• No results found

The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate

N/A
N/A
Protected

Academic year: 2021

Share "The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Pharmacological Research

jo u r n al ho me p a g e :ww w . e l s e v i e r . c o m / l o c a t e / y p h r s

Review

The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate

Anke M. Smits

, Esther Dronkers, Marie-José Goumans

DepartmentofMolecularCellBiology,LeidenUniversityMedicalCenter,P.O.Box9600,PostzoneS-1-P,2300RCLeiden,TheNetherlands

a r t i c l e i n f o

Articlehistory:

Received24March2017

Receivedinrevisedform12June2017 Accepted21July2017

Availableonline24July2017

Keywords:

Cardiacprogenitorcell Epicardium

Myocardialinfarction Cardiacdevelopment Cardiacrepair

a b s t r a c t

Sincetheregenerativecapacityoftheadultmammalianheartislimited,cardiacinjuryleadstothefor- mationofscartissueandtherebyincreasestheriskofdevelopingcompensatoryheartfailure.Stemcell therapyisapromisingtherapeuticapproachbutisfacingproblemswithengraftmentandclinicalfeasibil- ity.Targetinganendogenousstemcellpopulationcouldcircumventtheselimitations.Theepicardium, amembranouslayercoveringtheoutsideofthemyocardium,isanaccessiblecellpopulationwhich playsakeyroleinthedevelopingheart.Epicardialcellsundergoepithelialtomesenchymaltransition (EMT),thusprovidingepicardialderivedcells(EPDCs)thatmigrateintothemyocardiumandcooperate inmyocardialvascularisationandcompaction.Intheadultheart,injuryactivatestheepicardium,andan embryonic-likeresponseisobservedwhichincludesEMTanddifferentiationoftheEPDCsintocardiac celltypes.Furthermore,paracrinecommunicationbetweentheepicardiumandmyocardiumimproves theregenerativeresponse.Thesignificantroleoftheepicardiumhasbeenshowninboththedeveloping andtheregeneratingheart.Interestingly,theepicardialcontributiontocardiacrepaircanbeimproved inseveralways.Inthisreview,anoverviewoftheepicardialoriginandfatewillbegivenandpotential therapeuticapproacheswillbediscussed.

©2017TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction...130

2. Theepicardium...130

2.1. Theproepicardium:developmentaloriginoftheepicardium...130

2.2. Theheterogeneouscompositionoftheepicardium...131

2.3. Theepicardiumintheformationofthemyocardium...131

2.3.1. Epithelialtomesenchymaltransitionandmigrationofepicardial(-derived)cells...131

2.3.2. DifferentiationofEPDCsintocardiaccelltypes...131

2.3.3. Contributionofepicardialparacrinesignallingtotheformationofthemyocardium...132

3. Theepicardiumintheadultmammalianheart...132

3.1. Thequiescentepicardiumintheadultintactheart...132

3.2. Theactivatedepicardiumintheinfarctedadultheart...133

3.2.1. Activationoftheembryonicgeneprogrammeintheepicardiumpost-MI...133

3.2.2. ProliferationandEMTofepicardialcellspost-MI...133

3.2.3. MigrationofEPDCsintotheinjuredadultheart ... 133

3.3. Differentiationofadultepicardialcellsintocardiaccelltypesinvivo...134

3.3.1. Fibroblasts...134

3.3.2. Endothelialandsmoothmusclecells...134

3.3.3. Cardiomyocytes...134

3.4. Paracrinecontributionofepicardialcellstocardiacrepair...135

4. Theepicardiumasasourceofmultipotentprogenitorcells?...135

5. Futureperspectives...136

∗ Correspondingauthor.

E-mailaddress:a.m.smits@lumc.nl(A.M.Smits).

https://doi.org/10.1016/j.phrs.2017.07.020

1043-6618/©2017TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

Conflictofinterest ... 137

Funding...137

Acknowledgement...137

References...137

1. Introduction

Myocardialinfarction(MI)isoneofthemostfrequentlyoccur- ringconsequencesofcoronaryheartdisease.Ithasbeentheleading causeofdeathinthewesternworldformanydecades,anditis expectedtoremainsoforyears tocome[1].Theobstructionof bloodflowinacoronaryarteryandtheensuingsuddencessationof oxygensupplytoregionsofthemuscleresultsinmassivecelldeath, followedbyaninfluxofinflammatorycellsandcollagenproducing myofibroblasts[2].Althoughadultcardiomyocytesmaystillpos- sesssomeresidualproliferativeability[3],itisevidentthattheir contributionisinsufficienttorepairtheheart.Asaresult,injured tissueisreplacedbyarigidnon-contractilescar.Thisscartissue providestensilestrengththatpotentiallypreventstheruptureof thedamagedmyocardialwall.Importantly,scartissuealsoseverely impairscardiaccontractionwhichwillresultincardiacdysfunction becauseofpathologicalcompensatoryremodelling.Eventually,this combinationoffactorswillprogressintoheartfailure.

CurrenttherapiesforMI mainlyaimatreopeningtheculprit bloodvessel,therebyreinstatingperfusionofthedamaged area.

Theseapproachesareveryeffective,andhavegreatlyreducedthe numberof patientsthat acutelydieafterMI. Conversely,ithas resultedinanincreaseinthenumberofpeoplepronetodevel- opingheartfailure,forwhichahearttransplantistheonlyoption fortreatment.Torepairtheheart,itisnecessarytofindotherways toincreasethenumberofcardiacmyocytesafterdamage.

Overthelasttwodecades,extensiveresearchhasbeeninvested inidentifyingcellswiththeabilitytogeneratenewcardiactissue (reviewedin[4,5]).Severalofthesecellsources,whichincludethe bonemarrow,blood,andadiposetissue,havebeentestedinclini- caltrialsbuttheinfluenceoncardiacfunctionhasbeenlowerthan wasanticipated[6].However,oneofthemostimportantobser- vationsinthiseraofcell-basedtherapyisthefactthattheadult heartitselfharbourscardiacprogenitorcells.Thesecellsbearstem cell-likefeaturesandhavetheabilitytodifferentiateintonewcar- diaccellsinvitroandinvivo[7–11].Thedirecttransplantationof culturedhumancardiacprogenitorcellsintotheischemicmouse heartpositivelyinfluencedcardiacfunction[12],butonlyresulted inamarginalincreaseinnewlyformedcardiactissue[7].Never- thelessithasopenednewavenuestoexplorefortreatingcardiac damage.Thecurrentcell-basedtherapyapproachwouldrequire theisolationofprogenitorcellsfrombiopsiesofcardiactissue,and asubsequentlengthycultureprotocoltoincreasethenumberof theserarecellstoobtainsufficientmaterialtotransplant.Ifitis possibletolocallystimulateprogenitorcells,thiscouldbeavalu- ableadditiontocurrenttherapies.Assuch,theepicardiumisan intriguingcellpopulationtostudysinceitisaneasilyaccessible sourceofcellsasitislocatedontheoutsideoftheheart.Inthis reviewwewillhighlighttheoriginandfateoftheepicardium,and whyitcanpotentiallybeusedintherapeuticapproachestocure thedamagedheart.

