• No results found

University of Groningen The composition and dynamic nature of the N-linked glycoprofile of bovine milk serum and its individual proteins Valk-Weeber, Rivca

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen The composition and dynamic nature of the N-linked glycoprofile of bovine milk serum and its individual proteins Valk-Weeber, Rivca"

Copied!
40
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The composition and dynamic nature of the N-linked glycoprofile of bovine milk serum and its

individual proteins

Valk-Weeber, Rivca

DOI:

10.33612/diss.134363958

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Valk-Weeber, R. (2020). The composition and dynamic nature of the N-linked glycoprofile of bovine milk

serum and its individual proteins: A structural and functional analysis. University of Groningen.

https://doi.org/10.33612/diss.134363958

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

R e f e r e n c e s

(3)

R e f e r e n c e s

Introduction

The evolutionary origin and possible

functional roles of FNIII domains in two

Microbacterium aurum B8.A granular

starch degrading enzymes, and in other

carbohydrate acting enzymes

References

Abeijon, C., & Hirschberg, C. B. (1992). Topography of glycosylation reactions in the endoplasmic reticulum. Trends in Biochemical Sciences, 17(1), 32–36.

Actor, J. K., Hwang, S.-A., & Kruzel, M. L. (2009). Lactoferrin as a Natural Immune Modulator.

Current Pharmaceutical Design, 15(17), 1956–1973.

Adamczyk, B., Tharmalingam-Jaikaran, T., Schomberg, M., Szekrényes, Á., Kelly, R. M., Karlsson, N. G., Guttman, A., & Rudd, P. M. (2014). Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydrate

Research, 389(1), 174–185.

Aebi, M. (2013). N-linked protein glycosylation in the ER. Biochimica et Biophysica Acta - Molecular

Cell Research, 1833(11), 2430–2437.

Ahn, J., Bones, J., Yu, Y. Q., Rudd, P. M., & Gilar, M. (2010). Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 µm sorbent. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life

Sciences, 878(3–4), 403–408.

Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. Nature Reviews. Immunology, 4(7), 499–511. Al-Bari, A. A. (2014). Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. Journal of

Antimicrobial Chemotherapy, 70(6), 1608–1621.

Al-Bari, M. A. A. (2017). Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacology Research and

Perspectives, 5(1), 1–13.

Al-mashikhi, S. A., & Nakai, S. (1987). Isolation of Bovine Immunoglobulins and Lactoferrin from Whey Proteins by Gel Filtration Techniques. Journal of Dairy Science, 70(12), 2486–2492. Alavi, A., Fraser, O., Tarelli, E., Bland, M., & Axford, J. (2011). An open-label dosing study to

evaluate the safety and effects of a dietary plant-derived polysaccharide supplement on the N-glycosylation status of serum glycoproteins in healthy subjects. European Journal of

Clinical Nutrition, 65(5), 648–656.

Alley, W. R., Mann, B. F., Hruska, V., & Novotny, M. V. (2013). Isolation and purification of glycoconjugates from complex biological sources by recycling high-performance liquid chromatography. Analytical Chemistry, 85(21), 10408–10416.

Alton, G., Hasilik, M., Nichues, R., Panneerselvam, K., Etchison, J. R., Fana, F., & Freeze, H. H. (1998). Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology, 8(3), 285–295.

Altunata, S., Earley, R. L., Mossman, D. M., & Welch, L. E. (1995). Pulsed electrochemical detection of penicillins using three and four step waveforms. Talanta, 42(1), 17–25.

Alvarez-Manilla, G., Warren, N. L., Atwood III, J., Abney, T., Azadi, P., Pierce, M., & Orlando, R. (2006). Tools for glycomics: Isotopic labeling of glycans with C-13 for relative quantitation.

Glycobiology, 16(7), 677–687.

Aly, E., Ros, G., & Frontela, C. (2013). Structure and Functions of Lactoferrin as Ingredient in Infant Formulas. Journal of Food Research, 2(4), 25.

An, Hyun Joo, & Lebrilla, C. B. (2011). Structure elucidation of native N- and O-linked glycans by tandem mass spectrometry (tutorial). Mass Spectrometry Reviews, 30(4), 560–578. An, H. J., Gip, P., Kim, J., Wu, S., Park, K. W., McVaugh, C. T., Schaffer, D. V., Bertozzi, C. R., &

(4)

R e f e r e n c e s

Lebrilla, C. B. (2012). Extensive Determination of Glycan Heterogeneity Reveals an Unusual Abundance of High Mannose Glycans in Enriched Plasma Membranes of Human Embryonic Stem Cells. Molecular & Cellular Proteomics, 11, 1–13.

Anand, N., Kanwar, R. K., Dubey, M. L., Vahishta, R. K., Sehgal, R., Verma, A. K., & Kanwar, J. R. (2015). Effect of lactoferrin protein on red blood cells and macrophages: Mechanism of parasite-host interaction. Drug Design, Development and Therapy, 9, 3821–3835.

Anderson, N. G., Powers, M. T., & Tollaksen, S. L. (1982). Proteins of human milk. I. Identification of major components. Clinical Chemistry, 28(4), 1045–1055.

Ando, K., Hasegawa, K., Shindo, K. I., Furusawa, T., Fujino, T., Kikugawa, K., Nakano, H., Takeuchi, O., Akira, S., Akiyama, T., Gohda, J., Inoue, J. I., & Hayakawa, M. (2010). Human lactoferrin activates NF-kB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS Journal, 277(9), 2051–2066.

Anthony, R. M., Nimmerjahn, F., Ashline, D. J., Reinhold, V. N., Paulson, J. C., & Ravetch, J. V. (2008). Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science (New

York, N.Y.), 320(5874), 373–376.

Anumula, K R, & Dhume, S. T. (1998). High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology, 8(7), 685–694. Anumula, Kalyan R. (2006). Advances in fluorescence derivatization methods for high-performance

liquid chromatographic analysis of glycoprotein carbohydrates. Analytical Biochemistry,

350(1), 1–23.

Appelmelk, B. J., An, Y. Q., Geerts, M., Thijs, B. G., De Boer, H. A., MacLaren, D. M., De Graaff, J., & Nuijens, J. H. (1994). Lactoferrin is a lipid A-binding protein. Infection and Immunity, 62(6), 2628–2632.

Arnold, J. N., Wormald, M. R., Suter, D. M., Radcliffe, C. M., Harvey, D. J., Dwek, R. A., Rudd, P. M., & Sim, R. B. (2005). Human serum IgM glycosylation: Identification of glycoforms that can bind to Mannan-binding lectin. Journal of Biological Chemistry, 280(32), 29080–29087. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M., & Dwek, R. A. (2007). The Impact of

Glycosylation on the Biological Function and Structure of Human Immunoglobulins. Annual

Review of Immunology, 25(1), 21–50.

Aronson, N. N., & Docherty, P. A. (1983). Degradation of [6-3H]- and [1-14C]glucosamine-labeled asialo-alpha 1-acid glycoprotein by the perfused rat liver. Journal of Biological Chemistry,

258(7), 4266–4271.

Audic, J.-L., Chaufer, B., & Daufin, G. (2003). Non-food applications of milk components and dairy co-products: A review. Lait, 83(6), 417–438.

Augustin, R. (2010). The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life, 62(5), 315–333.

Auldist, M. J., Walsh, B. J., & Thomson, N. A. (1998). Seasonal and lactational influences on bovine milk composition in New Zealand. Journal of Dairy Research, 65(3), 401–411.

Auldist, M. J., Johnston, K. a, White, N. J., Fitzsimons, W. P., & Boland, M. J. (2004). A comparison of the composition, coagulation characteristics and cheesemaking capacity of milk from Friesian and Jersey dairy cows. The Journal of Dairy Research, 71(1), 51–

Baenziger, J., & Kornfeld, S. (1974). Structure of the Carbohydrate Units of IgA1 Immunoglobulin.

249(22), 7260–7269.

Bak, M., Sørensen, M. D., Sørensen, E. S., Rasmussen, L. K., Sørensen, O. W., Petersen, T. E., & Nielsen, N. C. (2000). The structure of the membrane-binding 38 C-terminal residues from bovine PP3 determined by liquid- and solid-state NMR spectroscopy. European Journal of

(5)

R e f e r e n c e s Biochemistry, 267(1), 188–199.

Balaguer, E., & Neusüss, C. (2006). Glycoprotein characterization combining intact protein and glycan analysis by capillary electrophoresis-electrospray ionization-mass spectrometry.

