• No results found

University of Groningen Cellular Stress in Aging and Cancer Sturmlechner, Ines

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Cellular Stress in Aging and Cancer Sturmlechner, Ines"

Copied!
19
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cellular Stress in Aging and Cancer

Sturmlechner, Ines

DOI:

10.33612/diss.170212168

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Sturmlechner, I. (2021). Cellular Stress in Aging and Cancer. University of Groningen.

https://doi.org/10.33612/diss.170212168

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the

author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately

and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the

number of authors shown on this cover page is limited to 10 maximum.

(2)

Two-step senescence-focused cancer therapies

Cynthia J. Sieben*

Ines Sturmlechner*

Bart van de Sluis

Jan M. van Deursen

* These authors contributed equally to this work.

Trends in Cell Biology, 2018 Sep;28(9):723-737.

(3)
(4)

Review

Two-Step

Senescence-Focused

Cancer

Therapies

Cynthia

J.

Sieben,

1,4

Ines

Sturmlechner,

2,3,4

Bart

van

de

Sluis,

3

and

Jan

M.

van

Deursen

1,2,

*

Damagedcells atriskof neoplastic transformationcan beneutralized by apoptosisorengagementofthesenescenceprogram,whichinduces perma-nentcell-cyclearrestandabioactivesecretomethatisimplicatedintumor immunosurveillance.Whilefromanevolutionary perspectivesenescenceis beneficialinthatitprotectsagainstmalignancies,theaccumulationof senes-centcellsintissuesandorganswithagingandatsitesofvariouspathologiesis largelydetrimental.Becauseinductionofsenescenceincancercellsis emerg-ingasatherapeuticconcept,itwillbeimportanttoconsiderthesedetrimental effects,includingtumor-promotingpropertiesthatmaydrivetheformationof secondarytumorsorcancerrelapse.Inthisreviewwediscussthecomplex relationshipbetweensenescenceandcancer,andhighlightimportant consid-erationsfortherapeutics.

SenescentCells:ModulatorsofAgingandCancer

Advancedageistheleadingriskfactorfornumerouschronicdiseasesincludingvarious typesofcancer[1].Althoughthecausesandmechanismsofagingremainpoorly under-stood,senescentcellshaveemergedasacentralcontributortoprematureandnatural aging[2]andtoage-relateddiseases[3–5].Variousstudiesinmicedemonstratethat senescentcellsrepresentadruggabletargettoextendhealthylifespanandameliorate variouschronicdiseases[2–4,6].Thesefindingshavepromptedcollectiveinterestinthe fundamentalbiologyofsenescentcells,notonlyincellculturebutalsointissuesandorgans acrossspecies,withtheultimategoalofidentifyingmolecularvulnerabilitiesfortherapeutic purposes[7](Box1).

Rationaltargetingofsenescentcells,particularlyinthecontextofcancer,requiresa com-prehensiveunderstandingofthemolecularandphysiologicalpropertiesofsenescentcells, theirdifferentphenotypicvariations,andtheircomplexassociationwithcancer,whichcanbe bothbeneficialanddetrimental.Acutelygeneratedformsofsenescentcells(acute senes-centcells;seeGlossary),thatariseduringwoundhealingorembryogenesisforexample,are thoughttoenhance organismalfitness byinhibitingneoplastic transformation[8] orby recruitingimmunecells[9].However,chronicallyexistingsenescentcellsduringaging andchronic diseasescanbedeleteriousfor theorganism, for instanceby creating a microenvironmentthatpromotesneoplasticgrowth[10],metastasis[11],or immunosup-pression[12].Inthefollowingsectionswediscussthevariousformsofcancer-associated senescentcellsinhumanandmousetissuesaswellastheirtherapeuticimplications.We proposethatsenescentcellremoval,senotherapy,isnotonlyaviabletherapeuticoptionfor agingandage-relateddiseasesbutalsoforcombination,two-stagecancertreatment– pro-senescencechemotherapyfollowedbysenotherapy.Thisapproachcouldmaximize che-motherapeuticefficiency,preventingcancerrelapseandmaintainingananti-tumortissue microenvironment.