2. Theepicardium

Anatomicallytheepicardiumispartofthepericardium,which isadoublelayeredmembranoussaccoveringtheheartandthe rootofthelargevessels.Theouter,mostsuperficiallayerofthe pericardiumisknownasthefibrouspericardiumandconsistsof connectivetissue.Itanchorsthehearttothediaphragm,thepleura,

and thesternum.Theinner fibrouspericardium is linedwitha serousmembranethatfoldsandcoverstheheart,therebyforming thepericardialsac.Theserouslayerliningthefibrouspericardium iscalledtheparietalpericardium,whilethelayerliningtheheart isknownasthevisceralpericardiumorepicardium.

2.1. Theproepicardium:developmentaloriginoftheepicardium

Earlyindevelopment,theembryonicheartconsistsofonlytwo layers:themyocardium and theendocardium.The epicardium, whichisnotyetpresentatthistubularheartstage,derivesfroman extra-cardiacmesothelialcellclusterknownastheproepicardium (PE,Fig. 1).This structure arises from thepericardial coelomic mesotheliumincloseproximityoftheheartandtheliver(Reviewed in[13]).Theliverprovidesadditionalinductivesignalsthataidthe developmentofthePE[14].Inmouse,thePEbecomesvisiblefrom embryonicday8.5(E8.5)asatransientcauliflower-likeclusterof cellslocatedatthebaseofthevenousinflowtractofthedeveloping heart.ThecellsofthePEarelocatedadjacenttotheprimitiveheart tube,butdonotdirectlyinteractwiththecardiogenicmesoderm thatwillformthefuturemyocardium[15,16].

ThePEiscomposedofdifferentcellpopulations,withanouter layerofcuboidalepithelialcellsexpressingWilms’tumour1(WT1) thatoverliesaninnercoreofextracellularmatrixharbouringsev- eralmesenchymalcelltypes,aswellasendothelialcells[17].The WT1positivecellswithinthePEoriginatefromtheearlycardiac progenitorfieldsthatexpressNkx2.5andIsl-1[18].Togetherwith theT-boxtranscriptionfactorTbx18andthebasichelix-loop-helix transcriptionfactorTcf21,WT1isusedtoidentifyPEand(laterin development)epicardial(-derived)cells[19,20].Adistinctsubset ofPEcellsexpressScleraxis(Scx)andSemaphorin3D(Sema3D) andbothproteinsonlypartiallyoverlapwithWT1andTbx18[21], therebyemphasisingtheheterogeneityofthecellcluster.

Oncetheembryonichearthaslooped,thebarehearttubewill becoveredwithanepicardial layerofcellsderivedfromthePE thattranslocatetoheartviadifferentmechanisms.Forinstancein chick,villousprotrusionsofthePEextendanddirectlyattachto themyocardialsurface,generatinga“bridge”forcellstocross[22], whileinmiceislandsofPEcellsareformedastheyareeitherpulled offfromthevilli[23]orarereleasedasfree-floatingvesicles[24].

Recently,anothermechanismwasreportedwherePEcellsreach theventriclebymigratingalongthesurfaceoftheinflowtract[25].

Next,theadheringclustersofPEcellsstarttoproliferateandspread tocoverthedevelopingmyocardiumwithasquamousepithelial layer.EpicardialcoverageoccursinthemousebetweenE9.5and E10.5inadorsaltoventralpattern.Inaddition,theleftventricleis coveredfirst,andwithamoredenselayerascomparedtotheright ventricle[26].

TounraveltheroleofthePEintheformationoftheepicardium andmyocardialwall,studieswereconductedwherethePEwaspre- ventedfromoutgrowth.Bothmicrosurgicalandgeneticinhibition ofthePEcells’migrationandadhesionreducedtheproliferationof cardiomyocytes,resultinginathin-walledcompactmyocardium [20,27,28]. Moreover, genetic mouse models causing disturbed epicardial developmentareassociated withdefectsin endocar- dial valve development and heart looping [29], cardiomyocyte proliferationandalignment[30],developmentofthecoronaryvas- culature[27,31,32],andthecardiacconductionsystem[33].Given thecrucialroleofthe(pro)epicardiumintheformationofafully

(3)

Fig.1. Developmentoftheepicardiumandepicardiallineages.

Theepicardiumoriginatesfromtheproepicardium(PE).Proepicardialcellsgothroughepithelialtomesenchymaltransition(EMT)andtranslocatetothemyocardialsurface oftheloopingheartwheretheyadhere,migrate,proliferateandundergomesenchymaltoepithelialtransition(MET)toformasquamousepitheliallayer;theepicardium.

Whiletheepicardiumremainsanintactlayer,someoftheepithelialcellswillundergoasecondroundofEMTandmigrateintothematrixrichsub-epicardiallayer(pink).

Fatemappingandgeneticlineagetracinghasdemonstratedthemulti-lineagepotentialoftheseepicardiumderivedcells(EPDCs).EPDCsdifferentiateintosmoothmuscle cells(SMCs),contributingtothecoronaryvasculatureandcardiacfibroblasts(CF)ofthematureheart.ThecontributionofEPDCstocardiacendothelialcells(ECs)and cardiomyocytes(CMs)hasbeendescribedbutismatterofanongoingdebate.

functioningheart,itisimportanttounderstanditscontributionin developmentanddisease.

2.2. Theheterogeneouscompositionoftheepicardium

WhentheepicardiumcompletelycoverstheheartaroundE11.5 inmouse [26],and week5duringhumancardiac development [34],ithasestablishedamulti-cellularepitheliumliningtheven- tricles[35].Thedetailedcompositionoftheepicardiumisnotfully known,butseveralepicardialcellspecificproteinshavebeensug- gested,althoughnotnecessarilyexpressedinthesamecell.These includeWT1[36],Tbx18[37],Tcf21[38],Gata5[39] andcytok- eratin [40]. Additionally, Semad3D, and Scx are expressed in a subsetofcells[21].Furthermore,withintheepicardium,clusters withbonemarrow-derivedCD45+cellsarepresent,demonstrat- ingthattheepicardiumisnotsolelycomposedofPE-derivedcells [41].WhetherthecellpopulationswithinthePEarerelated,i.e.if theyrepresentdistinctstagesofacontinuumofdifferentiation,or iftheyaredistinctpopulationswithspecificabilities,remainstobe investigated.

2.3. Theepicardiumintheformationofthemyocardium

2.3.1. Epithelialtomesenchymaltransitionandmigrationof epicardial(-derived)cells

Oncetheepicardiumisestablished,epicardialcellswilldirectly starttoparticipatein theformationofthecellularcomposition ofthemyocardium.Asubsetoftheepicardialcellswillundergo aprocessknownasepithelial-to-mesenchymaltransition(EMT) (reviewedin[42];Fig.1).EMTstartswithepicardialcellslosing epithelialcharacteristicsliketheirapical-basalpolarity,andtheir cell–cellcontacts,byreducingtheexpressionofthetransmem- braneadhesionproteinsE-cadherinandzonulaoccludens-1(ZO-1).