Analytical Chemistry, 78(15), 5384–5393.

Balak, D. M. W., van Doorn, M. B. A., Arbeit, R. D., Rijneveld, R., Klaassen, E., Sullivan, T., Brevard, J., Thio, H. B., Prens, E. P., Burggraaf, J., & Rissmann, R. (2017). IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. Clinical Immunology,

174, 63–72.

Balcão, V. M., Costa, C. I., Matos, C. M., Moutinho, C. G., Amorim, M., Pintado, M. E., Gomes, A. P., Vila, M. M., & Teixeira, J. A. (2013). Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocolloids, 32(2), 425–431.

Ball, G., Shelton, M. J., Walsh, B. J., Hill, D. J., Hosking, C. S., & Howden, M. E. H. (1994). A major continuous allergenic epitope of bovine β-lactoglobulin recognized by human IgE binding.

Clinical and Experimental Allergy, 24(8), 758–764.

Bär, C., Mathis, D., Neuhaus, P., Dürr, D., Bisig, W., Egger, L., & Portmann, R. (2019). Protein profile of dairy products: Simultaneous quantification of twenty bovine milk proteins. International

Dairy Journal, 97, 167–175.

Barboza, M., Pinzon, J., Wickramasinghe, S., Froehlich, J. W., Moeller, I., Smilowitz, J. T., Ruhaak, L. R., Huang, J., Lönnerdal, B., German, J. B., Medrano, J. F., Weimer, B. C., & Lebrilla, C. B. (2012). Glycosylation of Human Milk Lactoferrin Exhibits Dynamic Changes During Early Lactation Enhancing Its Role in Pathogenic Bacteria-Host Interactions. Molecular & Cellular

Proteomics, 11(6), M111.015248.

Barrett, N. E., Grandison, a S., & Lewis, M. J. (1999). Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk. The Journal of Dairy Research, 66(1), 73–80. Battistel, M. D., Azurmendi, H. F., Yu, B., & Freedberg, D. I. (2014). NMR of glycans: Shedding new

light on old problems. Progress in Nuclear Magnetic Resonance Spectroscopy, 79C, 48–68. Bayless, K. J., Davis, G. E., & Meininger, G. A. (1997). Isolation and biological properties of

osteopontin from bovine milk. Protein Expression and Purification, 9(3), 309–314.

Bayram, T., Pekmez, M., Arda, N., & Yalçin, A. S. (2008). Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta, 75(3), 705–709.

Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., & Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta (BBA)/

Protein Structure and Molecular, 1121(1–2), 130–136.

Bendiak, B., & Cumming, D. A. (1985). Hydrazinolysis-N-reacetylation of glycopeptides and glycoproteins. Model studies using 2-acetamido-1-N-(l-aspart-4-oyl)-2-deoxy-β-d-glucopyranosylamine. Carbohydrate Research, 144(1), 1–12.

Benkerroum, N. (2008). Antimicrobial activity of lysozyme with special relevance to milk. African

Journal of Biotechnology, 7(25), 4856–4867.

Berger, V., Périer, S., Pachiaudi, C., Normand, S., Louisot, P., & Martin, A. (1998). Dietary specific sugars for serum protein enzymatic glycosylation in man. Metabolism, 47(12), 1499–1503. Berninsone, P. M., & Hirschberg, C. B. (2000). Nucleotide sugar transporters of the Golgi apparatus.

Current Opinion in Structural Biology, 10(5), 542–547.

Bertsche, U., Mayer, C., Götz, F., & Gust, A. A. (2015). Peptidoglycan perception-Sensing bacteria by their common envelope structure. International Journal of Medical Microbiology, 305(2), 217–223. https://doi.org/10.1016/j.ijmm.2014.12.019

(6)

R e f e r e n c e s

Bertulat, S., Fischer-Tenhagen, C., & Heuwieser, W. (2015). A survey of drying-off practices on commercial dairy farms in northern Germany and a comparison to science-based recommendations. Veterinary Record Open, 2(1), 1–10.

Bigge, J. C., Patel, T. P., Bruce, J. A., Goulding, P. N., Charles, S. M., & Parekh, R. B. (1995). Nonselective and Efficient Fluorescent Labeling of Glycans Using 2-Amino Benzamide and Anthranilic Acid. Analytical Biochemistry, 230(2), 229–238.

Billakanti, J., McRae, J., Mayr, M., & Johnson, K. (2019). Advanced analytical tools for bovine lactoferrin identification and quantification in raw skim milk to finished lactoferrin powders.

International Dairy Journal, 99, 104546.

Biol, M.C., Martin, A., & Louisot, P. (1992). Nutritional and developmental regulation of glycosylation processes in digestive organs. Biochimie, 74(1), 13–24.

Biol, M. C., Lenoir, D., Greco, S., Galvain, D., Hugueny, I., & Louisot, P. (1998). Role of insulin and nutritional factors in intestinal glycoprotein fucosylation during postnatal development.

American Journal of Physiology - Gastrointestinal and Liver Physiology, 275(5 38-5).

Bissonnette, N., Dudemaine, P. L., Thibault, C., & Robitaille, G. (2012). Proteomic analysis and immunodetection of the bovine milk osteopontin isoforms. Journal of Dairy Science, 95(2), 567–579.

Bjorck, L., Rosen, C., Marshall, V., & Reiter, B. (1975). Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other gram-negative bacteria. Applied

Microbiology, 30(2), 199–204.

Blasius, A. L., & Beutler, B. (2010). Intracellular Toll-like receptors. Immunity, 32(3), 305–315. Bobe, G., Lindberg, G. L., Freeman, A. E., & Beitz, D. C. (2007). Short communication: Composition

of milk protein and milk fatty acids is stable for cows differing in genetic merit for milk production. Journal of Dairy Science, 90(8), 3955–3960.

Bode, L., Beermann, C., Mank, M., Kohn, G., & Boehm, G. (2004). Human and Bovine Milk Gangliosides Differ in Their Fatty Acid Composition. The Journal of Nutrition, 134(11), 3016–3020.

Bode, L. (2012). Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology,

22(9), 1147–1162.

Boehmer, J. L., Ward, J. L., Peters, R. R., Shefcheck, K. J., McFarland, M. A., & Bannerman, D. D. (2010). Proteomic analysis of the temporal expression of bovine milk proteins during coliform mastitis and label-free relative quantification. Journal of Dairy Science, 93(2), 593– 603.

Boland, M. (2016). Human digestion - a processing perspective. Journal of the Science of Food and

Agriculture, 96(7), 2275–2283.

Bösze, Z. (2008). Bioactive Components of Milk (Z. Bösze (Ed.); Vol. 606). Springer New York. Botos, I., Segal, D., & Davies, D. (2011). The structural biology of Toll-like receptors. Structure,

19(4), 447–459.

Brisson, G., Britten, M., & Pouliot, Y. (2007). Heat-induced aggregation of bovine lactoferrin at neutral pH: Effect of iron saturation. International Dairy Journal, 17(6), 617–624.

Brockhausen, I. (1999). Pathways of O-glycan biosynthesis in cancer cells. Biochimica et Biophysica

Acta - General Subjects, 1473(1), 67–95.

Brockhausen, I., & Stanley, P. (2017). O-GalNAc Glycans. In E. Varki A, Cummings RD, Esko JD, et al. (Ed.), Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press.

Brodziak, A., Litwińczuk, Z., Barłowska, J., & Król, J. (2012). Effect of Breed and Feeding System on Content of Selected Whey Proteins in Cow’s Milk in Spring-Summer and Autumn-Winter

(7)

R e f e r e n c e s Seasons. Annals of Animal Science, 12(2), 261–269.

Bronsema, K. J., Bischoff, R., & van de Merbel, N. C. (2012). Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and

Life Sciences, 893–894, 1–14.

Bruckental, I., Drori, D., Kaim, M., Lehrer, H., & Folman, Y. (1989). Effects of source and level of protein on milk yield and reproductive performance of high-producing primiparous and multiparous dairy cows. Animal Production, 48(2), 319–329.

Bruggink, C., Poorthuis, B. J. H. M., Deelder, A. M., & Wuhrer, M. (2012). Analysis of urinary oligosaccharides in lysosomal storage disorders by capillary high-performance anion-exchange chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry,

403(6), 1671–1683.

Bruins, A. P. (1998). Mechanistic aspects of electrospray ionization. Journal of Chromatography A,

794(1–2), 345–357.

Bruni, N., Capucchio, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., Corona, A., & Dosio, F. (2016). Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 21(6), 1–25.

