• No results found

Monoamine oxidase inhibitory activities of heterocyclic chalcones

N/A
N/A
Protected

Academic year: 2021

Share "Monoamine oxidase inhibitory activities of heterocyclic chalcones"

Copied!
23
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Monoamine oxidase inhibitory activities

of heterocyclic chalcones

C Minders

20284462

B. Pharm

Dissertation submitted for the degree Magister Scientiae in

Pharmaceutical Chemistry at the North-West University,

Potchefstroom Campus.

Supervisor:

Dr. A. C. U. Lourens

Co-supervisor: Prof. J. P. Petzer

Co-supervisor:

Dr. A. Petzer

(2)

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author

(3)

P ag e

i

ABSTRACT

TITLE

Monoamine oxidase inhibitory activities of heterocyclic chalcones.

KEYWORDS

Chalcones, monoamine oxidase inhibitors, Parkinson’s disease.

BACKGROUND AND RATIONALE

Parkinson’s disease is the second most common age-related neurodegenerative disease after Alzheimer’s disease. The characteristic pathological feature of Parkinson’s disease is the loss of neurons in the substantia nigra pars compacta (SNpc), which leads to a striatal dopamine deficiency responsible for the major symptoms of Parkinson’s disease. These symptoms include tremor at rest, postural instability, bradykinesia and in the later stages of Parkinson’s disease, even psychosis.

Presently, there is still no cure for Parkinson’s disease and all treatments are only symptomatic. Current research is therefore directed towards the prevention of further dopaminergic neurodegeneration, while the ultimate aim is the reversal of neurodegeneration.

Monoamine oxidase (MAO) enzymes are responsible for the regulation and metabolism of monoamine neurotransmitters, such as dopamine. There are two MAO isoforms, MAO-A and MAO-B. Since MAO-B has greater activity in the basal ganglia, it is of particular importance in movement disorders, which include Parkinson’s disease. The selective inhibition of MAO-B, increases dopamine available for binding, and thus reduces Parkinson’s disease symptoms. MAO inhibitors also have neuroprotective potential and thus may slow down, halt and even reverse neurodegeneration in Parkinson’s disease. It is still unclear exactly how MAO inhibitors protect neurons, but one theory suggests that MAO inhibition decreases oxidative stress by reducing the formation of hydrogen peroxide, a metabolic by-product of MAO oxidation of monoamines. Normally, hydrogen peroxide is inactivated by glutathione (GSH), however, in Parkinson’s disease, GSH levels are low, resulting in the accumulation of hydrogen peroxide, which then becomes

available for the Fenton reaction. In the Fenton reaction, Fe2+ reacts with hydrogen peroxide and

(4)

P

ag

e

ii

damage lipids, proteins and DNA. MAO inhibitors reduce the formation of hydrogen peroxide thus decreasing the formation of hydroxyl radicals and oxidative stress.

The MAO inhibitory potential of natural and synthetic chalcones have been illustrated. For example, in 1987, Tanaka and co-workers determined that natural chalcones, such as

isoliquiritigenin, have MAO inhibitory activity in rat mitochondria. In 2009, Chimenti and co-workers synthesized a series of 1,3-diphenyl-2-propen-1-ones which exhibited human MAO-B (hMAO-B) selective inhibitory activity. On the other hand, Robinson and co-workers (2013), synthesized novel furanochalcones which also had hMAO-B selective inhibitory activity. A reversible, competitive mode of binding was demonstrated by these compounds. Since the effect of heterocyclic substitution, other than furan on the MAO inhibitory properties of the chalcone scaffold remains unexplored, the aim of this study was to synthesize and evaluate further heterocyclic chalcone analogues as inhibitors of hMAO.

RESULTS

Design and synthesis: Heterocyclic chalcone analogues that incorporated pyrrole,

5-methylthiophene, 5-chlorothiophene and 2-methoxypyridine substitution were synthesized using

the Claisen-Schmidt condensation reaction. All compounds were characterized with 1H-NMR, 13

C-NMR, IR, MS, and melting points were recorded. Purity was determined with HPLC analysis.

MAO inhibition studies: The 50% inhibitory concentration (IC50) values and selectivity index (SI) of

all compounds were determined using a fluorometric assay and kynuramine as substrate. Eight

out of the ten synthesized compounds exhibited IC50 values < 1 µM, and can thus be considered

as potent MAO-B inhibitors, while all compounds showed selectivity for the MAO-B isoform.