Subsequentlytheepicardialcellsacquiremesenchymalcellcharac- teristics;theygainaspindleshapemorphologyandupregulatethe expressionoffibronectin,N-cadherinandmatrixmetalloproteases (MMPs).ThisendowstheEPDCswiththeabilitytomigrateand populatethesubepicardialspace:anamorphousmatrix-richlayer which ispresent betweentheepicardiumand themyocardium (Fig.1).Fromthesubepicardium,EPDCsmigrateintothemyocar- dialinterstitiumwhere theycandifferentiateintodifferentcell

typesandcontributetothedevelopmentandmaturationofthe myocardium[43](Fig.1).

Epicardial EMT and migration are controlled via various myocardial-andepicardial-derivedgrowthfactorslikeTGF␤[44], PDGF[45],andFGF[46](reviewedin[42]).

EMTisregulatedbytranscriptionfactorssuchasWT1,TCF21, aswellasthesnailfamilymembers Snail1andSnail2 [42].For instance,WT1stimulatesEMTviadownregulationofE-cadherin expression[47],byincreasingtheexpressionofSnail,byenhanc- ing Wnt signalling, and via upregulation of Raldh2 resulting in enhanced retinoic acid signalling [48]. Furthermore, loss of neurofibromin(encodedby Nf1)resultedin increasedEMTand EPDCproliferation[49].Interestingly,whenTCF21isspecifically deletedfromtheepicardium,migrationofepicardialcellsintothe myocardiumishamperedduetoadefectinEMT[50].

Migrationofepicardialcellsintothemyocardiumisimportant forpropermyocardialdevelopmentanditiscontrolledbyasetof transcriptionfactorslikeNfatc1andMRTFs.Nfatc1isexpressedin asubsetofepicardialcellsandwhendeleteditresultedinreduced levelsofmatrix degradingenzymesand a subsequentimpaired migration of EPDCs into the myocardium [51]. The myocardin relatedtranscriptionfactors(MRTF)-Aand−Bareinducedwhen EPDCsaretreatedwithTGF␤invitro,resultinginenhancedmigra- tion.Invivo,whenMRTF-A/Bareknockedoutspecificallyinthe epicardium, migration ofEPDCs intothesub epicardial layeris impaired[52].

Theinvolvementofallthesefactorsinatemporalandspatial controlledmannerto regulateepicardial EMTand migration of EPDCsintothemyocardiumiscrucialforproperdevelopmentof themyocardialwall.

2.3.2. DifferentiationofEPDCsintocardiaccelltypes

OnceEPDCshaveinvadedthemyocardium,theywillstartto differentiateintoseveralcardiaccelltypes(Fig.1).Thepredomi- nantcelltypesareinterstitialfibroblaststhatproducethecardiac extracellular matrix, smooth musclecells (SMCs), and adventi- tialfibroblaststhatsustainthecoronaryvasculature[36,53,54].In contrast,contributiontoendothelialcellsandcardiomyocytesis subjecttodebate[55,56](Fig.1).

ToexplorethedifferentiationcapacityofEPDCs,invitromod- elshavebeendevelopedtocultureEPDCsfrommouseembryonic heartexplants.Theseculturesystemshaveconfirmeddifferenti-

(4)

ationofEPDCsintofibroblasts andSMCsafteradditionofTGF␤ [44,57,58].Furthermore,additionofthymosin␤4,combinedwith VEGF/FGF7,resultedinahighlysignificantincreaseinTie2-positive endothelialcells[59].Additionally,cardiomyocytedifferentiation invitrowasobservedusingembryonicWT1+cells[36].Whilethese invitromodelsmaypredicttheabilityofepicardialcellstodiffer- entiateintomanycelltypesthatcomposetheheart,itisimportant torealisethattheseconditionsareartificialandmaynotrepresent theactualinvivosituationwhereinteractionwithothercellsand signalsoccurs.

Invivo,thefirststudiesinvestigatingthedifferentiationpoten- tialof epicardium were performed usingretroviral labelling in quail-chickchimeraexperiments.Theseexperimentsindicatedan ability of EPDCs to contribute to fibroblast, SMCand coronary endothelial lineages [60–62]. Subsequent genetic fate-mapping experimentsin micewhere the expression of Cre-recombinase (Cre) is driven by epicardial-cellspecific promoters (e.g. WT1, Tbx18,Tcf21,Gata5,Sema3dandScx)generallyconfirmedtheepi- cardialoriginoffibroblastsandSMCs(seeTable1,andTianetal.

[63])

Concerningtheoriginofendothelialcells,lineagetracingstud- ieshavedemonstrateddifferentresultsdependingonthepromoter thatwasusedtofollowthecells.Tcf21andTbx18 lineagetrac- ingstudieswereunabletoestablishepicardialderivedendothelial cells[37,50,64],whileWT1,GATA4,SEMA3DandScxfate-mapping studieshaveshownco-localizationofgeneticallylabelledcellswith ECproteins(Table1) [21,32,36,65]. Controversybetweenthese studiescouldbeexplainedbythefactthatthePEandepicardium containheterogeneouscellpopulationsthatcouldreflectdistinct populationswitha diversedifferentiationpotential(seeSection 2.2).ThiswasfurtherdemonstratedbyKatzetal.,showingthata TBX18/WT1negativeandSEMA3D/Scleraxispositivecellpopula- tioninthePEgivesrisetoendothelialcells[21].Furthermore,some resultsshouldbeinterpretedcautiously.Chick-quailchimerascan becontaminatedwithcellsofthesinusvenosus;astructureknown tocontributetothecoronaryvasculature[66].Additionally,WT1 wasshowntobeexpressedincardiacendothelialcells[34,56,67], whichmayobscuretheresultsfromlineagetracingexperiments.

Therefore,althoughsomestudiesconcludethatendothelialcells canderivefromtheepicardium,itremainsanongoingdebateto whatextendthePE/epicardiumcontributestothecoronaryvas- culatureinthedevelopingheart.Overallthedirectcontributionof epicardialcells,ifany,appearstobelowandboththesinusveno- susandendocardium[21,68]areconsideredthemajorcontributors (reviewedin[63]).

With respect to epicardial-derived cardiomyocytes, lineage tracingstudiesusingScleraxis,WT1andTBX18totracecellshave demonstrated epicardial-derived functionally active cardiomy- ocytes(Table1).Howeveritmustbenotedthatthesefindingsare controversial,sincesomeofthegenesdrivingtheexpressionofCre recombinaseinthesestudies,e.g.Tbx18[37],andWT1[36],have beenshowntobepresentwithincardiomyocytesatcertainstages duringdevelopment[55,67].

Althoughthefulldifferentiationpotentialinvivoisyettobecon- firmed,itishoweverclearthatembryonicEPDCshaveanessential impactoncardiacdevelopmentviadirectcontributionofcellsto themyocardium(Fig.1).

2.3.3. Contributionofepicardialparacrinesignallingtothe formationofthemyocardium

Anotherprocessthatoccursoncetheepicardiumhascovered the developing heart is that epicardial cells will start to pro- duceparacrinefactorsthatsupportmyocardialgrowth[69–71].