Bruno, A. E., & Krattiger, B. (1995). Chapter 11 On-Column Refractive Index Detection of Carbohydrates Separated by HPLC and CE. In Z. B. T.-J. of C. L. El Rassi (Ed.), Carbohydrate

Analysis (Vol. 58, pp. 431–446). Elsevier.

Buccigrossi, V., De Marco, G., Bruzzese, E., Ombrato, L., Bracale, I., Polito, G., & Guarino, A. (2007). Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation. Pediatric Research, 61(4), 410–414.

Bülter, T., & Elling, L. (1999). Enzymatic synthesis of nucleotide sugars. Glycoconjugate Journal,

16(2), 147–159.

Burda, P., & Aebi, M. (1999). The dolichol pathway of N-linked glycosylation. Biochimica et

Biophysica Acta - General Subjects, 1426(2), 239–257.

Burnina, I., Hoyt, E., Lynaugh, H., Li, H., & Gong, B. (2013). A cost-effective plate-based sample preparation for antibody N-glycan analysis. Journal of Chromatography A, 1307, 201–206. Buszewski, B., & Noga, S. (2012). Hydrophilic interaction liquid chromatography (HILIC)—a

powerful separation technique. Analytical and Bioanalytical Chemistry, 402(1), 231–247. Buszewski, B., & Szultka, M. (2012). Past, Present, and Future of Solid Phase Extraction: A Review.

Critical Reviews in Analytical Chemistry, 42(3), 198–213.

Butler, J. E. (1969). Bovine Immunoglobulins: A Review. Journal of Dairy Science, 52(12), 1895– 1909.

Byres, E., Paton, A. W., Paton, J. C., Löfling, J. C., Smith, D. F., Wilce, M. C. J., Talbot, U. M., Chong, D. C., Yu, H., Huang, S., Chen, X., Varki, N. M., Varki, A., Rossjohn, J., & Beddoe, T. (2008). Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin.

Nature, 456(7222), 648–652.

Caffaro, C. E., & Hirschberg, C. B. (2006). Nucleotide sugar transporters of the Golgi apparatus: From basic science to diseases. Accounts of Chemical Research, 39(11), 805–812.

Calus, M. P. L., & Veerkamp, R. F. (2003). Estimation of environmental sensitivity of genetic merit for milk production traits using a random regression model. Journal of Dairy Science, 86(11), 3756–3764.

Campagna, S., Mathot, A. G., Fleury, Y., Girardet, J. M., & Gaillard, J. L. (2004). Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose peptone. Journal of Dairy Science, 87(6), 1621–1626.

(8)

R e f e r e n c e s

Cao, X., Zheng, Y., Wu, S., Yang, N., Wu, J., Liu, B., Ye, W., Yang, M., & Yue, X. (2019). Characterization and comparison of milk fat globule membrane N-glycoproteomes from human and bovine colostrum and mature milk. Food and Function, 10(8), 5046–5058.

Capitan-Canadas, F., Ortega-Gonzalez, M., Guadix, E., Zarzuelo, A., Suarez, M. D., de Medina, F. S., & Martinez-Augustin, O. (2014). Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of TLR4. Molecular Nutrition and Food

Research, 58(5), 1098–1110.

Capuco, A. V., Akers, R. M., & Smith, J. J. (2010). Mammary Growth in Holstein Cows During the Dry Period: Quantification of Nucleic Acids and Histology. Journal of Dairy Science, 80, 477–487. Carlsson, J., Porath, J., & Lönnerdal, B. (1977). Isolation of lactoferrin from human milk by

metal-chelate affinity chromatography. FEBS Letters, 75(1), 89–92.

Carter, B. G., & Drake, M. A. (2018). Invited review: The effects of processing parameters on the flavor of whey protein ingredients. Journal of Dairy Science, 101(8), 6691–6702.

Cartier, P., Chillard, Y., & Paquet, D. (1990). Inhibiting and Activating Effects of Skim Milks and Proteose-Peptone Fractions on Spontaneous Lipolysis and Purified Lipoprotein Lipase Activity in Bovine Milk. Journal of Dairy Science, 73(5), 1173–1177.

Carunchia Whetstine, M. E., Croissant, A. E., & Drake, M. A. (2005). Characterization of dried whey protein concentrate and isolate flavor. Journal of Dairy Science, 88(11), 3826–3839. Cataldi, T R.I., Campa, C., Angelotti, M., & Bufo, S. A. (1999). Isocratic separations of closely-related

mono- and disaccharides by high-performance anion-exchange chromatography with pulsed amperometric detection using dilute alkaline spiked with barium acetate. Journal of

Chromatography A, 855(2), 539–550.

Cataldi, T. R. I., Campa, C., & De Benedetto, G. E. (2000). Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: The potential is still growing. Fresenius’ Journal of Analytical Chemistry, 368(8), 739–758.

Cerbulis, J., & Farrell Jr., H. M. (1975). Composition of Milks of Dairy Cattle. I. Protein, Lactose, and Fat Contents and Distribution of Protein Fraction2. Journal of Dairy Science, 58(6), 817–827. Cerbulis, J., & Farrell Jr., H. M. (1976). Composition of the Milks of Dairy Cattle. II. Ash, Calcium,

Magnesium, and Phosphorus. Journal of Dairy Science, 59(4), 589–593.

Cervantes, J. L., Weinerman, B., Basole, C., & Salazar, J. C. (2012). TLR8: The forgotten relative revindicated. Cellular and Molecular Immunology, 9(6), 434–438.

Chambers, R. E., & Clamp, J. R. (1971). An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials. The Biochemical Journal, 125(4), 1009–1018. Chandan, R. C., Parry, R. M., & Shahani, K. M. (1968). Lysozyme, Lipase, and Ribonuclease in Milk

of Various Species. Journal of Dairy Science, 51(4), 606–607.

Chanput, W., Mes, J. J., & Wichers, H. J. (2014). THP-1 cell line: An in vitro cell model for immune modulation approach. International Immunopharmacology, 23(1), 37–45.

Chatterton, D. E. W., Rasmussen, J. T., Heegaard, C. W., Sørensen, E. S., & Petersen, T. E. (2004). In vitro digestion of novel milk protein ingredients for use in infant formulas: Research on biological functions. Trends in Food Science and Technology, 15(7–8), 373–383.

Cheetham, P. S. J. (1979). Removal of Triton X-100 from aqueous solution using amberlite XAD-2.

Analytical Biochemistry, 92(2), 447–452.

Chen, Q., Shou, P., Zhang, L., Xu, C., Zheng, C., Han, Y., Li, W., Huang, Y., Zhang, X., Shao, C., Roberts, A. I., Rabson, A. B., Ren, G., Zhang, Y., Wang, Y., Denhardt, D. T., & Shi, Y. (2014a). An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells, 32(2), 327–337.

(9)

R e f e r e n c e s

Chen, G. Y., Brown, N. K., Wu, W., Khedri, Z., Yu, H., Chen, X., van de Vlekkert, D., D’Azzo, A., Zheng, P., & Liu, Y. (2014b). Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. ELife, 3, e04066.

Cheng, J. B., Wang, J. Q., Bu, D. P., Liu, G. L., Zhang, C. G., Wei, H. Y., Zhou, L. Y., & Wang, J. Z. (2008). Factors Affecting the Lactoferrin Concentration in Bovine Milk. Journal of Dairy Science,

91(3), 970–976.

Chipman, D. M., & Sharon, N. (1969). Mechanism of lysozyme action. Science (New York, N.Y.),

165(3892), 454–465.

Christensen, B., Nielsen, M. S., Haselmann, K. F., Petersen, T. E., & Sørensen, E. S. (2005). Post-translationally modified residues of native human osteopontin are located in clusters: Identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochemical Journal, 390(1), 285–292. https://doi.org/10.1042/BJ20050341 Christensen, B., Schack, L., Kläning, E., & Sørensen, E. S. (2010). Osteopontin is cleaved at multiple

sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D. Journal of Biological Chemistry, 285(11), 7929–7937.

Chucri, T. M., Monteiro, J. M., Lima, A. R., Salvadori, M. L. B., Junior, J. R. K., & Miglino, M. A. (2010). A review of immune transfer by the placenta. Journal of Reproductive Immunology, 87(1–2), 14–20.

Chui, D., Sellakumar, G., Green, R., Sutton-Smith, M., McQuistan, T., Marek, K., Morris, H., Dell, A., & Marth, J. (2001). Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America,

98(3), 1142–1147.