Highlights

Senescentcells are a cell cycle-arrestedbuthighlybioactivecelltype. Althoughtheproportionofsenescent cellsintissuesisrelativelylow,these cellsarecausallyimplicatedinaging andinanever-expandinglistof dis-easesincludingcancer. Cancer-associated senescent cells canmodulateall stagesof tumor development,withtheircontributions beingeitherdetrimentalorbeneficial towards tumor initiation, growth, metastasis,orcancerrelapse. Although highlycontext-dependent, thesenescence-associatedsecretory phenotype(SASP)servesmany func-tionsinthetumormicroenvironment, includingmitogenicinduction,immune surveillance,orimmunedeterrence. Atwo-stepanticancertherapeutic con-cept,senescence-inducing chemother-apy followed by senotherapy, may representaviableoptiontomaximizether-apeuticefficiencyandpatientoutcome.

1BiochemistryandMolecularBiology,

MayoClinic,200FirstStreetSW, Rochester,MN55905,USA

2DepartmentofPediatricand

AdolescentMedicine,MayoClinic, 200FirstStreetSW,Rochester,MN 55905,USA

3DepartmentofPediatrics,Molecular

GeneticsSection,Universityof Groningen,UniversityMedicalCenter Groningen,AntoniusDeusinglaan1, 9713AVGroningen,TheNetherlands

4Theseauthorscontributedequallyto

thiswork

*Correspondence:

vandeursen.jan@mayo.edu

(J.M.vanDeursen).

TrendsinCellBiology,September2018,Vol.28,No.9 https://doi.org/10.1016/j.tcb.2018.04.006 723

©2018ElsevierLtd.Allrightsreserved.

(5)

SenescentCellTypesImplicatedinCancer

SenescentNeoplasticCells

Historically,cellularsenescencehasbeendescribedasatumor-protectivemechanismthat inhibitstheuncontrolledproliferationofcancer-pronecells.Activationofparticularoncogenes orthelossofparticulartumor-suppressorgenesinducesthesenescenceprogramtoestablish adurablecell-cyclearrest[8](Figure1A,KeyFigure).Thismechanismisdescribedinaplethora ofcellularsystemswithmultipleoncogenesinvitro,aswellasinmurinetissues,includingbut notlimitedtoliver(RASactivation[9]),lymphocytes(RASactivation[13]),skin(BRAFactivation

[14]),thyroidgland(BRAForRASactivation[11,15]),mammarygland(RASactivation[16]), prostate(PtenorSkp2loss[17,18]),colon(Csnk1a1loss[19]),andpituitarygland(Pttg1loss

[20]).Evidencefor‘oncogene-inducedsenescence’(OIS)inhumanprimarytumorshasalso beenreported.Forinstance,melanocyteswithoncogenicBRAFmutationsundergo senes-cenceandremainbenigninmelanocytenevi[21,22].Likewise,senescencemarkershavebeen identifiedinearly-stageprostatetumors[17]aswellascolonadenomas[10],astrocytomas

[23],andneurofibromas[24].

Inactivationofsenescencepathwaysinmice,forinstancethroughinactivationofthe Cdkn2a-encodedcell-cycleinhibitorsp16INK4Aandp19ARF(humanp14ARF),leadstoearlydeathfrom

tumors[16,25],illustratingwhynaturalselectionhasfavoredthesenescenceprogram. Fur-thermore,alterationofCDKN2Ainhumans,eithergeneticallyorepigenetically,isoneofthe mostfrequenteventsinneoplasticlesions[26,27],indicatingthatdisruptionofthesenescence programisamajoreventduringhumantumordevelopment.p16canalsobepredictiveof tumorsubtypebecausehighp16levelsdistinguishearly-stagesmallcelllungcancerfromlung adenocarcinoma[28,29],andearly-stage papillarythyroidmicrocarcinomafrompapillary thyroidcarcinoma[30].Tumorsubtypesoftenshowdistincttherapeuticresponseprofiles, suggestingthatp16levelscouldpredicttherapeuticefficacy[28].Inprostateoropharynx cancer,elevatedp16levelscorrelatewithasuperiorresponsetoradiationtherapy[31].On theotherhand,itmustbetakenintoconsiderationthatp16levelsmayincreaseoutsidethe contextofsenescence,forexampleowingtolossofRb1[32],anotherkeycell-cycleregulator withfrequentloss-of-functionmutationsinhumantumors[26].Overall,senescentcellsare foundinbothbenignandpremalignanttumors,suggestingthatcellularsenescenceisan evolutionarycancer-protectivemechanismdesignedtoenhanceorganismalfitness.