Thesefactorsprovide anessential exchangeof signalsbetween the myocardium and the epicardium that are crucially impor- tant for the developmentof the coronary vessels (reviewed in

[72]), as well as the growth and differentiation of the heart muscle[73].For instance, Kolanderet al. showedthat disrupt- ing GATA4and GATA6 signalling specifically in theepicardium resultsindefectivecoronaryvasculardevelopmentbyregulation ofthenumberofsubepicardialendothelialcellsviasecretedfac- tors[74].Anotherexampleofepicardial-myocardialsignallingis retinoic acid (RA), a known contributor tocardiomyocyte pro- liferation. Retinoid X receptor ␣ (RXR␣) knock out mice are lethalasaresultofhypoplasticmyocardium,anddemonstratea poorlyattachedepicardium[75].Interestingly,thisphenotypewas demonstratedtobeepicardial-relatedsincedeletionofRXR␣in GATA5expressingcellsalsodemonstratedimpairedcardiaccom- paction,asaconsequenceofadecreasedcyclingofcardiomyocytes [76].Furthermore,multipleFibroblastGrowthFactors(FGFs)are expressedin theepicardium andare shown tobeessential for propermyocardialformation[46,77,78].Forexample,depletionof theepicardiallyexpressedFibroblastGrowthFactor9(FGF9),or depletionoftheconcomitantFGFreceptorspresentonpremature cardiacmyoblasts,resultsinembryoniclethalityandreducedcar- diomyocyteproliferationinthedevelopingheart[77].Alsoother producedfactors,suchasHedgehog[78,79]andCXCL12[80]were showntobeinvolvedinmyocardialmorphogenesisandcoronary development.Thisemphasisestheimportanceoftheepicardium incardiacdevelopment,bycontributingcellsaswellasessential cytokinesandgrowthfactorstoinducethemyocardialdevelop- ment.

3. Theepicardiumintheadultmammalianheart 3.1. Thequiescentepicardiumintheadultintactheart

Contrarytodevelopment,thepostnatalmammalianepicardium is a dormant single-cell layer. This was shown via the analy- sisofgenesinvolvedinepicardialactivationsuchasWT1,Tbx18 andRaldh2.Thesegenesareabundantlypresentintheembryonic heart,butarerapidlydownregulatedpostnatally,onlytobebarely detectableat3monthsofageinthemouse[81].Thesamecon- clusiononthedormancyoftheepicardiumwasdrawnbyusing amousemodelwheretheGreenFluorescentProtein(GFP)gene wasknocked-inintotheWT1locus(WT1GFPCre).Wheninvestigat- ingtheWT1-drivenexpressionofGFPindifferentstagesofheart development,Zhouetal.observedthatintheembryo,itsexpres- sionwasrestrictedtotheepicardiumandlabelledapproximately 90%oftheepicardialcells[82].Incontrast,intheadultheart,GFP expressionwasobservedinfewerthan25%ofthecellswithinthe epicardium;therebyrevealingthatWT1ispresentatstageswhere theepicardiumactivelyplaysaroleinheartdevelopment.Thislack ofactivationintheadultheartwasfurtherunderscoredbyusinga tamoxifeninducibleWT1CreERT2micecrossedontoaCrereporter line(RosamTmG).Inthismodel,theactivationofWT1onlyresultsin translocationofCrerecombinasetothenucleuswhentamoxifenis administered.BycrossingthesemiceontotheRosamTmGreporter line,nucleartranslocationofCreresultsintheirreversibleexchange ofexpressionofredfluorescentTomatointotheindefiniteexpres- sionofgreenfluorescentGFP.Thismodel,whichisextensivelyused inthefieldofepicardialresearch,therebyprovidestheopportunity tolabelWT1+cellsatanygiventimepoint,andtotracktheirfate basedonthecontinuousexpressionofGFP.Investigatinguninjured adultheartsusingthismodeluptoeightweeksaftertamoxifen injectionrevealednomigrationofWT1/GFPexpressingcellsinto themyocardium[82].Together,thesedatashowthatintheadult uninjuredheart,theepicardiumisaquiescentcelllayer,asshown bythedownregulationofepicardialspecificgenesandthelackof migrationofcellsaftertheformationoftheheartiscompleted.

(5)

Table1

Overviewofinvivoepicardiallineagetracinginmouseembryos.

Mousemodel Reportergene EPDCdifferentiation Identifiedmarkers Reference

SEMA3DGFPCre/+ R26RLacZ ECSMCCM$Fibro cTnT,SM22␣,Vimentin,Flk-1,PECAM [21]

ScxGFPCre R26RLacZ ECSMC$CMFibroEndocardial$ cTnT,Cx43,SMM,FSP,Flk-1,PECAM,Nfatc1,NRP-1,EphrinB2 [21]

G2-Gata4Cre Rosa26YFP ECSMC* PECAM,IB4,␣SMA,NOTCH1 [32]

Wt1CreYFP+ Rosa26YFP ECSMC* PECAM,␣SMA [32]

Wt1CreERT2 Rosa26YFP EC* PECAM [32]

Wt1GFPCre Rosa26fsLzandZ/Red SMCECCM PDGFR␤,SM22,SM-MHC,Flk-1,PECAM,Tnnt2,Actn1,GATA4,

Nkx2.5,Cx43,functionalcoupling

[36]

Wt1CreERT2 Rosa26fsLzandZ/Red SMCECCM Actn1,PECAM,PDGFR,Tnnt [36]

Tbx18Cre R26RLacZ CMSMCFibro Tnnt,cTnI,MF20,GATA4,Nkx2.5,SM-MHC,NRP-1,PDGFrb,

Col1a2

[37]

Tcf21iCre/+ R26RYFPandR26RtdT Fibro PDGFR␣,Col1 [50]

Wt1Cre R26RmTmG FibroCM* FlnA,Vimentin,Col1a1,MF20 [54]

Tbx18cre/+ Rosa26mTmG FibroSMC# Nos3,Emcn,SMaActin,Notch3,Postn,Tnni3,Myhc [64]

Wt1CreER Rosa26RFP SMCPericyteEC* SM22,SM-MHC,SMA,PECAM [65]

Tbx18Cre Rosa26RFP SMC* SMA [65]

Wt1CreERT2 RosamTmG Pericyte* CSPG4,PDGFR␤ [115]

Onlystudiesaimingtousethemousemodelforepicardiallineagetracingwereincluded.

*Didnotinvestigateothercelltypes,$Sporadic,#investigatedCMsonlyinrightventricle.

Abbreviations:Actn1:Alpha-actinin-1,CM:Cardiomyocyte,Col:Collagen,CSPG4:ChondroitinSulfateProteoglycan4,cTnI:cardiacTroponinI,cTnT:cardiacmuscletroponin T,Cx43:Connexin43,EC:EndothelialCell,Emcn:Endomucin,Fibro:Fibroblast,Flk-1:Fetalliverkinase1,FlnA:FilaminA,FSP:Fibroblast-specificProtein,IB4:IsolectinB4, MF20:MyosinHeavyChain,Myhc:Myosinheavychaincardiacmuscle,Nfatc1:NuclearfactorofactivatedT-cells,cytoplasmic1,Nkx2.5:NK2Homeobox5,Nos3:Nitric oxidesynthase3,Notch:Neurogeniclocusnotchhomologprotein,NRP-1:Neuropilin-1,Pdgfr:Platelet-derivedgrowthfactorreceptor,PECAM:PlateletEndothelialCell AdhesionMolecule,Postn:Periostin,SM22:SmoothMuscleProtein22,SMaActin:Actin␣2SmoothMuscleaorta,SMC:SmoothMuscleCell,SMM:Smoothmusclemyosin, SM-MHC:SmoothMuscle-MyosinHeavyChain,Tnni3:TroponinIcardiac3,Tnnt:TroponinT,␣SMA:SmoothMuscleActin.