Ciucanu, I., & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates.

Carbohydrate Research, 131(2), 209–217.

Clark, P. I., Narasimhan, S., Williams, J. M., & Clamp, J. R. (1983). Structural analysis of the carbohydrate moieties of glycoproteins by regiospecific degradation and liquid chromatography. Carbohydrate Research, 118, 147–155.

Clerc, F., Reiding, K. R., Jansen, B. C., Kammeijer, G. S. M., Bondt, A., & Wuhrer, M. (2016). Human plasma protein N-glycosylation. Glycoconjugate Journal, 33(3), 309–343.

Co, M. S., Scheinberg, D. A., Avdalovic, N. M., Mcgraw, K., Vasquez, M., Caron, P. C., & Queen, C. (1993). Genetically engineered deglycosylation of the variable domain increases the affinity of an anti-CD33 monoclonal antibody. Molecular Immunology, 30(15), 1361–1367. Coddeville, B., Strecker, G., & Wieruszeski, J. (1992). Heterogeneity of bovine lactotransferrin

glycans. Carbohydrate Research, 236(111), 145–164.

Coddeville, B., Girardet, J. M., Plancke, Y., Campagna, S., Linden, G., & Spik, G. (1998). Structure of the O-glycopeptides isolated from bovine milk component PP3. Glycoconjugate Journal,

15(4), 371–378.

Coelho, V., Krysov, S., Ghaemmaghami, A. M., Emara, M., Potter, K. N., Johnson, P., Packham, G., Martinez-Pomares, L., & Stevenson, F. K. (2010). Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins.

Proceedings of the National Academy of Sciences, 107(43), 18587–18592.

Commins, S. P., & Platts-Mills, T. A. E. (2013). Delayed anaphylaxis to red meat in patients with ige specific for galactose alpha-1,3-galactose (alpha-gal). Current Allergy and Asthma Reports,

13(1), 72–77.

Comstock, S. S., Reznikov, E. A., Contractor, N., & Donovan, S. M. (2014). Dietary bovine lactoferrin alters mucosal and systemic immune cell responses in neonatal piglets. The Journal of

(10)

R e f e r e n c e s

Conesa, C., Lavilla, M., Sánchez, L., Pérez, M. D., Mata, L., Razquín, P., & Calvo, M. (2005). Determination of IgG levels in bovine bulk milk samples from different regions of Spain.

European Food Research and Technology, 220(2), 222–225.

Cooper, C. A., Gasteiger, E., & Packer, N. H. (2001). GlycoMod - A software tool for determining glycosylation compositions from mass spectrometric data. Proteomics, 1(2), 340–349. Corradini, C., Cavazza, A., & Bignardi, C. (2012). High-Performance Anion-Exchange

Chromatography Coupled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohydrates of Food Interest: Principles and Applications. International Journal

of Carbohydrate Chemistry, 2012, 1–13.

Cortes, P., Dumler, F., Paielli, D. L., & Levin, N. W. (1988a). Glomerular uracil nucleotide synthesis: effects of diabetes and protein intake. The American Journal of Physiology, 255(4 Pt 2), F647-55.

Costello, C. E., Contado-Miller, J. M., & Cipollo, J. F. (2007). A Glycomics Platform for the Analysis of Permethylated Oligosaccharide Alditols. Journal of the American Society for Mass

Spectrometry, 18(10), 1799–1812.

Coulier, L., Zha, Y., Bas, R., & Punt, P. J. (2013). Analysis of oligosaccharides in lignocellulosic biomass hydrolysates by high-performance anion-exchange chromatography coupled with mass spectrometry (HPAEC-MS). Bioresource Technology, 133, 221–231.

Crisà, A., Ferrè, F., Chillemi, G., & Moioli, B. (2016). RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk. BMC Veterinary Research, 12(1), 1–21. Cuillière, M. L., Trégoat, V., Béné, M. C., Faure, G., & Montagne, P. (1999). Changes in the

kappa-casein and beta-kappa-casein concentrations in human milk during lactation. Journal of Clinical

Laboratory Analysis, 13(5), 213–218.

Curran, C. S., Demick, K. P., & Mansfield, J. M. (2006). Lactoferrin activates macrophages via TLR4-dependent and -inTLR4-dependent signaling pathways. Cellular Immunology, 242(1), 23–30. https://doi.org/10.1016/j.cellimm.2006.08.006

Curry, A. (2013). The milk revolution. Nature, 500, 20–22.

Dallas, D. C., Underwood, M. A., Zivkovic, A. M., & German, J. B. (2012). Digestion of Protein in Premature and Term Infants. Journal of Nutritional Disorders & Therapy, 02(03).

Dam, T. K., & Fred Brewer, C. (2009). Lectins as pattern recognition molecules: The effects of epitope density in innate immunity. Glycobiology, 20(3), 270–279.

de Boer, R., de Wit, J. N., & Hiddink, J. (1977). Processing of Whey By Means of Membranes and Some Applications of Whey Protein Concentrate. International Journal of Dairy Technology,

30(2), 112–120.

De Freitas, J. C. M., Silva, B. D. R. D. A., De Souza, W. F., De Araújo, W. M., Abdelhay, E. S. F. W., & Morgado-Díaz, J. A. (2011). Inhibition of N-linked glycosylation by tunicamycin induces E-cadherin-mediated cell-cell adhesion and inhibits cell proliferation in undifferentiated human colon cancer cells. Cancer Chemotherapy and Pharmacology, 68(1), 227–238. de Kivit, S., Kraneveld, A. D., Garssen, J., & Willemsen, L. E. M. (2011). Glycan recognition at the

interface of the intestinal immune system: Target for immune modulation via dietary components. European Journal of Pharmacology, 668, S124–S132.

Deisenhofer, J. (1981). Crystallographic Refinement and Atomic Models of a Human Fc Fragment and Its Complex with Fragment B of Protein A from Staphylococcus aureus at 2.9- and 2.8-Å Resolution. Biochemistry, 20(9), 2361–2370.

Dell, A., Morris, H. R., Easton, R. L., Panico, M., Patankar, M., Oehninger, S., Koistinen, R., Koistinen, H., Seppala, M., & Clark, G. F. (1995). Structural analysis of the oligosaccharides derived from glycodelin, a human glycoprotein with potent immunosuppressive and contraceptive

(11)

R e f e r e n c e s activities. Journal of Biological Chemistry, 270(41), 24116–24126.

den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325–2340.

Dewettinck, K., Rombaut, R., Thienpont, N., Le, T. T., Messens, K., & Van Camp, J. (2008). Nutritional and technological aspects of milk fat globule membrane material. International Dairy

Journal, 18(5), 436–457.

Dijkstra, J., Forbes, J. M., & France, J. (Eds.) (2005). Quantitative Aspects of Ruminant Digestion and

Metabolism, second edition. Wallingford, United Kingdom: CAB International.

Dissing-Olesen, L., Thaysen-Andersen, M., Meldgaard, M., & Højrup, P. (2008). The Function of the Human Interferon-Beta1a Glycan Determined in Vivo. The Journal of Pharmacology and

Experimental Therapeutics, 326(1), 338–347.

Dong, M. W., & Zhang, K. (2014). Ultra-high-pressure liquid chromatography (UHPLC) in method development. TrAC - Trends in Analytical Chemistry, 63, 21–30.

Donnelly, B. (1973). Reactions of oligosaccharides. 3. Hygroscopic properties. In Cereal Chemistry (Vol. 50, Issue 4, pp. 512–519).

Donovan, S. M. (2016). The Role of Lactoferrin in Gastrointestinal and Immune Development and Function: A Preclinical Perspective. Journal of Pediatrics, 173, S16–S28.

Dowbenko, D., Kikuta, A., Fennie, C., Gillett, N., & Lasky, L. A. (1993). Glycosylation-dependent cell adhesion molecule 1 (GlyCAM 1) mucin is expressed by lactating mammary gland epithelial cells and is present in milk. Journal of Clinical Investigation, 92(2), 952–960.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. Duffy, L., & O’Reilly, S. (2016). Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. ImmunoTargets and Therapy, 5, 69–80. Edge, A. S. B. (2003). Deglycosylation of glycoproteins with trifluoromethanesulphonic acid:

elucidation of molecular structure and function. Biochemical Journal, 376(2), 339–350. Eisenberg, S. W. F., Veldman, E., Rutten, V. P. M. G., & Koets, A. P. (2015). A longitudinal study

of factors influencing the result of a Mycobacterium avium ssp. paratuberculosis antibody ELISA in milk of dairy cows. Journal of Dairy Science, 98(4), 2345–2355.