Compound 10i was the most potent MAO-B inhibitor with an IC50 value of 0.067 µM and the highest

SI of 240.7. The most potent MAO-A inhibitor, compound 10f, had an IC50 value of 3.805 µM. Some

structure-activity relationships were derived, for example; it was concluded that heterocyclic substitution with 5-methyl-thiophene ring resulted in optimal hMAO-B inhibition, while pyrrole substitution was less favourable. Further investigation is however required as this is only a preliminary study.

Reversibility studies: To determine the reversibility of binding, the recovery of enzymatic activity

after dilution of the enzyme inhibitor complexes were determined for selected compounds. Results indicated that the most potent MAO-A inhibitor, the pyrrole derivative 10f, had a reversible mode of binding to both the hMAO-B and hMAO-A isoforms, since the enzyme activities were completely recovered by dilution of the inhibitor concentration. In contrast, enzyme activity was only partially recovered after dilution of the most potent MAO-B inhibitor 10i, indicating that this methylthiophene derivative possibly exhibited tight binding to the hMAO-B isoform, and the inhibition caused by this compound was not readily reversed by dilution. In order to determine whether the tight binding as

(5)

P

ag

e

iii

exhibited by compound 10i was due to the thiophene or phenyl moieties, reversibility of binding was also determined for the pyrrole derivative 10e. The results showed that 10e had a reversible mode of binding to the hMAO-B isoform, and enzyme activity was completely recovered by dilution of the inhibitor. Based on these results, it was concluded that the tight binding as exhibited by compound 10i was due to the presence of the thiophene moiety. To confirm that compound 10i exhibited tight, and not irreversible binding, reversibility of binding was also determined by dialysis

of enzyme-inhibitor mixtures. For this purpose hMAO-B and 10i, at a concentration of 4 × IC50,

were preincubated for a period of 15 min and subsequently dialyzed for 24 h. The results of this study showed that 10i had a reversible mode of binding for MAO-B, since enzyme activity was recovered to a level of 83% after dialysis.

Mode of inhibition: To determine the mode of inhibition of compound 10f, Lineweaver-Burk plots

were constructed for the inhibition of hMAO-A and hMAO-B. The lines of the Lineweaver-Burk plots intersected at a single point at the y-axis, indicating that 10f had a competitive mode of binding to both hMAO-B and hMAO-A isoforms.

MTT viability assay: To determine the toxicity of the chalcones for cultured cells, selected

compounds were evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay. The cytotoxicity of the test compounds were evaluated at concentrations of 1 and 10 μM, in HeLa cells. The results indicated that compound 10i was non-toxic at 1 and 10 μM, with 100% and 96% cell viability remaining after 24 h exposure of the compound to the cultured cells. Compound 10f, however, exhibited significant toxicity at 10 μM, with only 5% viable cells remaining. In contrast, compound 10e, with the same pyrrole moiety as 10f, was non-toxic at 1 µM and 10 μM, with 99% and 98%, cell viability remaining. It was concluded that the pyrrole moiety of

10f was not responsible for its higher degree of cytotoxicity, which suggests that the CF3

substituent may play a role in the higher degree of cytotoxicity observed for 10f. Further investigation is required to determine the mode of cytotoxicity, when cultured cells are exposed to

10f.

Docking Studies: To complete this study and rationalise the results of the MAO inhibition studies,

molecular modelling was carried out and all compounds were docked into the crystal structure of hMAO-B, by using the CDOCKER module of Discovery Studio. Some insights were obtained regarding the binding of compound 10i. This compound bound to MAO-B with the phenyl ring facing the FAD cofactor. This orientation allowed for the formation of pi-pi interaction with Tyr 398 as well as a pi-sigma interaction between the thiophene ring and Ile 199 (which is part of the gating switch of MAO-B). It is speculated that the tight binding component of hMAO-B inhibition by 10i may, at least in part, be attributed to the interaction of this compound with the gating switch amino acid, Ile 199. The docking results also showed that most compounds interacted with Tyr 326 or Tyr 398, while interactions with Cys 172, Gln 206, Ile 199 and Tyr 435 also occurred.

(6)

P

ag

e

iv

In conclusion, novel heterocyclic chalcone analogues with promising MAO-B inhibitory activities were successfully synthesized and evaluated.

(7)

P ag e

v

OPSOMMING

TITEL

Monoamienoksidase inhiberende aktiwiteite van heterosikliese chalkone.

SLEUTELWOORDE

Chalkone, monoamienoksidase-inhibeerders, Parkinson se siekte.