3.2. Theactivatedepicardiumintheinfarctedadultheart

3.2.1. Activationoftheembryonicgeneprogrammeinthe epicardiumpost-MI

In the adult heart, the epicardium can be awakened from its dormant state. Several studies have shown that MI or ischemia/reperfusioncanresultin reactivationof theepicardial layer,includingitsproliferationandexpansion,EMT,andmigra- tionofepicardialderivedcells (reviewedin[42,83]).Withinthe firstdaysafterMI,theepicardiallayerdisplaysapartialrecapit- ulationoftheembryonicgene programme,which isevidentby theupregulationoftheepicardial genesWt1,Raldh2 andTbx18 [82,84,85].Atfivedayspost-MI,theexpressionofthesegenespeak, andtheyremainpresentinapproximately75%oftheepicardial cellsat14daysafterinjury,afterwhichtheexpressiondecreases gradually[82].Interestingly,theupregulationofgenesisobserved notonlyatthesiteofinjury,butthroughouttheepicardium.One theoryisthatthisoccursviafactorssecretedintothepericardial fluid.StudiesinducingMIwithanintactpericardiumhaveshown anattenuatedcardiacfunctionpost-MIcomparedtoMIwherethe pericardiumwasopenedpriortoligation[84,86].

Howtheactivationoftheepicardiumisregulatedonatran- scriptionallevelisnotfullyunderstood,howeveritappearstobe partiallycontrolledviatheC/EBPtranscriptionfactorfamily[85].

Interestingly,incontrasttoMI,miceundergoingtransverseaor- ticconstriction(TAC)toinducehypertrophyandfibrosisdisplay noactivationofWT1+cellswithintheepicardium[87],suggesting thatcardiacdamagethroughischemiaislikelyapotentactivator ofthislayer.

3.2.2. ProliferationandEMTofepicardialcellspost-MI

FollowingMI,theepicardiumcoveringtheinjuredareaisini- tiallycompletelylostandisrebuiltfromthesurvivingepicardium within three days post-injury [88]. The tamoxifen inducible WT1CreERT2Rosa26mTmGlineagetracingmodelwasabletoconfirm thatthisisduetoproliferationofpre-existingepicardialcells.At twodayspost-MI,phospho-histoneH3andBrdUstainingrevealed manyproliferatingWT1+/GFP+epicardialcells[82].Thisresultedin atransitionfromasinglecellepitheliumintoamulti-layeredsheet, inanorganwidefashion,butmostpronouncedneartheinjured area[82,88].Thisprocessisspecifictoacuteischemicinjurieslike

MIandischemiareperfusion,asthickeningoftheepicardiumis absentinmodelsforhypertrophylikeTAC[89].

Furtherrecapitulationoftheembryonicactivationprocessinthe ischemicheartisshownbytheupregulationofseveralEMT-related transcriptionfactorsincludingSmad1,Snail,SlugandTwistinEPDCs [82,88]. Interestingly,BrdU incorporation experiments revealed thattheepicardialcellspositiveforEMT-markersareresponsible forthenewlygeneratedsubepicardialmesenchyme[88].

Theactivationandexpansionoftheepicardiallayeriscrucialfor thepost-injuryresponse,aswasillustratedbyDuanandcolleagues [90].ThespecificdisruptionofWntsignallingwithinepicardialcells inamousemodelofcardiacischemiareperfusioninjuryrevealed lessepicardialEMT,andareducedsubepicardialcollagendeposi- tion.Asaresult,ventriculardilatationandadecreasedfractional shorteningwereobserved[90].Equally,inastudyweretheepi- cardiumwasprimedbysystemicinjectionofthymosin␤4prior toMI,athicker layerof activatedepicardium,and moremigra- tionwasobservedandresultedinasubsequentpositiveeffecton cardiacfunction[81].Thesestudiesemphasizetheimportanceof understandingandoptimisingtheepicardialactivationandEMT toenhancethepost-injuryresponse[42].Ourrecentinvitrodata showthatbothhumanadultandfoetalepicardialcells undergo activationandEMT[91].Interestingly,foetalcellswereactivated moreefficiently,andunderwentEMTspontaneously.Thispoten- tiallyreflectsthedifferencesinefficiencyofactivationinvivoduring developmentandintheadultheart.Assuchthefoetalprocesses mayserveasablueprintforanoptimaladultpost-injuryresponse.

3.2.3. MigrationofEPDCsintotheinjuredadultheart

Whether adult EPDCs retain the ability to migrate into the damaged area is subject to debate. Two studies using the WT1CreERT2Rosa26mTmGinjectedwithtamoxifentotracetheepi- cardiumwithGFPindeedconfirmedtheexpansionofthis layer afterMI,butlabelledWT1+cellsappearedtoberetainedsubepi- cardially showing noindicationof migrating into thedamaged myocardium [82,92]. However,in a later studyusing thesame mousemodel,theinjectionofmodified-RNAencodingforVEGF- Aprotein(modRNAVEGF-A)afterinjurydidrevealmigrationof cellsintotheheart[93].

Severalalternativemethodstomark cellswithintheepicar- diallayerhavebeenapplied.Thefirstoneistoinjectfluorescent

(6)

protein-producinglentiviruses into the pericardial fluid, which isin directcontact withtheepicardiallayer,allowinginfection and labelling of the epicardium [53,94]. A second approach is toapplyabiocompatiblegelcontainingamodified RNAforCre on the epicardium of the RosamTmG reporter mouse [93]. The patch wasapplied two weeks prior to MI to prevent labelling ofnon-epicardialcells in thecomplicated injuredenvironment.

Bothmethods revealedthatepicardial-derivedcellswerefound withintheinfarctedmyocardiumat7and21dayspost-MI[93,94].

Althoughthesestudiesrelyonepicardiallabellingbasedonlocation ratherthanusingepicardialspecificmarkers,theycoincidewith theresultsofageneticlabellingstudywhereintheBacterialArti- ficialChromosome(BAC)-WT1Cre;R26Rmice,beta-galactosidase expressingcellswereobservedintheinfarctedareaafter1month [88].

Itischallengingtocorrelatethesedifferentfindingsinmouse lineagetracemodels.Inthenon-inducibleBACmodel,background labelling can occurif cells within themyocardial wall start to expressWT1[56],whichislesslikelytohappenintheinducible lineagetracemodelsincethelabellingoccursduringashortperiod oftime.However,adownsideofthetamoxifenlabellingisthatthe shortdurationoflabellingmayresultinmissingofmanycellsand thereforeanunderestimationoftheepicardialcontribution.

Althoughthesedifferentconclusionsregardingmigrationmay betheresultoftechnicalissues,itappearsthat,atleastpartially, migration isa component of theadultreactivating responseto injury.