El-Aneed, A., Cohen, A., & Banoub, J. (2009). Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Applied Spectroscopy Reviews, 44(3), 210– 230.

El-Hatmi, H., Girardet, J. M., Gaillard, J. L., Yahyaoui, M. H., & Attia, H. (2007). Characterisation of whey proteins of camel (Camelus dromedarius) milk and colostrum. Small Ruminant

Research, 70(2–3), 267–271.

El-Loly, M. M., & Mahfouz, M. B. (2011). Lactoferrin in relation to biological functions and applications: A review. In International Journal of Dairy Science (Vol. 6, Issue 2, pp. 79–111). Elgar, D. F., Norris, C. S., Ayers, J. S., Pritchard, M., Otter, D. E., & Palmano, K. P. (2000). Simultaneous separation and quantitation of the major bovine whey proteins including proteose peptone and caseinomacropeptide by reversed-phase high-performance liquid chromatography on polystyrene-divinylbenzene. Journal of Chromatography A, 878(2), 183–196.

Elgersma, A. (2015). Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives.

European Journal of Lipid Science and Technology, 117(9), 1345–1369.

(12)

gram-R e f e r e n c e s

negative bacteria by lactoferrin and transferrin. Infection and Immunity, 56(11), 2774–2781. Ellison, R. T., & Giehl, T. J. (1991). Killing of gram-negative bacteria by lactoferrin and lysozyme.

Journal of Clinical Investigation, 88(4), 1080–1091.

Ericsson, J., Appelkvist, E. L., Runquist, M., & Dallner, G. (1993). Biosynthesis of dolichol and cholesterol in rat liver peroxisomes. Biochimie, 75(3–4), 167–173.

Esko, J. D., & Selleck, S. B. (2002). Order Out Of Chaos: Assembly of Ligand Binding Sites in Heparan Sulfate. Annual Review of Biochemistry, 71(1), 435–471.

Eurostat. (2018). Milk and milk product statistics. https://ec.europa.eu/eurostat

Evershed, R. P., Payne, S., Sherratt, A. G., Copley, M. S., Coolidge, J., Urem-Kotsu, D., Kotsakis, K., Özdoğan, M., Özdoğan, A. E., Nieuwenhuyse, O., Akkermans, P. M. M. G., Bailey, D., Andeescu, R.-R., Campbell, S., Farid, S., Hodder, I., Yalman, N., Özbaşaran, M., Bıçakcı, E., … Burton, M. M. (2008). Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature, 455(7212), 528–531.

Falconer, D. J., Subedi, G. P., Marcella, A. M., & Barb, A. W. (2018). Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan.

ACS Chemical Biology, 13(8), 2179–2189.

Farrell, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F., & Swaisgood, H. E. (2004). Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. Journal of Dairy Science, 87(6), 1641–1674.

Feist, P., & Hummon, A. B. (2015). Proteomic challenges: Sample preparation techniques for Microgram-Quantity protein analysis from biological samples. International Journal of

Molecular Sciences, 16(2), 3537–3563.

Fekete, S., Schappler, J., Veuthey, J. L., & Guillarme, D. (2014). Current and future trends in UHPLC.

TrAC - Trends in Analytical Chemistry, 63, 2–13.

Fellenberg, M., Behnken, H. N., Nagel, T., Wiegandt, A., Baerenfaenger, M., & Meyer, B. (2013). Glycan analysis: Scope and limitations of different techniques - A case for integrated use of LC-MS(/MS) and NMR techniques. Analytical and Bioanalytical Chemistry, 405(23), 7291– 7305.

Fernandes, K. E., & Carter, D. A. (2017). The antifungal activity of lactoferrin and its derived peptides: Mechanisms of action and synergy with drugs against fungal pathogens. Frontiers

in Microbiology, 8(JAN), 1–10.

Ferrier, R. J., & Overend, W. G. (1959). Newer aspects of the stereochemistry of carbohydrates.

Quarterly Reviews, Chemical Society, 13(3), 265–286.

Feuermann, Y., Mabjeesh, S. J., & Shamay, A. (2004). Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. Journal of Dairy Science, 87(9), 2941–2946. Fiete, D., Srivastava, V., Hindsgaul, O., & Baenziger, J. U. (1991). A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAcβ1, 4GlcNAcβ1,2Manα that mediates rapid clearance of lutropin. Cell, 67(6), 1103–1110.

Figueroa-Lozano, S., Valk-Weeber, R. L., van Leeuwen, S. S., Dijkhuizen, L., & de Vos, P. (2018). Dietary N-Glycans from Bovine Lactoferrin and TLR Modulation. Molecular Nutrition & Food

Research, 62(2), 1700389. Chapter 4

Figueroa-Lozano, S., Valk-Weeber, R. L., Akkerman, R., Abdulahad, W., van Leeuwen, S. S., Dijkhuizen, L., & de Vos, P. (2020). Inhibitory Effects of Dietary N-Glycans From Bovine Lactoferrin on Toll-Like Receptor 8; Comparing Efficacy With Chloroquine. In Frontiers in Immunology (Vol. 11, p. 790). Chapter 5

Flint, D. J., & Gardner, M. (1994). Evidence that growth hormone stimulates milk synthesis by direct action on the mammary gland and that prolactin exerts effects on milk secretion

(13)

R e f e r e n c e s

by maintenance of mammary deoxyribonucleic acid content and tight junction status.

Endocrinology, 135(3), 1119–1124.

Fong, B. Y., Norris, C. S., & MacGibbon, A. K. H. (2007). Protein and lipid composition of bovine milk-fat-globule membrane. International Dairy Journal, 17(4), 275–288.

Foo, H. C., Smith, N. W., & Stanley, S. M. R. (2015). Fabrication of an on-line enzyme micro-reactor coupled to liquid chromatography-tandem mass spectrometry for the digestion of recombinant human erythropoietin. Talanta, 135, 18–22.

Forgács, E. (1995). Retention strength and selectivity of porous graphitized carbon columns Theoretical aspects and practical applications. TrAC Trends in Analytical Chemistry, 14(1), 23–29.

Forgács, E., & Cserháti, T. (2001). Solvent Strength and Selectivity on a Porous Graphitized Carbon Column Separated by a Spectral Mapping Technique Using Barbiturates as Solutes. Analytical Sciences, 17(2), 307–312.

Fox, J. L., Stevens, S. E., Taylor, C. P., & Poulsen, L. L. (1978). SDS removal from protein by polystyrene beads. Analytical Biochemistry, 87(1), 253–256.

Fox, P. F., & Mulvihill, D. M. (1982). Milk proteins: molecular, colloidal and functional properties.

Journal of Dairy Research, 49(4), 679–693.

Freeze, H. H., & Kranz, C. (2010). Endoglycosidase and glycoamidase release of N-linked glycans. In

Current Protocols in Molecular Biology (Vol. 2010).

Freeze H. H., Hart G. W. & Schnaar R. L. (2017). Glycosylation Precursors. In E. J. Varki A, Cummings RD (Ed.), Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press. Fu, D., Chen, L., & O’Neill, R. A. (1994). A detailed structural characterization of ribonuclease B

oligosaccharides by1H NMR spectroscopy and mass spectrometry. Carbohydrate Research,

261(2), 173–186.

Fujii, S., Nishiura, T., Nishikawa, A., Miura, R., & Taniguchi, N. (1990). Structural heterogeneity of sugar chains in immunoglobulin G. Conformation of immunoglobulin G molecule and substrate specificities of glycosyltransferases. Journal of Biological Chemistry, 265(11), 6009–6018.

Fujita, K., Oura, F., Nagamine, N., Katayama, T., Hiratake, J., Sakata, K., Kumagai, H., & Yamamoto, K. (2005). Identification and Molecular Cloning of a Novel Glycoside Hydrolase Family of Core 1 Type O-Glycan-specific Endo-α-N-acetylgalactosaminidase from Bifidobacterium longum.

Journal of Biological Chemistry, 280(45), 37415–37422.

Fukuda, M. (2001). Beta-elimination for release of O-GalNAc-linked oligosaccharides from glycoproteins and glycopeptides. Current Protocols in Molecular Biology, Chapter 17(1995), Unit17.15B.

Fukushima, K., Takahashi, T., Ito, S., Takaguchi, M., Takano, M., Kurebayashi, Y., Oishi, K., Minami, A., Kato, T., Park, E. Y., Nishimura, H., Takimoto, T., & Suzuki, T. (2014). Terminal sialic acid linkages determine different cell infectivities of human parainfluenza virus type 1 and type 3. Virology, 464–465(1), 424–431.

Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., & Macher, B. A. (1987). Evolutionary Relationship between the Natural Anti-Gal Antibody and the Galα 1 → 3Gal Epitope in Primates.

Proceedings of the National Academy of Sciences of the United States of America, 84(5),

1369–1373.

Galili, U. (2005). The α-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunology and Cell Biology, 83(6), 674–686.

Gänzle, M. G., Haase, G., & Jelen, P. (2008). Lactose: Crystallization, hydrolysis and value-added derivatives. International Dairy Journal, 18(7), 685–694.

(14)

R e f e r e n c e s

Gao, J., Thomas, D. A., Sohn, C. H., & Beauchamp, J. L. (2013). Biomimetic Reagents for the Selective Free Radical and Acid–Base Chemistry of Glycans: Application to Glycan Structure Determination by Mass Spectrometry. Journal of the American Chemical Society, 135(29), 10684–10692.

Gao, W., Xiong, Y., Li, Q., & Yang, H. (2017). Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: A journey from molecular to nano therapeutics.

Frontiers in Physiology, 8(JUL).

Garcia-Cattaneo, A., Gobert, F.-X., Müller, M., Toscano, F., Flores, M., Lescure, A., Del Nery, E., & Benaroch, P. (2012). Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling. Proceedings of the National Academy of Sciences of the United States of America,

109(23), 9053–9058.

Geddes, K., Magalhães, J. G., & Girardin, S. E. (2009). Unleashing the therapeutic potential of NOD-like receptors. Nature Reviews Drug Discovery, 8(6), 465–479.

Gellrich, K., Meyer, H. H. D., & Wiedemann, S. (2014). Composition of major proteins in cow milk differing in mean protein concentration during the first 155 days of lactation and the influence of season as well as shortterm restricted feeding in early and mid-lactation. Czech

Journal of Animal Science, 59(3), 97–106.

Gerberding, S. J., & Byers, C. H. (1998). Preparative ion-exchange chromatography of proteins from dairy whey. Journal of Chromatography A, 808(1–2), 141–151.

Girardet, J. M., & Linden, G. (1996). PP3 component of bovine milk: a phosphorylated whey glycoprotein. J. Dairy Res, 63(2), 333–350.

Glick, B. S., & Luini, A. (2011). Models for Golgi traffic: A critical assessment. Cold Spring Harbor

Perspectives in Biology, 3(11), 1–16.

Glish, G. L., & Vachet, R. W. (2003). The basics of mass spectrometry in the twenty-first century.

Nature Reviews. Drug Discovery, 2(2), 140–150.

Goetze, A. M., Liu, Y. D., Zhang, Z., Shah, B., Lee, E., Bondarenko, P. V., & Flynn, G. C. (2011). High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology, 21(7), 949–959.

Goldin, B. R., & Gorbach, S. L. (1976). The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. Journal of the National Cancer Institute, 57(2), 371–375. Gornik, O., & Lauc, G. (2008). Glycosylation of serum proteins in inflammatory diseases. Disease

markers, 25(4-5), 267–278.

Greer, F. R. (1989). Calcium, phosphorus, and magnesium: how much is too much for infant formulas? The Journal of Nutrition, 119(12 Suppl), 1846–1851.

Grieve, D. G., Korver, S., Rijpkema, Y. S., & Hof, G. (1986). Relationship between milk composition and some nutritional parameters in early lactation. Livestock Production Science, 14(3), 239–254.

Griffiths, J. (2008). A Brief History of Mass Spectrometry. Analytical Chemistry, 80(15), 5678–5683. Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V. V., & Bauman, D. E. (2000). Conjugated Linoleic Acid Is Synthesized Endogenously in Lactating Dairy Cows by Δ9-Desaturase. The Journal of Nutrition, 130(9), 2285–2291.

Groenen, M. A. M., Dijkhof, R. J. M., & van der Poel, J. J. (1995). Characterization of a GlyCAM1-like gene (glycosylation-dependent cell adhesion molecule 1) which is highly and specifically expressed in the lactating bovine mammary gland. Gene, 158(2), 189–195.

Groot, F., Geijtenbeek, T. B. H., Sanders, R. W., Baldwin, C. E., Sanchez-Hernandez, M., Floris, R., Van Kooyk, Y., De Jong, E. C., Berkhout, B., Kooyk, Y. Van, & Jong, E. C. De. (2005). Lactoferrin Prevents Dendritic Cell-Mediated Human Immunodeficiency Virus Type 1 Transmission by

(15)

R e f e r e n c e s

Blocking the DC-SIGN-gp120 Interaction. Journal of Virology, 79(5), 3009–3015.

Grumbach, E. S., Diehl, D. M., & Neue, U. D. (2008). The application of novel 1.7 µm ethylene bridged hybrid particles for hydrophilic interaction chromatography. Journal of Separation

Science, 31(9), 1511–1518.

Guiducci, C., Gong, M., Cepika, A.-M., Xu, Z., Tripodo, C., Bennett, L., Crain, C., Quartier, P., Cush, J. J., Pascual, V., Coffman, R. L., & Barrat, F. J. (2013). RNA recognition by human TLR8 can lead to autoimmune inflammation. The Journal of Experimental Medicine, 210(13), 2903–2919. Gupta, R., Jaswal, V. M. S., & Mahmood, A. (1992a). Intestinal Epithelial Cell Surface Glycosylation

in Mice 1. Effect of Low-Protein Diet. Annals of Nutrition and Metabolism, 36(2), 71–78. Gupta, R., Jaswal, V. M. S., & Meenu Mahmood, A. (1992b). Intestinal Epithelial Cell Surface

Glycosylation in Mice I. Effect of High-Protein Diet. Annals of Nutrition and Metabolism,

36(5–6), 288–295.

Gustafsson, A., Kacskovics, I., Breimer, M. E., Hammarström, L., & Holgersson, J. (2005). Carbohydrate phenotyping of human and animal milk glycoproteins. Glycoconjugate

Journal, 22(3), 109–118.

Gustavsson, F., Buitenhuis, A. J., Johansson, M., Bertelsen, H. P., Glantz, M., Poulsen, N. A., Lindmark Månsson, H., Stålhammar, H., Larsen, L. B., Bendixen, C., Paulsson, M., & Andrén, A. (2014). Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows. Journal of Dairy Science, 97(6), 3866–3877. Hahn, R., Schulz, P. M., Schaupp, C., & Jungbauer, A. (1998). Bovine whey fractionation based on

cation-exchange chromatography. Journal of Chromatography A, 795(2), 277–287. Halbeek, H. Van, Dorland, L., Montreuil, J., Fournet, B., & Schmid, K. (1981). Characterization of the

Microheterogeneity in Glycoproteins by 500- MHz ’H-NMR Spectoscopy of Glycopeptide Preparations. The Journal of Biological Chemistry, 256(11), 5588–5590.

Haltiwanger, R. S., Wells, L., Freeze, H. H., & Stanley, P. (2017). Other Classes of Eukaryotic Glycans. In E. Varki A, Cummings RD, Esko JD, et al. (Ed.), Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press.

Hambræus, L., Lönnerdal, B., Forsum, E., & Gebre-Medhin, M. (1978). Nitrogen And Protein Components Of Human Milk. Acta Paediatrica, 67(5), 561–565.

Han, L., & Costello, C. E. (2013). Mass spectrometry of glycans. Biochemistry (Mosc), 78(7), 710– 720.

Hanemaaijer, J. H. (1985). Microfiltration in whey processing. Desalination, 53(1–3), 143–155. Harms, H. K., Zimmer, K. P., Kurnik, K., Bertele-Harms, R. M., Weidinger, S., & Reiter, K. (2002).

Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr., 91(10), 1065– 1072.

Hart, G. W., Slawson, C., Ramirez-Correa, G., & Lagerlof, O. (2011). Cross Talk Between

O-GlcNAcylation and Phosphorylation: Roles in Signaling, Transcription, and Chronic

Disease. Annual Review of Biochemistry, 80(1), 825–858.

Harvey, D. J., Wing, D. R., Küster, B., & Wilson, I. B. H. (2000). Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. Journal of the American Society for Mass

Spectrometry, 11(6), 564–571.