AGTERGROND EN RATIONAAL

Naas Alzheimer se siekte, is Parkinson se siekte die tweede mees algemene ouderdomsverwante neurodegeneratiewe siekte. Patologies word Parkinson se siekte gekenmerk deur die afsterwing van neurone in die substantia nigra pars compacta (SNpc) wat lei tot ‘n tekort aan dopamien in die striatum. Hierdie tekort is dan ook verantwoordelik vir die simptome van Parkinson se siekte. Die simptome sluit tremor tydens rus, posturale onstabiliteit, bradikinesie en selfs psigose in die latere fases van die siekte in.

Daar is tans geen kuur vir Parkinson se siekte nie en alle behandeling is slegs simptomaties van aard. Navorsing is dus tans gemik op die voorkoming van verdere degenerasie van die dopaminergiese neurone met die hoofdoel om omkering van neurodegenerasie te bewerkstellig. Monoamienoksidase (MAO) ensieme is verantwoordelik vir die regulering en metabolisme van monoamienneuro-oordragstowwe, soos dopamien. Daar is twee MAO-isoforme, naamlik MAO-A en MAO-B. Aangesien MAO-B groter aktiwiteit in die basale ganglia het, speel dit dus ‘n belangrike rol in bewegingsteurnisse, soos Parkinson se siekte. Selektiewe inhibisie van MAO-B verhoog die dopamienkonsentrasie beskikbaar vir binding, en verlig so die simptome van die siekte.

MAO-inhibeerders bied ook die moontlikheid van neurobeskerming en mag die neurodegenerasie soos waargeneem in Parkinson se siekte vertraag, stop of moontlik selfs omkeer. Daar is onsekerheid oor presies hoe MAO-inhibeerders neurone beskerm. Een teorie is dat inhibisie van MAO oksidatiewe stres, soos veroorsaak deur waterstofperoksied, ‘n metaboliese byproduk van die oksidasie van monoamiene deur MAO, verminder. Normaalweg word waterstofperoksied deur glutatioon (GSH) geïnaktiveer, maar in Parkinson se siekte is die GSH vlakke ongewoon laag. Dit veroorsaak dat waterstofperoksied ophoop, en beskikbaar is vir die Fentonreaksie. Gedurende die

Fentonreaksie reageer Fe2+ met waterstofperoksied en vorm ‘n aktiewe vryradikaal, die

hidroksielradikaal. Hierdie radikaal put die sellulệre antioksidante uit, en beskadig lipiede, proteïene en DNA. MAO-inhibeerders verminder die vorming van waterstofperoksied, en verlaag dus ook die vorming van vry radikale en oksidatiewe stres.

(8)

P

ag

e

vi

Die potensiaal van natuurlike en gesintetiseerde chalkone om MAO te inhibeer is voorheen geïllustreer. In 1987, het Tanaka en medewerkers byvoorbeeld aangetoon dat natuurlike chalkone, soos isolikwiritigenien, MAO inhiberende aktiwiteit in rot mitochondria het. In 2009, het Chimenti en medewerkers ‘n reeks 1,3-difeniel-2-propen-1-one gesintetiseer, wat menslike MAO-B (mMAO-B) selektief geïnhibeer het. Aan die ander kant, het Robinson en medewerkers (2013), furaangesubstitueerde chalkoonderivate gesintetiseer wat mMAO-B ook selektief geïnhibeer het. ‘n Omkeerbare en kompeterende meganisme van binding vir die MAO-B-isoform is vir dié verbindings aangetoon. Aangesien die effek van heterosikliese substitusie, buite furaansubstitusie, op die MAO inhiberende eienskappe van chalkone nog nie ondersoek is nie, was die doel van hierdie studie om verdere heterosikliese chalkoonanaloë as inhibeerders van MAO te sintetiseer en te evalueer.

RESULTATE

Ontwerp en sintese: Heterosikliese chalkoonanaloë, gesubstitueer met pirrool, metieltiofeen,

5-chlorotiofeen en 2-metoksipiridien groepe is gesintetiseer deur van ‘n Claisen-Schmidt

kondensasiereaksie gebruik te maak. Karakterisering van al die verbindings is met 1H-KMR, 13

C-KMR, IR en MS gedoen, terwyl smeltpunte ook bepaal is. ‘n HPLC-analise is uitgevoer om suiwerheid te bepaal.