Therapy-InducedSenescentCells

Albeit metabolicallyactive, senescentcellsare cellcycle-arrested,and thereforecellular senescencehasbeenviewedasadesirableoutcomeduringcancertreatment(Figure1B). Tothisend,senescence-inducingcompoundshavebeendeveloped,includingCDK4/6 inhibitorssuchasabemaciclib,palbociclib,andribociclib.Becausethisclassofdrugshas

Glossary

Acutesenescentcells:senescent cellsthataregeneratedquicklyafter anenvironmentalinsultorstress(for exampleduringwoundhealing)or duringprogrammedsenescencein embryogenesis.Thesecellsare typicallyeliminatedbytheimmune systeminafastandefficientmanner. Becausethesecellsareonly temporarilypresentandare associatedwithphysiological processes,acutesenescentcellsare hypothesizedtobebeneficialforthe organism.

CDKN2A:thegeneencodingthe tumorsuppressorsp16INK4Aand

p19ARF(humanp14ARF),bothof

whichinhibitcyclin-dependent kinasesandthereforeregulatethe cellcycle.

Chronicsenescentcells:asubset ofsenescentcellsthatarenot efficientlyremovedorevadeimmune cellclearance,andtherefore accumulaterelativelyslowlyinseveral tissuesduringagingoratsitesof chronicpathologies.These senescentcellsareviewedas detrimentalfordiseaseprogression andaging.

Immunesurveillance: immunosurveillanceisacomplex processbywhichimmunecellsfrom theinnateoradaptiveimmune systemdetectandremove pathogensordamagedcells,which canincludesenescentcells. Inflammaging:ahypothesisthat tissuedeteriorationisassociatedwith low-gradetissueinflammation, usuallyinthecontextofagingand age-relatedaccumulationof senescentcellswhichsecrete pro-inflammatorycytokines. INK-ATTACtransgenicmice:a mousemodelcontaininganFK506 binding-protein–caspase8(FKBP– Casp8)fusionproteinandgreen fluorescentprotein(GFP)underthe controlofaminimalCdkn2a(p16) promoterfragmentthatis transcriptionallyactiveinsenescent cells,allowingeliminationof senescentcellsinthepresenceof thedimerizerAP20187(AP)which activatesFKBP–Casp8. PD1immunecheckpoint: programmedcelldeathprotein1 (PD1)isacell-surfacereceptorand immunecheckpointthatguards againstautoimmunitybypromoting

Box1.KeyAspectsofSenescentCells

Cellularsenescencereferstoamolecularprogramactivatedinresponsetoenvironmentalcuesorstressincluding,but notlimitedto,theendofreplicativelifespan/telomereerosion,DNAdamage,mechanicalstress,andoncogenicstimuli. Senescentcellsarecommonlycharacterizedbyadurablecell-cyclearrest,apoptosisresistance,andabioactive secretomereferredtoastheSASP.Combinationsofmultiplesenescencemarkersarewidelyusedtoidentifysenescent cells,suchasp16INK4A,p14ARF(murinep19ARF)(encodedbyCDNK2A),andp21CIP1/WAF1(encodedbyCDKN1A),DNA

damagemarkers(e.g.,g-H2AXfoci,53BP1foci),senescence-associatedb-galactosidaseactivity,chromatin altera-tionssuchaslaminBdeficiencyorheterochromatinfoci,andexpressionofseveralSASPfactors(proinflammatory cytokines,growthfactors,extracellularenzymes,andMMPs).Thereleaseofthesebioactivemoleculesaffectsand potentiallyharmsneighboringcellsorsignalstotheimmunesystem,andcollectivelymaycontributetotissue deteriorationorremodeling,chronicpathologies,andorganismalaging.Itshouldbenotedthatinthecaseofcancer, wherethegenomicregioncontainingCDKN2Aisfrequentlydeleted,itisimportanttoevaluateadditionalmarkersof senescencebecausep16INK4A-independentsenescencemayalsooccurinthesecases.