Harvey, D. J. (2005). Collision-induced fragmentation of negative ions from N-linked glycans derivatized with 2-aminobenzoic acid. Journal of Mass Spectrometry, 40(5), 642–653. Hashimoto, C., Hudson, K. L., & Anderson, K. V. (1988). The Toll gene of drosophila, required for

dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell, 52(2), 269–279.

(16)

R e f e r e n c e s

Haug, A., Høstmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition – a review. Lipids in Health and Disease, 6(1), 25.

Håversen, L., Ohlsson, B. G., Hahn-Zoric, M., Hanson, L. Å., & Mattsby-Baltzer, I. (2002). Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cellular

Immunology, 220(2), 83–95.

He, Y., Lawlor, N. T., & Newburg, D. S. (2016). Human Milk Components Modulate Toll-Like Receptor-Mediated Inflammation. Advances in Nutrition (Bethesda, Md.), 7(1), 102–111. Heird, W. C. (2004). Taurine in neonatal nutrition – revisited. Archives of Disease in Childhood -

Fetal and Neonatal Edition, 89(6), F473–F474.

Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., & Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature Immunology, 3(2), 196–200.

Henriquez, D. S., Tepperman, H. M., & Tepperman, J. (1979). Effects of high-glucose and high-fat diets on concanavalin A binding to rat liver plasma membranes and on the amount and pattern of their glycoprotein carbohydrates. Journal of Lipid Research, 20(5), 624–630. Hettinga, K., van Valenberg, H., de Vries, S., Boeren, S., van Hooijdonk, T., van Arendonk, J., &

Vervoort, J. (2011). The host defense proteome of human and bovine milk. PLoS ONE, 6(4), 2–9. https://doi.org/10.1371/journal.pone.0019433

Higel, F., Demelbauer, U., Seidl, A., Friess, W., & Sörgel, F. (2013). Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Analytical

and Bioanalytical Chemistry, 405(8), 2481–2493.

Hirschberg, C. B., Robbins, P. W., & Abeijon, C. (1998). Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem,

67, 49–69.

Hoffstetter-Kuhn, S., Paulus, A., Gassmann, E., & Michael Widmer, H. (1991). Influence of Borate Complexation on the Electrophoretic Behavior of Carbohydrates in Capillary Electrophoresis.

Analytical Chemistry, 63(15), 1541–1547.

Hofland, G. W., Van Es, M., Van Der Wielen, L. A. M., & Witkamp, G. J. (1999). Isoelectric Precipitation of Casein Using High-Pressure CO2. Ind Eng Chem Res, 38, 4919–4927.

Hollox, E. (2004). Evolutionary Genetics: Genetics of lactase persistence - fresh lessons in the history of milk drinking. Eur J Hum Genet, 13(3), 267–269.

Holt, C., Carver, J. A., Ecroyd, H., & Thorn, D. C. (2013). Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. Journal of Dairy

Science, 96(10), 6127–6146.

Hossler, P., Khattak, S. F., & Li, Z. J. (2009). Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology, 19(9), 936–949.

Hou, Z., Bailey, J. P., Vomachka, A. J., Matsuda, M., Lockefeer, J. A., & Horseman, N. D. (2000). Glycosylation-dependent cell adhesion molecule 1 (GlyCAM 1) is induced by prolactin and suppressed by progesterone in mammary epithelium. Endocrinology, 141(11), 4278–4283. https://doi.org/10.1210/endo.141.11.7795

Hu, T., Suter, S. R., Mumbleau, M. M., & Beal, P. A. (2018). TLR8 activation and inhibition by guanosine analogs in RNA: importance of functional groups and chain length. Bioorganic &

Medicinal Chemistry, 26(1), 77–83.

Hua, S., Nwosu, C. C., Strum, J. S., Seipert, R. R., An, H. J., Zivkovic, A. M., German, J. B., & Lebrilla, C. B. (2012). Site-specific protein glycosylation analysis with glycan isomer differentiation.

Analytical and Bioanalytical Chemistry, 403(5), 1291–1302.

(17)

R e f e r e n c e s

Glycans for Subsequent Analysis through MALDI Mass Spectrometry and Capillary Electrophoresis. Analytical Chemistry, 73(24), 6063–6069.

Huffman, L. M., & Harper, W. J. (1999). Maximizing the value of milk through separation technologies. Journal of Dairy Science, 82(10), 2238–2244.

Hurley, W. L., & Theil, P. K. (2011). Perspectives on immunoglobulins in colostrum and milk.

Nutrients, 3(4), 442–474.

Huysamen, C., & Brown, G. D. (2009). The fungal pattern recognition receptor, Dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiology Letters, 290(2), 121– 128.

Hwang, S. A., Kruzel, M. L., & Actor, J. K. (2005). Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. International Immunopharmacology, 5(3), 591–599. Icer, M. A., & Gezmen-Karadag, M. (2018). The multiple functions and mechanisms of osteopontin.

Clinical Biochemistry, 59(April), 17–24.

Iglesias-Figueroa, B., Valdiviezo-Godina, N., Siqueiros-Cendón, T., Sinagawa-García, S., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2016). High-level expression of recombinant bovine lactoferrin in Pichia pastoris with antimicrobial activity. International Journal of Molecular

Sciences, 17(6).

Inagaki, M., Nakaya, S., Nohara, D., Yabe, T., Kanamaru, Y., & Suzuki, T. (2010a). The multiplicity of N-glycan structures of bovine milk 18 kda lactophorin (milk GlyCAM-1). Bioscience,

Biotechnology, and Biochemistry, 74(2), 447–450.

Inagaki, M., Nagai, S., Yabe, T., Nagaoka, S., Minamoto, N., Takahashi, T., Matsuda, T., Nakagomi, O., Nakagomi, T., EBINA, T., & Kanamaru, Y. (2010b). The Bovine Lactophorin C-Terminal Fragment and PAS6/7 Were Both Potent in the Inhibition of Human Rotavirus Replication in Cultured Epithelial Cells and the Prevention of Experimental Gastroenteritis. Bioscience,

Biotechnology, and Biochemistry, 74(7), 1386–1390.

Inchaisri, C., Jorritsma, R., Vos, P. L. A. M., van der Weijden, G. C., & Hogeveen, H. (2011). Analysis of the economically optimal voluntary waiting period for first insemination. Journal of Dairy

Science, 94(8), 3811–3823.

Indyk, H. E., & Filonzi, E. L. (2005). Determination of lactoferrin in bovine milk, colostrum and infant formulas by optical biosensor analysis. International Dairy Journal, 15(5), 429–438. Indyk, H. E., Mcgrail, I. J., Watene, G. A., & Filonzi, E. L. (2007). Optical biosensor analysis of the

heat denaturation of bovine lactoferrin. Food Chemistry, 101, 838–844.

Innocente, N., Biasutti, M., & Blecker, C. (2011). HPLC profile and dynamic surface properties of the proteose-peptone fraction from bovine milk and from whey protein concentrate. International Dairy Journal, 21(4), 222–228.

Institute of Medicine. (2004). Infant Formula: Evaluating the Safety of New Ingredients. The National Academies Press.

Iversen, L. F., Kastrup, J. S., Bjørn, S. E., Wiberg, F. C., Larsen, I. K., Flodgaard, H. J., & Rasmussen, P. B. (1999). Structure and function of the N-linked glycans of HBP/CAP37/azurocidin: crystal structure determination and biological characterization of nonglycosylated HBP. Protein

Science : A Publication of the Protein Society, 8(10), 2019–2026.

Jacob, G. S., & Scudder, P. B. T.-M. in E. (1994). [17] Glycosidases in structural analysis. In Guide to

Techniques in Glycobiology (Vol. 230, pp. 280–299). Academic Press.

Jean-François, H., & Dominique, B. (1999). Intestinal absorption, blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals. Reproduction,

(18)

R e f e r e n c e s

Jensen, R. G., Ferris, A. M., & Lammi-Keefe, C. J. (1991). The Composition of Milk Fat. Journal of

Dairy Science, 74(9), 3228–3243.

Jensen, P. H., Karlsson, N. G., Kolarich, D., & Packer, N. H. (2012). Structural analysis of N- and

O-glycans released from glycoproteins. Nature Protocols, 7(7), 1299–1310.

Jensen, H. B., Pedersen, K. S., Johansen, L. B., Poulsen, N. A., Bakman, M., Chatterton, D. E. W., & Larsen, L. B. (2015). Genetic variation and posttranslational modification of bovine κ-casein: Effects on caseino-macropeptide release during renneting. Journal of Dairy Science, 98(2), 747–758.