MAO-inhibisiestudies: ‘n Fluorometriese toets, met kinuramien as substraat, is gebruik om die 50%

inhiberende konsentrasie (IC50) waardes en die selektiwiteitsindeks (SI) van al die verbindings te

bepaal. Agt uit die tien gesintetiseerde verbindings het ‘n IC50 waarde < 1 µM getoon, en kan dus

as potente B-inhibeerders geklassifiseer word. Al die verbindings was selektief vir die

MAO-B-isoform. Verbinding 10i, was die mees potente MAO-B-inhibeerder met ‘n IC50 waarde van 0.067

µM en het ook die hoogste SI waarde van 240.7. ‘n IC50 waarde van 3.805 µM is bepaal vir die

mees potente MAO-A-inhibeerder, verbinding 10f‘. ‘n Paar struktuuraktiwiteitsverwantskappe kon afgelei word, byvoorbeeld: daar is aangedui dat heterosikliese substitusie met ‘n 5-metieltiofeenrring tot optimale MAO-B inhibisie lei, terwyl pirroolsubstitusie minder gewens is. Verdere navorsing in hierdie verband word egter benodig aangesien hierdie slegs ‘n voorlopige studie is.

Omkeerbaarheidstudies: Om te bepaal of MAO-binding omkeerbaar was, is die herstel van

ensiematiese aktiwiteit na verdunning van die ensiem-inhibeerder-komplekse bepaal vir geselekteerde verbindings. Die resultate het aangedui dat die mees potente MAO-A-inhibeerder, die pirroolderivaat 10f, omkeerbaar bind aan beide die mMAO-A en mMAO-B-isoforme - die ensiemaktiwiteit het dus heeltemal herstel na verdunning van die inhibeerder konsentrasies. In teenstelling daarmee, het die ensiemaktiwiteit van die mees potente MAO-B-inhibeerder 10i, slegs gedeeltelik herstel. Dit dui aan dat die metieltiofeenderivaat 10i, stewig aan die mMAO-B-isoform

(9)

P

ag

e

vii

bind en dat die inhibisie deur die verbinding nie maklik omgekeer word wanneer dit verdun word nie. Om te bepaal of die stewige binding deur 10i, as gevolg van die tiofeen- of fenielgroep was, is die omkeerbaarheid van ‘n ander pirroolderivaat, 10e, ook bepaal.

Die resultate van verbinding 10e se verdunningstoets het aangedui dat die verbinding omkeerbaar aan die mMAO-B-isoform bind - die ensiemaktiwiteit is volkome herstel na verdunning van die inhibeerder. Gevolglik blyk dit dat die stewige binding soos gesien is by 10i, toegeskryf kan word aan die teenwoordigheid van die tiofeengroep. Om te bevestig dat verbinding 10i net stewig, en nie on-omkeerbaar bind nie, is die omkeerbaarheid van die verbinding verder bepaal deur gebruik te maak van ‘n dialisetoets, waartydens die dialise van die ensiem-inhibeerdermengsel plaasvind.

Die mMAO-B en 10i, by ‘n konsentrasie van 4 × IC50, is gepreïnkubeer vir 15 min en daarna vir 24

h gedialiseer. Die resultate van hierdie studie het aangedui dat 10i omkeerbaar bind aan die MAO-B-isoform, aangesien die ensiemaktiwiteit na 83% van die van die kontrole herstel het.

Meganisme van inhibisie: Om die meganisme van inhibisie van verbinding 10f te bepaal, is

Lineweaver-Burk grafieke opgestel vir die inhibisie van beide MAO-A en MAO-B. Die lyne van die Lineweaver-Burk grafieke het gekruis by ‘n enkele punt op die y-as, wat aandui dat 10f kompeterend aan beide die mMAO-B en mMAO-A-isoforme bind.

MTT- sellewensvatbaarheidstoets: Om die toksisiteit van die chalkone vir gekweekte selle te

bepaal, is geselekteerde verbindings geëvalueer deur die 3-(4,5-dimetieltiasool-2-iel)-2,5-difenieltetrasolium bromied (MTT) lewensvatbaarheidstoets uit te voer. Die sitotoksisiteit van die toetsverbindings is geëvalueer by konsentrasies van 1 en 10 μM, in HeLa-selle. Die resultate het

aangetoon dat verbinding 10i nie toksies is by konsentrasies van 1 en 10 μM nie, aangesien

sellewensvatbaarheid van 100% en 96%, na blootstelling van die gekweekte selle aan die verbindings vir 24 h, verkry is. Pirroolderivaat 10f, aan die ander kant, het toksisiteit getoon by ‘n konsentrasie van 10 μM, aangesien slegs 5% lewensvatbare selle na blootstelling verkry is. In teenstelling daarmee, het verbinding 10e, wat ook gesubstitueer is met ‘n pirroolgroep, geen toksisiteit getoon by 1 µM of 10 μM nie, aangesien 99% en 98%, sellewensvatbaarheid verkry is. Dit blyk dus dat dit nie die pirroolgroep is wat verantwoordelik is vir die toksisiteit van 10f nie, maar dat die trifluorofenielgroep ‘n rol speel in die waargenome sitotoksisiteit van 10f. Verdere navorsing in hierdie verband word egter benodig.