(6)

apoptosisinantigen-specificTcells whilesimultaneouslysuppressing apoptosisinregulatoryTcells. Signaltransducerandactivator oftranscription3(STAT3):a transcriptionfactorthatis phosphorylatedbyJanuskinases (JAKs)inresponsetocytokinesand growthfactors,triggering translocationtothenucleuswhereit actsasatranscriptionalactivatorand mediatescellgrowthandapoptosis. SRChomologyphosphatase2 (SHP2):alsoknownasPTPN11 (tyrosine-proteinphosphatase non-receptortype11),SHP2isan enzymeandsignalingmoleculethat regulatescellgrowth,mitoticcell cycle,differentiation,andoncogenic transformation.

KeyFigure

Cancer-Associated

Senescent

Cells

Affect

Tumors

in

Multiple

Ways

Age-related senescence (E) Stroma cell senescence Oncogene-induced senescence Immuno-senescence RAS Senescence during therapy

Healthy Ɵssue cell NeoplasƟc cell Senescent cell Senescent tumor cell Immune cell Senescent immune cell SASP factors Phenotypic transiƟons SASP signaling Blood vessel (A) (B) (C) (F) (D) senescenceParacrine

Figure1.Acutesenescentcellsthatariseduetooncogeneactivation(A)(oncogenicRASforexample)orchemotherapy (B)showtumor-suppressingproperties,includingcell-cyclearrestandSASPproductionthatmaypromote immuno-surveillance.However,prolongedpresenceofthesecells,inadditiontotumor-inducedorparacrinesenescenceinthe stroma(C,D)orage-relatedsenescence(E),canpromoteseveralhallmarksofcancer.Stromalsenescentcellsmayarise fromparacrinesignalsoriginatingfromtumorcells(C)(greyandwhitesecretedfactors)orothersenescentcells(D)(colored SASPfactors).Age-relatedsenescentcellsarehypothesizedtopromotebothneoplastictransformationofadjacentcells andproliferationoftumorcells(E).Immunosenescence(F)isacomplexprocess,butlargelyrendersimmunecells (especiallyTcells)unresponsivetoactivatingsignalsandalsopromotesaSASPwithprotumorigeniccapacities. Abbreviation:SASP,senescence-associatedsecretoryphenotype.

TrendsinCellBiology,September2018,Vol.28,No.9 725

(7)

shownpromiseintreatingseveralcancersinpreclinicalandclinicalstudies[33–35], high-throughputscreenshavebeenemployedtofindadditionaldrugtargetsthattriggersenescence incancercells[36].Studiesinmicesupportthebeneficialeffectsofsenescenceinductionin tumorcellsbecausethisnotonlyleadstotumorstallingbutalsoactivatesaSASP-mediated immuneresponse(Box1)thatcanresultineliminationofthesenescenttumorcells,aswellas neighboringneoplasticcells,ultimatelyleadingtotumorregression[9,37,38].

Conversely, accumulatingevidenceindicatesthat senescenttumorcells promotetumor relapse,aggressiveness,andmetastasis(Figure1B).Ithasbeenreportedthatp53-mediated senescenceinmammarytumorscanhinderchemotherapeuticefficiencyandpromoterapid cancerrelapse,comparedtoslowlyrelapsingtumorsinp53mutantmicethatfailtoarrestbut undergoapoptosisduetomitoticcatastrophe[39].Similarly,p16-positivepatienttumorsare associatedwithcancerrecurrence[40,41].Strikingly,arecentstudyshowsthat therapy-inducedsenescenceisassociatedwithstemcellandself-renewingfeatures,andcanpromote bothcancerinitiationandaggressiveness,inseveralmousetumormodelsincludingBcell lymphomaandTcellacutelymphoblasticleukemia[42].Inadditiontocancerrecurrence, senescentcellswithinthyroidtumorshavealsobeenlinkedtoinvasion,suggestingthatcancer metastasisispromotedbysenescentcellnon-autonomousfeatures[11].Importantly,while chronicsenescentcellsinducedbyradiationtherapyorchemotherapeuticdrugscontributeto localandsystemicinflammation,targetedremovalofthesecellsintransgenicmiceattenuates cancerrecurrenceanddetrimentalsideeffectsincludingbone marrowsuppressionand cardiacdysfunction[6,43].Therefore,althoughsenescenceinductionincancercellsisaviable therapeuticoptiontoreduceinitialtumorgrowth,chronicallypersistingsenescentcellsneedto beremovedtominimizeregressionriskandavoiddeleterioussideeffects.