Johannes, L., Jacob, R., & Leffler, H. (2018). Galectins at a glance. Journal of Cell Science, 131(9), 1–9.

Johke, T., Hageman, E. C., & Larson, B. L. (1964). Some Immunological Relationships of α-Lactalbumin and β-Lactoglobulin in Milks of Various Species. Journal of Dairy Science, 47(1), 28–31. Johnsen, L. B., Sørensen, E. S., Petersen, T. E., & Berglund, L. (1995). Characterization of a bovine

mammary gland PP3 cDNA reveals homology with mouse and rat adhesion molecule GlyCAM-1. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1260(1), 116–118.

Johnson, J. L., Jones, M. B., Ryan, S. O., & Cobb, B. A. (2013). The regulatory power of glycans and their binding partners in immunity. Trends in Immunology, 34(6), 290–298.

Johnston, W. H., Ashley, C., Yeiser, M., Harris, C. L., Stolz, S. I., Wampler, J. L., Wittke, A., & Cooper, T. R. (2015). Growth and tolerance of formula with lactoferrin in infants through one year of age: double-blind, randomized, controlled trial. BMC Pediatrics, 15(1), 173.

Jollès, P., & Jollès, J. (1984). What’s new in lysozyme research? - Always a model system, today as yesterday. Molecular and Cellular Biochemistry, 63(2), 165–189.

Jost, R., Maire, J. C., Maynard, F., & Secretin, M. C. (1999). Aspects of whey protein usage in infant nutrition, a brief review. International Journal of Food Science and Technology, 34(5–6), 533–542.

Juge, N., Tailford, L., & Owen, C. D. (2016). Sialidases from gut bacteria: a mini-review. Biochemical

Society Transactions, 44(1), 166–175.

Kafka, A. P., Kleffmann, T., Rades, T., & McDowell, A. (2011). The application of MALDI TOF MS in biopharmaceutical research. International Journal of Pharmaceutics, 417(1–2), 70–82. Kahles, F., Findeisen, H. M., & Bruemmer, D. (2014). Osteopontin: A novel regulator at the cross

roads of inflammation, obesity and diabetes. Molecular Metabolism, 3(4), 384–393. Kakugawa, Y., Wada, T., Yamaguchi, K., Yamanami, H., Ouchi, K., Sato, I., & Miyagi, T. (2002).

Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proceedings of the National Academy

of Sciences of the United States of America, 99(16), 10718–10723.

Kamerling, J. P., & Vliegenthart, J. F. G. (1989). Carbohydrates. In A. M. Lawson (Ed.), Clinical

Biochemistry – Principles, Methods, Applications, Mass Spectrometry, Vol. 1 (pp. 176–263).

Walter de Gruyter.

Kamerling, J. P., & Gerwig, G. J. (2007). Strategies for the Structural Analysis of Carbohydrates. In J. P. Kamerling, G.-J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, & A. G. J. Voragen (Eds.), Comprehensive glycoscience : from chemistry to systems biology (Chapter 2.01). Elsevier. Kamerling, J. P. (2007a). Basics Concepts and Nomenclature Recommendations in Carbohydrate

Chemistry. In J. P. Kamerling, G.-J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, & A. G. J. Voragen (Eds.), Comprehensive glycoscience : from chemistry to systems biology (Chapter 1.01). Elsevier.

(19)

R e f e r e n c e s

In J. P. Kamerling, G.-J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, & A. G. J. Voragen (Eds.), Comprehensive glycoscience : from chemistry to systems biology (Vol. 2) (pp. 2/133-2/191). Kaneko, Y., Nimmerjahn, F., & Ravetch, J. V. (2006). Anti-inflammatory activity of immunoglobulin

G resulting from Fc sialylation. Science, 313(5787), 670–673.

Kang, S., Tanaka, T., Narazaki, M., & Kishimoto, T. (2019). Targeting Interleukin-6 Signaling in Clinic.

Immunity, 50(4), 1007–1023.

Kannagi, R., Yin, J., Miyazaki, K., & Izawa, M. (2008). Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants--Hakomori's concepts revisited. Biochimica et biophysica acta, 1780(3), 525–531.

Kanno, C. (1989). Purification and Separation of Multiple Forms of Lactophorin from Bovine Milk Whey and Their Immunological and Electrophoretic Properties. Journal of Dairy Science,

72(4), 883–891.

Kappeler, S., Farah, Z., & Puhan, Z. (1999). Alternative splicing of lactophorin mRNA from lactating mammary gland of the camel (Camelus dromedarius). Journal of Dairy Science, 82(10), 2084–2093.

Karav, S., Bell, J. M. L. N. D. M., Parc, A. Le, Liu, Y., Mills, D. a., Block, D. E., & Barile, D. (2015a). Characterizing the release of bioactive N- glycans from dairy products by a novel endo- β -

N- acetylglucosaminidase. Biotechnology Progress, n/a-n/a.

Karav, S., Le Parc, A., Moura Bell, J. M. L. N. de, Rouquié, C., Mills, D. A., Barile, D., & Block, D. E. (2015b). Kinetic characterization of a novel endo-β-N-acetylglucosaminidase on concentrated bovine colostrum whey to release bioactive glycans. Enzyme and Microbial

Technology, 77, 46–53. https://doi.org/10.1016/j.enzmictec.2015.05.007

Karav, S., Le Parc, A., Moura Bell, J. M.L. N., Frese, S. A., Kirmiz, N., Block, D. E., Barile, D., & Mills, D. A. (2016). Oligosaccharides released from milk glycoproteins are selective growth substrates for infant-associated bifidobacteria. Applied and Environmental Microbiology,

82(12), 3622–3630.

Karav, S., German, J. B., Rouquié, C., Le Parc, A., & Barile, D. (2017). Studying lactoferrin

N-glycosylation. International Journal of Molecular Sciences, 18(4), 1–14.

Kates, M. (1964). Simplified Procedures for Hydrolysis or Methanolysis of Lipids. Journal of Lipid

Research, 15, 132–135.

Kato, M., Sakai-Kato, K., Jin, H., Kubota, K., Miyano, H., Toyo’oka, T., Dulay, M. T., & Zare, R. N. (2004). Integration of on-line protein digestion, peptide separation, and protein identification using pepsin-coated photopolymerized sol-gel columns and capillary electrophoresis/mass spectrometry. Analytical Chemistry, 76(7), 1896–1902.

Kavanaugh, D., O’Callaghan, J., Kilcoyne, M., Kane, M., Joshi, L., & Hickey, R. M. (2015). The intestinal glycome and its modulation by diet and nutrition. Nutrition Reviews, 73(6), nuu019. Kawai, T., & Akira, S. (2006). TLR signaling. Cell Death and Differentiation, 13(5), 816–825. Kawai, Taro, & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity:

Update on toll-like receptors. Nature Immunology, 11(5), 373–384.

Kawasaki, N., Ohta, M., Hyuga, S., Hashimoto, O., & Hayakawa, T. (1999). Analysis of carbohydrate heterogeneity in a glycoprotein using liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry. Analytical Biochemistry, 269(2), 297– 303.

Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in Immunology,

5(SEP), 1–8.

Kay, J. K., Mackle, T. R., Auldist, M. J., Thomson, N. A., & Bauman, D. E. (2004). Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. Journal

Referenties

GERELATEERDE DOCUMENTEN

With regard to the total protein composition, Holstein-Friesian cows produce milk that is lower in protein content, both casein and whey proteins, than other breeds (Brodziak et

In this study, a high-throughput analysis method was applied to the glycoprofile of lactoferrin isolated from colostrum, mature and pre-dry period mature milk was analyzed

The observed pattern of incomplete precipitation was also seen upon analysis of the glycoprofiles of the acetone and pellet fractions of thyroglobulin and human

Bovine Lactoferrin induces Myd88 dependent activation of THP1 MD2 CD14 cells To determine whether bLF has immune stimulating effects we stimulated the THP1 MD2 CD14 cell line with

As inhibitory effects of CQN and of the different isolated N-glycans from bLF were strong on ssRNA40 induced TLR-8 activation and only minor on activation induced by R848, we

In conclusion, the approaches reported in this paper for bovine whey glycoprofile analysis allow a rapid screening and interpretation of milk and whey (product) samples from

For IgG and GlyCAM-1, concentration determination was performed by procedure B, calculating molar quantities of signature glycan peaks 2 and 28 (Fig. 1) and converting to

By applying the whey analysis method to two individual dietary intervention studies using Holstein-Friesian cows, the effect of diet as well as inter- and intra-cow variation on