Molekulệre modelleringstudies: Om die resultate van die MAO- inhibisiestudies te rasionaliseer en

die studie af te sluit is molekulệre modellering van al die verbindings in Discovery Studio gedoen deur gebruik te maak van die CDOCKER-module. Al die verbindings is gepas in die kristalstruktuur van mMAO-B. ‘n Paar insigte is verkry rakende verbinding 10i se biologiese eienskappe. Die verbinding het aan MAO-B gebind met die fenielring aan die kant van die FAD- ko-faktor. Hierdie oriëntasie het veroorsaak dat ‘n pi-pi interaksie met Tyr 398 kon vorm, asook ‘n pi-sigma interaksie tussen die tiofeenring en Ile 199 (wat deel is van die hekskakelaar van MAO-B). Daar word

(10)

P

ag

e

viii

gespekuleer dat die stewige binding tussen 10i en hMAO-B gedeeltelik toegeskryf kan word aan dié interaksie van hierdie verbinding met hierdie aminosuur. Die molekulệre modelleringsresultate het verder aangedui dat die meeste verbindings interaksies met Tyr 326 of Tyr 398 het, terwyl interaksies met Cys 172, Gln 206, Ile 199 en Tyr 435 ook voorgekom het.

Om saam te vat, in hierdie studie is nuwe, heterosikliese chalkoonderivate met positiewe MAO-B inhiberende aktiwiteite suksesvol gesintetiseer en geëvalueer.

(11)

P ag e

ix

TABLE OF CONTENTS

PAGE ABSTRACT i OPSOMMING v ABBREVIATIONS xiv

LIST OF FIGURES xvii

LIST OF TABLES xxi

CHAPTER 1: INTRODUCTION 1

1.1 GENERAL BACKGROUND 1

1.2 MONOAMINE OXIDASE AND MONOAMINE OXIDASE INHIBITORS 2

1.3 RATIONALE 4

1.4 THE HYPOTHESIS OF THIS STUDY 7

1.5 AIM AND OBJECTIVES 7

CHAPTER 2: LITERATURE OVERVIEW 10

2.1 PARKINSON’S DISEASE 10

2.1.1 Clinical characteristics of Parkinson’s disease 10

2.1.2 Neurochemical and neuropathological features 10

2.1.3 Etiology 12

4.1.4 Pathogenesis 14

2.1.4.1 Mechanisms of neurodegeneration 14

2.1.4.1.1 Oxidative stress and mitochondrial dysfunction 14

2.1.4.1.2 Protein aggregation and misfolding 15

2.1.4.1.3 Neuroinflammation 17

2.1.4.1.4 Excitotoxicity 17

(12)

P

ag

e

x

2.1.4.1.6 Loss of trophic factors 18

2.2 ANIMAL MODELS OF PARKINSON’S DISEASE 18

2.2.1 6-Hydroxydopamine, rotenone and paraquat models 18

2.2.2 MPTP model 19

2.3 SYMPTOMATIC TREATMENT OF PARKINSON’S DISEASE 20

2.3.1 Levodopa 21

2.3.2 Carbidopa and benserazide 22

2.3.3 Catechol-O-methyltransferase inhibitors 22

2.3.4 Dopamine agonists 23

2.3.5 Apomorphine 25

2.3.6 Amantadine 25

2.3.7 Anticholinergic drugs 26

2.3.8 Monoamine oxidase inhibitors 27

2.4 MONOAMINE OXIDASE 27

2.4.1 Introduction 27

2.4.2 General background 28

2.4.3 Tissue distribution 29

2.4.4 Biological function of MAO 29

2.4.4.1 Substrate specificities 30

2.4.5 In vitro measurements of MAO activity 31

2.4.6 The role of MAO in Parkinson’s disease 31

2.4.6.1 MAO-A in depression 31

2.4.6.2 The role of MAO-B in Parkinson’s disease 32

2.4.7 Known inhibitors of MAO-B 33

(13)