3.3. Differentiationofadultepicardialcellsintocardiaccelltypes invivo

3.3.1. Fibroblasts

Asmentionedabove,themostprominentcontributionofepi- cardialcellstotheformationoftheembryonicmyocardiumisvia differentiationintocoronarySMCs,andinterstitialandadventitial fibroblasts.Intheadultinjuredheart,asimilardifferentiationpro- fileisobserved(Table2).LineagetracingmodelsusingWT1asa Credriver,showedthatamajorityoftracedcells transitioninto fibroblasts[82,88,92].Additionally,afterischemicinjury,theepi- cardiumthickness increasesupto6-fold,and thedepositionof collageninthesubepicardialspaceisalsodramaticallyincreased [89]indicatingariseinfibroblastactivity.

Russell et al. [95] used a Notch reporter mouse line which revealedsignificantactivationofthereporterintheepicardium.

Notch reporter positive epicardial cells wereisolated and sub- jectedtomicroarrayanalysiswhichshowedthatthesecellshave afibroblastsignaturewithhighexpressionofcollagen-I,elastin andfibronectin.Therefore,fibroblastslikelyrepresentthedefault programme inthe activatedepicardial layer[95]. Althoughtoo muchactivityofcardiacfibroblastscouldresultinexcessivescar formation,theyrepresent a vital cellularcomponent in cardiac homeostasis and wound healing [96]. Reducing Wnt/␤catenin specifically in cardiac fibroblasts resulted in reduced collagen depositionand a worsecardiacfunctionpost-injuryrevealing a beneficialroleofcardiacfibroblastsincardiacrepair[90].

3.3.2. Endothelialandsmoothmusclecells

Withrespecttoneovascularisationpost-injury,manystudies haveidentifiedlineage-tracedEPDCsthatdifferentiateintosmooth musclecellspost-MI[82,88,92,93,97,98](Table2),whichwasantic- ipatedbasedonthedescribedembryonicfateofEPDCs.Incontrast, most analyses failed to identify EPDCs that differentiated into endothelialcells[81,82,92](Table2).However,astudyusingthe BACWT1Cre;R26Rmouselinetodeterminethefateofepicardial cellsbasedon␤-galactosidase(␤-gal)expressionrevealed␤-gal+ cellsco-expressingPECAMwerefoundtolinevesselswithinthe

infarctedarea[88].Althoughintriguing,thisislikely duetothe factthatWT1canbere-expressedinendothelialcellspost-injury [56]andcouldthereforerepresentanartefact,makingitunlikely thatthereisadirectcontributiontoendothelialcellsinthenormal responseofthehearttoMI.

Interestingly, injection of modRNA VEGF-A into the mouse myocardiumafter MIresulted in anincreasedcapillary density andasmallerinfarctsize.Thiscoincidedwithanenhancedacti- vationof epicardialcells, which showedanupregulationofthe VEGFreceptorKDRinWT1-GFPexpressingcellsintheWT1GFPCre mouseline.Afterisolationandsortingofepicardialcellspost-MI, culturedWT1+cellsrespondedtoVEGF-Abyincreasingtheirpro- liferation.Moreover,VEGF-Awasabletoshiftthedifferentiation ofepicardialprogenitorcells towardstheendotheliallineageas shownbyanincreaseofVE-Cadherin,KDRandPECAM1expression.

Thiswasfurthercorroboratedbyinvitroclonalassaysandlineage traceexperimentsusingeithertheWT-1CreRT2xROSAmTmGandor amodRNACreexpressingpatchontheepicardium[93].Thisstudy emphasisestheplasticityofepicardialcells,providedtherightcues aredeliveredattherighttime(Table2).

3.3.3. Cardiomyocytes

ThedifferentiationofEPDCsintocardiomyocytesintheembryo iscontroversial,andthesameholdstrueintheadult(Table2).In astudybyLimanaetal.,theepicardiumwaslabelled viainjec- tionof aGFP producinglentivirus3daysbeforeexperimentally induced MI, which revealedthat somecells thatmigrated into the infarcted myocardium expressed ␣-sarcomeric actin, albeit inverylownumbers[94].Theobservationthat EPDCshavethe abilitytodifferentiateintocardiomyocyteswasconfirmedinthe BAC-WT1Cre;R26Rmouseline.Epicardialderived␤-gal+cellsco- expressingtroponinIwerefoundwithinthemyocardiumbutonly afteroneandthreemonthspost-MI.TheseEPDC-derivedcardiomy- ocytesmaintainedanimmaturephenotype,beingsmallroundcells lackingsarcomericorganisation,andnumberswerestillverylow [88].

An enhanced post-injury activation of the epicardium was observed when animals were treated with thymosin ␤4 prior to myocardial infarction. Interestingly, in this study using the WT1CreERT2;R26REYFPline,differentiationofepicardialderivedcells intotroponinTand␣-sarcomericactinexpressingYFP+cellsthat coupledtothesurroundingmyocardial tissuewasobserved.To counterthattheseresultsareduetoextra-epicardialexpressionof WT1,YFP+epicardialderivedcellswereisolatedfromthymosin␤4 treatedmice4daysaftermyocardialinfarctionandtransplanted into the infarcted myocardium of a recipient wildtype mouse;

a small number of the YFP+ donor cells differentiated into ␣- sarcomericactinexpressingcells. Asimilareffectwasobserved whenmodRNAencodingVEGF-Awasinjectedintotheperi-infarct zonetoenhancetheepicardialresponse;besidesendothelialcells,a slightincreaseincardiomyocyteswasfoundbasedonTNN3expres- sioninlineagetracedepicardialcells[93].Althoughtheoccurrence ofcardiomyocytedifferentiationisstillextremelylowinthesetwo studies[81,93],itprovidesaproof-of–conceptthatcardiomyocyte formationfromEPDCscouldbeapossibility.

In contrast,there are severalstudiesusing a similarlineage tracingapproach(WT1CreERT2;R26mTmG)thatdidnotobservedif- ferentiation into cardiomyocytes [82,98]. Of note is that these studiesalsodidnotobservemigrationofEPDCsfromthesubepicar- dialtothemyocardiumafterinjury,whetherthisisduetotechnical issuesneedstobeaddressed.

Thedataarguethatintheadult,theepicardialpotentialforcar- diomyocyteformationiscomparabletotheembryonicheart:its abilitytodelivercardiomyocytesdirectlyislowtonon-existentbut canbeenhancedbyprimingtheepicardiumusingspecificfactors.

(7)

Table2

Overviewofinvivoepicardiallineagetracingfollowingmyocardialinfarctioninmice.

