of whether changes in activity and body temperature rhythm that result from uncontrollable social

Chronic social stress, in turn, induces a mild effect on period in a specific mouse lineage (Bartlang et al., 2015) and affects the amplitude of clock genes expression in the SCN, but

The results of the present experiments in mice show that exposure to uncontrollable social defeat stress for 10 successive days causes a major suppression of activity levels but

Figure 3. Panel A) Total running wheel rotations per day during Baseline and Social Defeat days. There was a difference between groups during Social Defeat. Symbols represent mean

Panels A and B of figures 2 and 3 show normalized and averaged traces acquired from bioluminescence recordings of the SCN and liver tissues, respectively. Because of the dampening

However, in our study, mice were already individualized in the habituation phase and the reduction in sucrose consumption occurred during the social defeat phase, without

In summary, our studies in mice show that sever, uncontrollable social defeat stress does not appear to affect the master clock in the SCN, but it does phase shift the peripheral