P

ag

e

xi

2.4.7.2 Reversible inhibitors of MAO-B 36

2.4.8 Known inhibitors of MAO-A 37

2.4.8.1 Irreversible inhibitors of MAO-A 37

2.4.8.2 Irreversible inhibitors of both MAO-A and B 37

2.4.8.3 Reversible inhibitors of MAO-A 38

2.4.9 Mechanism of action of MAO-B 39

2.4.9.1 The FAD cofactor and flavin adducts 39

2.4.9.2 The catalytic cycle of MAO-B 40

2.4.10 Three-dimensional structure of MAO-B 44

2.4.10.1 The crystal structure 44

2.4.10.2 The membrane binding region 45

2.4.10.3 Active site structure 45

2.4.10.4 Three-dimensional structure of MAO-A 46

CHAPTER 3: PREPARATION OF SYNTHETIC TARGETS 48

3.1 INTRODUCTION 48

3.2 CHEMISTRY 48

3.3 MATERIALS AND INSTRUMENTATION 50

3.4 SYNTHETIC PROCEDURES 51

3.5 RESULTS AND DISCUSSION 52

3.6 SUMMARY 64

CHAPTER 4: BIOLOGICAL EVALUATION 65

4.1 INTRODUCTION 65

4.2 ENZYME KINETICS 65

4.2.1 Introduction 65

(14)

P

ag

e

xii

4.2.2.1 Km and Vmax determinations 66

4.2.3 Competitive inhibition and Ki determination 68

4.2.4 IC50 value determination 69

4.3 THE IC50 VALUE DETERMINATION OF THE TEST INHIBITORS 70

4.3.1 General background 70

4.3.2 Materials and instrumentation 70

4.3.3 Experimental method for IC50 determination 71

4.3.4 Results and discussion 73

4.4 THE REVERSIBILITY OF MAO INHIBITION (DILUTION METHOD) 78

4.4.1 General background 78

4.4.2 Materials and instrumentation 78

4.4.3 Experimental method for reversibility determination (dilution method) 79

4.4.4 Results and discussion 80

4.5 THE REVERSIBILITY DETERMINATION ASSAY (DIALYSIS METHOD) 84

4.5.1 General background 84

4.5.2 Materials and instrumentation 85

4.5.3 Experimental method for reversibility determination (dialysis method) 85

4.5.4 Results and discussion 87

4.6 MODE OF MAO INHIBITION 88

4.6.1 General background 88

4.6.2 Materials and instrumentation 88

4.6.3 Experimental method for construction of Lineweaver-Burk plots 88

4.6.4 Results and discussion 89

4.7 TOXICOLOGY 90

(15)

P

ag

e

xiii

4.7.2 Materials and instrumentation 90

4.7.3 MTT cell viability assay 90

4.7.4 Results and discussion 91

4.8 MOLECULAR MODELING 93

4.8.1 Introduction 93

4.8.2 Method 93

4.8.3 Results and discussion 93

4.9 SUMMARY 98

CHAPTER 5: CONCLUSION 99

BIBLIOGRAPHY 103

ADDENDUM 118

(16)

P ag e

xiv

ABBREVIATIONS

3-OMD 3-O-methyldopa

5-HIAA 5-Hydroxyindole acetic acid

5-HT Serotonin also known as (5-hydroxy-tryptamine)

6-OHDA 6-Hydroxydopamine

β-PEA 14[C] β-phenylethylamine

ADP Adenosine 5’-diphosphate

APCI Atmospheric-pressure chemical ionization

Arg Arginine

ATP Adenosine 5’-triphosphate

BBB Blood brain barrier

BDNF Brain-derived neurotrophic factor

calcd Calculated CBF Cerebrospinal fluid CDCl3 Deuterochloroform COMT Catechol-O-methyltransferase CSF Cerebrospinal fluid Cys Cysteine DA Dopamine DDC Dopa decarboxylase

DMEM Dulbecco’s Modified Eagle Medium

DMSO Dimethyl sulfoxide

DMSO-d6 Deuterated dimethyl sulfoxide

DNA Deoxyribonucleic acid

DOPAC Dihydroxy-phenyl acetic acid

EDTA Ethylenediaminetetraacetic acid

(17)

P

ag

e

xv

FAD Flavin adenine dinucleotide

FBS Fetal bovine serum

GDNF Glial-derived neurotrophic factor

Gln Glutamine

GPO Glutathione peroxidase

GSH Glutathione

h Hours

His Histidine

hMAO Human monoamine oxidase

h-MAO-A Human monoamine oxidase type A

h-MAO-B Human monoamine oxidase type B

HPLC High performance liquid chromatography

IC50 50% inhibitory concentration

IR Infrared

IL Interleukin

Ile Isoleucine

LAT L-amino acid transporter

L-DOPA Levodopa also known as [(-)-3-(3,4-dihydroxyphenyl)-L-alanine]