Mousemodel Reportergene EPDCdifferentiation Identifiedmarkers Treatment Reference

WT1CreERT2/+ R26REYFP CM* cTnT,s␣Actin,Cx43,N-Cad,Ca2+transients,Functional

coupling

T␤4 [81]

WT1CreERT2/+ R26RmTmG SMCFibroEC$ SM-MHC,␣SMA,SM22␣,FN1,ColIII,FSP1,ProCol1,PECAM [82]

Ad:Msln-Cre R26RmTmG Fibro FSP1 [82]

(BAC)WT1EGFPCre R26R SMCECCM$Fibro ␣SMA,PECAM+locationinvesselwall,cTnI,SERCA2,via exclusionofothermarkers

[88]

WT1CreERT2/+ R26RmTmG SMCFibro ␣SMA,DDR2,ProCol1,desmin,FSP1,ColIII T␤4 [92]

WT1CreERT2 R26RmTmG ECCM* PECAM1,Kdr,Tnnt2,TNNI3 VEGF-AmodRNA [93]

CremodRNAgel R26RmTmG SMCECCM SM-MHC,PECAM1,TNNI3 VEGF-AmodRNA [93]

LV-CMVGFP CM* s␣Actin,morphology [94]

Gata5-Cre R26REYFP SMCˆECˆFibro ␣SMA,PECAM,ProCol1 T␤4 [97]

Onlystudiesaimingtousethemousemodelforepicardiallineagetracingwereincluded.

*Othercelltypesnotreported,$Sporadic, ˆDisplayednomaturecharacteristics,remainedrounded.

Abbreviations:Ad:Adenovirus,CM:Cardiomyocyte,ColIII:CollagentypeIII,cTnI:cardiacTroponinI,cTnT:cardiacmuscleTroponinT,Cx43:Connexin43,DDR2:Discoidin DomainReceptor2,EC:EndothelialCell,Fibro:Fibroblast,FN1:Fibronectin1,FSP1:Fibroblast-specificprotein1,Kdr:Kinaseinsertdomainreceptor,Msln:Mesothelin,N-Cad:

N-Cadherin,PECAM:PlateletEndothelialCellAdhesionMolecule,proCol1:procollagen1,SERCA2:SarcoplasmicReticulumCa2+ATPase2,SM22:SmoothMuscleProtein22, SMC:SmoothMuscleCell,SM-MHC:SmoothMuscle-MyosinHeavyChain,s␣Actin:sarcomericActin,Tnni3:TroponinIcardiac3,Tnnt:TroponinT,T␤4:Thymosin␤4,

␣SMA:SmoothMuscleActin.

3.4. Paracrinecontributionofepicardialcellstocardiacrepair

Besidescontributingdirectlytotheformation ofcardiaccell types,epicardial cells canparticipate in repair of theheart via paracrineprocesses.

Zhouetal.observedmanybloodvesselswithinthethickened subepicardiumafterMI.Thesenewlyformedvesselswereoften locatedincloseproximitytoEPDCs.Invitroexperimentswiththe GFP+lineage-tracedEPDCsconfirmedthatthesecellsindeedhave proangiogenicproperties[82].Interestingly,theinjectionofcon- ditioned mediumfrom cultured EPDCs intothe infarcted heart resultedinanincreaseinvesseldensityandreducedtheadverse remodellingoftheheartpost-MIinshortandlong-termfollow- up[82].A similarfindingwas observedwhen injecting human EPDCsintotheinfarctedheartofNOD-SCIDmice.Althoughhuman cellsurvivalwasminimalat6weekspost-MI,asignificanteffect onvascularisationwasapparent,againemphasisinganangiogenic effect of EPDCs [99] (and our own unpublished observations).

Interestingly,EPDCsmayalsoinfluencecardiomyocyteswithinthe myocardiumviaparacrinemechanisms.Co-cultureexperimentsof EPDCsandcardiomyocytesresultedinincreasedmyocyteprolifera- tionandenhancedlevelsofcardiomyocytedifferentiation[30,100].

Besides using conditioned medium or cells, a single factor excretedbyepicardialcellswasidentifiedthatsignificantlyaidsin cardiacrepair.Follistatin-like1wasidentifiedasahighlyenriched factor produced by epicardial cells with the ability to induce cardiomyocyteproliferation[101]andtoincreasecardiomyocyte survival[102,103].Bydeliveringthisfactordirectlytotheinfarcted myocardiumviaanepicardiallyappliedpatchWeietal.showed anincreaseinproliferationoflocalcardiomyocytesresultinginan increasedsurvival,areductionoffibrosisandpreventeddeterio- rationofcardiacfunction[101].Follistatin-like1didnothavean effectontheepicardiumitself.

Conversely,epicardialcellscanbeinfluencedtopartakeincar- diacrepair byadditionofa singlefactor.Foglioetal.identified clusterinas highlyenriched proteinwithinthepericardialfluid ofMIpatients[86].Invitro,clusterinwasshowntoinducepro- liferationandEMTofepicardialcells.Invivo,theinjectionofthis singleproteinintothepericardialfluidoftheinfarctedmouseheart wassufficienttoenhanceepicardialEMT,andinducecellsurvival, arterioledensity,andresultedinanamelioratedcardiacfunction [86].

Thesestudiesstressthatepicardialcellsdonotonlyparticipate incardiac repairbyproviding cells, buthave amajorcontribu- tionto therepair mechanisms withintheheart via production ofessentialproteins.Moreover,sinceepicardialcellsthemselves

aresensitivetoinductionviacytokinesandgrowthfactors,one canimagineafeedforwardloopweresingleproteinsenhancethe numberofepicardialcellsthatproduceparacrinefactors,thereby furtherstimulatingcardiacrepairafterinjury.

4. Theepicardiumasasourceofmultipotentprogenitor cells?

Fromthe datadescribed above,thequestion ariseswhether EPDCsshouldbeconsideredcardiacprogenitorcells.Itbecomes clearthattheadultepicardiumintheinfarctedheartisactivated, undergoesEMTandcontributestoseveralcardiaccelltypes.Epi- cardialEMThasbeenpostulatedtobeinvolvedintheformationof residentcardiacprogenitorcells[104].Theadultepicardiummay thereforefunctionasareservoirofmesenchymalprogenitorcells [94].

Classically,stemor progenitorcells canbedefinedasaself- maintainingpopulationofrelativelyundifferentiated,proliferative cells that can produce a variety of differentiated progeny with theabilitytoregeneratetissue ofparts thereof[105].Based on theexpressionofanembryonicgeneprogramme,theirabilityto displayproliferationupondamage,andtheirdifferentiationinto severallineages,EPDCspartiallyfulfilthesecriteria.However,if theyfulfilallcriteriatobetruecardiacprogenitorcellsremains tobeestablished.Tothisenditisimportanttodefinewhichpro- genitorsarenecessarytodeliverthecellsofthedevelopingheart [106].

Withintheadultheart,cellshavebeendiscoveredexpressing stemcellmarkerslikethetyrosinekinasereceptorc-Kit[11],and stemcellantigen(Sca)-1[10]ontheircellsurface.Thesec-Kitand Sca-1expressingcellsareconsideredtobestem-orprogenitorcells basedontheirabilitytoformcolonies,todisplaytelomeraseactiv- ityandtoshowlong-termlabelretention.Thesecellularabilities aregenerally linkedtostem-cell features.Moreover,thesecells havebeenshowntodifferentiateintocardiomyocytes,endothe- lialcells,smoothmusclecellsandfibroblasts,therebyindicating theirabilitytodifferentiateintoallcelltypesrequiredtogenerate cardiactissueandparticipateincardiacregeneration(pleaserefer tothereviewsincludedinthisspecialeditionofPharmacological Research).