Leu Leucine

LRRK-2 Leucine rich repeat kinase 2

Lys Lysine

MAO Monoamine oxidase

MAO-A Monoamine oxidase type A

MAO-B Monoamine oxidase type B

min Minutes

mp Melting point

MPP+ 1-Methyl-4-phenylpyridinium

MPDP+ 1-Methyl-4-phenyl-2,3-dihydropyridinium

(18)

P ag e

xvi

MS Mass spectrometry MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NADH Reduced nicotinamide adenine dinucleotide

NGF Nerve growth factor

NMDA N-methyl-D-aspartate

NMR Nuclear magnetic resonance

NSAIDS Non-steroidal anti-inflammatory drugs

PBS Phosphate-buffered saline

Phe Phenylalanine

PDB Protein data bank

ROS Reactive oxygen species

rt Room temperature

SD Standard deviation

SET Single electron transfer

SI Selectivity index

SN Substantia nigra

SNpc Substantia nigra pars compacta

TH Tyrosine hydroxylase

TLC Thin layer chromatography

TNF-α Tumor necrosis factor-alpha gene

Trp Tryptophan

Tyr Tyrosine

UCHL-1 Ubiquitin C-terminal hydrolase L 1

UV Ultraviolet

VTA Ventral tegmental area

NMR:

δ Dalta scale used to indicate chemical shift

(19)

P ag e

xv

ii

br s Broad singlet br t Broad triplet d Doublet dd Doublet of doublets

ddd Doublet of doublet of doublets

J Coupling constant in Hz

m Multiplet

p Pentet

ppm Parts per million

q Quartet

s Singlet

t Triplet

Biological assays:

Abs Absorbance as read by the spectrophotometer

Abs (negative control) Absorbance of cells without treatment

Abs (positive control) Absorbance of the cells treated with 0.3% formic acid (100% cell death)

Abs (sample) Absorbance from spectrophotometer of the sample

[I] Inhibitor concentration

Ki The equilibrium constant used to indicate the reversibility of an

enzyme-inhibitor complex

Km Michaelis-Menten constant: substrate concentration that produces half

maximal velocity.

[S] Substrate concentration

Vi The measured initial velocity

(20)

P ag e

xv

iii

LIST OF FIGURES

PAGE

Figure 1.1: The cheese reaction. 3

Figure 1.2: Compounds 1-5. 4

Figure 1.3: Compounds 6 and 7. 5

Figure 1.4: Compound 8. 6

Figure 1.5: Compound 9a. 6

Figure 1.6: The chalcone structure. 7

Figure 2.1: Neuropathology of Parkinson’s disease. 11

Figure 2.2: Mechanisms of neurodegeneration. 14

Figure 2.3: The structures of 6-hydroxydopamine, rotenone, and paraquat. 18

Figure 2.4: The formation of MPP+. 19

Figure 2.5: The steps in the expression of MPTP neurotoxicity. 20

Figure 2.6: The synthesis and metabolism of DA. 21

Figure 2.7: The structures of dopamine and levodopa. 21

Figure 2.8: The structures of carbidopa and benserazide. 22

Figure 2.9: The structures of entacapone and tolcapone. 23

Figure 2.10: The structures of ropinirole, pramipexole, bromocriptine, and pergolide. 24

Figure 2.11: The structure of apomorphine. 25

Figure 2.12: The structure of amantadine. 25

Figure 2.13: The structures of trihexyphenidyl, benztropine, diphenhydramine,

biperiden, and orphenadrine. 26

Figure 2.14: The oxidation reaction. 29

Figure 2.15: MAO-catalysed reactions. 31

(21)

P

ag

e

xix

Figure 2.17: The mechanism of neurotoxicity induced by iron and hydrogen

peroxide, via the Fenton reaction. 33

Figure 2.18: The structure of selegiline. 34

Figure 2.19: The structure of rasagiline. 34

Figure 2.20: The structure of pargyline. 35

Figure 2.21: The structure of ladostigil. 35

Figure 2.22: The structure of lazabemide. 36

Figure 2.23: The structure of safinamide. 36

Figure 2.24: The structure of clorgyline. 37

Figure 2.25: The structures of tranylcypromine and phenelzine. 38

Figure 2.26: The structure of iproniazid. 38

Figure 2.27: The structures of moclobemide and brofaromine. 39

Figure 2.28: The structure of covalent FAD in MAO. 39

Figure 2.29: The oxidation reaction catalyzed by the MAOs. 40

Figure 2.30: The reaction pathway for MAO catalysis. 41

Figure 2.31: Structures of benzylamine and phenethylamine. 41

Figure 2.32: The SET mechanism for MAO catalysis. 42

Figure 2.33: The polar nucleophilic mechanism proposed for MAO catalysis. 43

Figure 2.34: The structure of human MAO-B. 44

Figure 2.35: The structure of human MAO-A. 46

Figure 2.36: Comparing MAO-A and MAO-B substrate and entrance cavities. 47

Figure 3.1: IR spectra of selected compounds. 58

Figure 4.1: A linear equation. 67

Figure 4.2: The Lineweaver-Burk plot of 1/Vi versus 1/[S]. 67

(22)

P

ag

e

xx

reversible non-competitive inhibition (B). 68

Figure 4.4: The Ki values for a competitive inhibition (A) and for non-competitive

inhibition (B). 69

Figure 4.5: Kynuramine is catalyzed to 4-hydroxyquinoline by MAO oxidation. 70

Figure 4.6: Diagrammatic representation of the determination of MAO-A and MAO-B

IC50 values. 72

Figure 4.7: Diagrammatic representation of the determination of reversibility of MAO-A

and MAO-B using the dilution method. 79

Figure 4.8: Reversibility of inhibition of MAO-B by 10f (dilution method). 81

Figure 4.9: Reversibility of inhibition of MAO-A by 10f (dilution method). 82

Figure 4.10: Reversibility of inhibition of MAO-B by 10i (dilution method). 83

Figure 4.11: Reversibility of inhibition of MAO-B by 10e (dilution method). 84

Figure 4.12: Diagrammatic representation of the determination of reversibility of MAO-B

using the dialysis method. 86

Figure 4.13: Reversibility of inhibition of MAO-B by 10i (dialysis method). 87

Figure 4.14: A graph illustrating the Lineweaver-Burk plots of kynuramine oxidation by

recombinant human MAO-B for compound 10f. 89

Figure 4.15: A graph illustrating the Lineweaver-Burk plots of kynuramine oxidation by

recombinant human MAO-A for compound 10f. 89

Figure 4.16: A figure illustrating compounds 10e, 10f, 10i and 10g docked into the crystal

(23)

P ag e

xxi

LIST OF TABLES

PAGE Table 1.1: The structures of the heterocyclic substituted chalcone derivatives that will be

investigated in this study. 8

Table 2.1: The distribution of MAO in human tissues. 29

Table 2.2: The substrate specificities of MAO in the cerebral cortex. 30

Table 3.1: Synthesized chalcones . 49

Table 3.2: 1H and 13C NMR assignments of synthesized chalcones. . 53

Table 4.1: IC50 and SI values obtained for the inhibition of hMAO-A and hMAO-B by the

synthesized chalcones. 73

Table 4.2: IC50 values for the inhibition of human MAO-B of a series of furanochalcones. 77

Table 4.3: MTT assay results. 92

Table 4.4: The results of the docking experiments and the IC50 values of the selected

Referenties

GERELATEERDE DOCUMENTEN

In this research project four methods of recommending pages are proposed, implemented, evaluated, and analysed: (a) manual rec- ommendations composed by a person who manages the

De gevonden verbanden zijn echter correlationeel, dus om meer inzicht te krijgen in het proces achter een state orientation en stoppen met roken en de invloed van sociale

(2002) that DLPFC activity correlates with conscious awareness of fluctuation of a rhythmic tone and conscious adaption of finger tapping to that tone, it might be expected

De vakgroep Ontwerp, Productie en Management van de Universiteit Twente is namelijk een van de wegbereiders binnen WCM geweest, onder meer door binnen WCM te acteren

a certain target number of good recordings are collected for each speaker (with the quality of speech data being dependent on the particular application of the data), by

The Occupational Safety and Health Administration (OSHA) (2012) promulgated the PSM standard in 1992, which incorporated fourteen elements, to decrease the occurrence

Daarom, vir die doeleindes van hierdie studie sal die risiko vir substansmisbruik onder adolessente volgens ‘n ekologiese perspektief ondersoek word.. Bronfenbrenner (1979)

The reversibility of MAO-A and MAO-B inhibition by esomeprazole was also investigated by measuring the recoveries of enzyme activities after dialysis of enzyme-