Thehumanfoetalandadult(sub)epicardiumishighlyheteroge- neous[107]andwasshowntoharbouraminorpopulationofc-Kit andCD34expressingcells[84,94].Invitro,thesec-Kitexpressing epicardialcellsdifferentiatedintotheendothelialandsmoothmus- clecelllineage[94].Asimilarpopulationwasobservedintheadult mouseheart.Interestingly,thepercentageofproliferativec-Kit+

(8)

Fig.2.Potentialmechanismsofepicardial-derivedcontributiontocardiacrepair.

ActivatedepicardialcellscanhaveadirectcellularcontributiontocardiacregenerationasepicardialcellsundergoEMT,migrateintothemyocardiumanddifferentiate towardscardiaccells,suchascardiacfibroblasts,smoothmusclecellsandpotentiallyothercelltypes.Asecondepicardialcontributiontocardiacrepairactsviaparacrine signalling,inducing(1)proliferationofcardiomyocytes,(2)angiogenesisand(3)survivalofcardiomyocytesintheinfarctedarea.

cellsincreasedafterinductionofMIandthesecellsappearedtopar- ticipateintheformationofsubepicardialbloodvessels[94].Bollini andcolleagues[108]performedadirectcomparisonbetweenthe expressionprofilesofmouseembryonicEPDCs,andadultEPDCs isolatedafterthymosin␤4stimulationandMI[108].Theyobserved alowexpressionofSca-1intheWT1+embryoniccells,whilein theadult,Sca-1waspresentonapproximately60%oftheWT1+ EPDCs.Moreover,the mesenchymalmarkers endoglin (CD105), thehyaluronanreceptorCD44,majorT-cellantigen 1(Thy-1or CD90)andPlateletDerivedGrowthFactorReceptor(PDGFR)␤were observedintheactivatedadultEPDCs.Theycontinuedtoshowthat withintheadultepicardiumpost-MI,theWT1+,Sca-1+,CD90hi, CD44hi populationsretaincardiovascularmultipotency,asbased ontheexpressionofcardiacprogenitormarkersinthispopulation [108].Thesedataindicatethatthymosin␤4incombinationwithMI canstimulateacardiacprogenitorcelltypewithintheepicardium.

Cells with mesenchymal-like properties have been isolated andculturedfromtheadultmouse[109]andadulthumanheart [110,111].Thesecells,termedcardiaccolony-formingunitsfibro- blast(cCFU-F),originatedfromtheepicardium,andweredefinedas mesenchymalstemcellsbecausetheyshowedclonogenicpropa- gation,long-termgrowthforover40passageswithoutsenescence, andmulti-lineagedifferentiation.Furthermore,thesemesenchy- mal progenitors express mesenchymal cell markers including CD105,CD44,CD90,andthestemcellmarkersOct4andc-Myc.

Additionally,theyareMSC-likeintheirtranscriptomeprofile[112].

AlthoughcCFU-FsexpressSca-1andPDGFR␣,lineagetracingusing theNkx2.5Crefatemappingmouselinesuggestedthattheydonot arisefromtheNkx2.5cardiacprogenitorlineage[109].

A comparable cell culture population of mesenchymal-like EPDCswasisolated fromthehumanepicardium. Thesespindle EPDCs(sEPDCs)areabundantlydecoratedwiththemesenchymal stemcellmarkersCD44,CD90andCD105,expresstheearlycardiac transcriptionfactor GATA-4and showmulti-lineage differentia- tion.WhenstimulatedinvitrowithTGF-␤,sEPDCsexpressproteins ofthesmooth musclecelllineageand calcifywhencultured in osteogenicmedium[58].Interestingly,whilesEPDCsonlyexpress GATA-4,freshlyisolatedcCFU-Fsarealsoreportedtoexpressthe earlycardiac markerNkx2.5. Furthermore, sEPDCsdifferentiate intothemesenchymallineage, butcCFU-Fshave theadditional abilitytoacquireanendothelialphenotype,whichhasnotbeen

convincinglyestablishedforEPDCs.sEPDCsandcCFU-Fsarethere- foreveryalike,butwhethertheyaresimilarisnotcleartodate.

Russelletal.isolatedapopulationofnotch-reporterpositivecells, thatwererelatedtotheepicardium.Thesecellswerenotonlyable todifferentiateintofibroblasts,butundertherightculturecon- ditionsformedcardiomyocytes[95].Additionally,invitrostudies usingVEGF-AonWT-1positiveisolatedcellsshowedthatthesecell couldbeinstructedtoproliferateandbecomecardiovascularcell types[93].

Overall,epicardialcellsandEPDCsappeartobehavelikemulti- potentprogenitorcellsintheembryoproper.Howeverintheadult, itappearsthatthispotentialisnotfullyexploitedyet,butcanbe enhancedbyprovidingtherightcues.

5. Futureperspectives

Intheembryo,thecontributionoftheepicardiumtothefor- mationoftheheartisessentialviathecontributionofcardiaccell typesaswellastheproductionofgrowthfactorsandcytokinesthat influencemyocardialgrowth[113](Fig.1).Aswehavedescribedin thisreview,manyoftheseabilitiesareretainedintheadultinjured heartbutappeartooccurlessefficientcomparedtotheembryo.

Therefore,thequestionariseswhethertheepicardialresponsecan beoptimisedtomoreefficientlypartakeintherepairoftheinjured heart.

Possibleapproachesincludeinducingproliferationandsubse- quentEMToftheepicardium.Thiswould providealargerpool ofcellsthathastheabilitytomigrateintotheheart(Fig.2,left).

Thismethodappearstobefeasiblebasedonthefindingthatthy- mosin␤4treatmentpriortoMIincreasesthenumberofactivated epicardialcells,andenhancescardiacfunctionanddifferentiation intocardiaccelltypes[81].Unfortunately,thistreatmentisonly successfulwhenappliedpriortoinjury[92],makingitdifficultto imaginethymosin␤4treatmentasaclinicalapproach.Promising resultscamefromapplyingmodRNAforVEGF-Awhichresulted inanincreaseintheproliferationandmigrationofepicardialcells anddirecttheirdifferentiationcapacityintoendothelialaswellas cardiomyocytes.Importantly,thisapproachincreasedcardiacfunc- tionpost-injury[93].Identifyingthemostpotentactivatorsofthe epicardiumwillthereforebeanimportantgoaltopursue.

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

OT: outflow tract, SV: sinus venosus, PEO: proepicardial organ, AVC: atrioventricular cushion, EPDC: epicardium-derived cell, Ep: epicardium, V: ventricle, A: atrium,

It seems unlikely that new cardiomyocyte formation 40 contributed to the increment in wall thickness in the hEPDC group, because the cardiomyocytes observed in the

Therefore, we investigated by lentiviral fluorescent (Katushka 27 ) labeling of the host epicardium whether new EPDCs were regenerated after MI. We first demonstrated by in

Trombospondin-1 (TSP-1) mRNA expression in the Mix-culture significantly increased after 7 days of hypoxia compared to the average of single CMPC and EPDC culture (Figure 4a;

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

Key findings of the present study are that in an immune-compromised mouse model of acute MI, intramyocardial injection of hMSCs from patients with IHD resulted in i) a

Figure 5: Mean end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) by magnetic resonance imaging (MRI) and conductance catheter (CC) in mice