SenescenceInductioninTissueAdjacenttoTumors

Thepresenceofsenescentcellswithintissuescanpromoteproliferationofneighboringcells, includingpreneoplasticcells[10].Thispropertyofsenescentcellshasbeenwellstudiedinvivo usingxenograftmodelsandcoinjectionofcancercellsandeithersenescentornon-senescent fibroblasts[12,44–46].Invitrostudiesshowthatsenescentcellnon-autonomouseffects,via secretionofSASPfactors(furtherdetailedinalatersection),inducegrowth,angiogenesis,and invasivepropertiesinneighboringcells[10,47,48].Establishedtumorsorneoplasticcellscan alsoinducecellularsenescenceinneighboringcells(Figure1C).Indeed,senescentcellshave beenidentifiedinthestromaofhepatocellularcarcinoma[49]andovariancancer[50],and usingap16–luciferasemousemodel,onegroupshowedthatinjectionoftumorcellsinduced senescenceinthestromasurroundingtumors[51].

Stromalsenescentcellsdrivetumorgrowthinseveralstudies,andthegeneexpressionprofiles ofcancer-associatedfibroblastsandsenescentcellsaresimilar,suggestingthatsenescent cellsdriveneoplasticcellproliferationthroughsimilarparacrinemechanisms[52,53].Infact, increasedp16levelsinthestromasurroundinghumanmammaryductalcarcinomainsitu lesionspredictdiseaserecurrenceindependentlyofothertypicalhistologicalmarkers[54]. Recentstudieshavealsoshownthatsenescentcellscanpromotetumorgrowthby establish-inganimmunosuppressivemicroenvironmentviasecretingcytokinesthatrecruit myeloid-derivedsuppressorcells,whichinhibitTlymphocyte-mediatedtargetingoftumorcells[55]. Overall,senescentcellsareinducedbyneighboringneoplasticcellsortumors,andsupporta protumorigenicmicroenvironmentandincreasedriskofrelapse.

Inaddition,senescentcellscanalsopotentiatetheirowneffectsbyinducingsenescencein neighboringcellsthroughparacrinemechanisms(bystander effect)viatheSASPorgap

(8)

junction-mediatedcell–cellcontact(Figure1D)[56,57].Indeed,severalstudieshave demon-stratedthiseffectinvitrousingsenescentcellconditionedmedia,andhaveshownthat numerousSASPfactorsorsignalingpathways,includingTGFB1[58,59],reactiveoxygen species(ROS)-activatedNF-kBsignaling[60],IL-8andCXCL1[61],andcGAS–STING signal-ing[62],canmediatetheinductionofparacrinesenescence.Further,anothergroupshowed thatshort-termexposureofnormalcellstoSASPfromsenescentcellsinducesexpressionof stemcellmarkersconferringregenerativecapacity;however,prolongedexposureinduces senescence[63],suggestingthatonlyshort-termexposuremaybebeneficial.Inductionof senescenceinneighboringcellshasalsobeendemonstratedinvivo,inpituitarystemcell clustersinmousemodelsofpediatriccraniopharyngioma[64]andinischemicretinalcellsina mousemodelofischemicretinopathy[65].Senescentcellsclustershavealsobeenidentifiedin thethymusofagedmice[66],hepatocytesfrommouselivers[56],andintervertebraldiscsof patientssufferingfromintervertebraldiscdegeneration[67].Together,paracrinesenescence inductionbyneighboringsenescentcellsrepresentsamechanismforsenescentcellsto potentiatetheireffects,andmayamplifynegativeimpactsoncancer(Figure1D),aging, andotherage-relateddiseases.

Aging-RelatedSenescentCells

Agingisamajorriskfactorforcancer,andmosttumorsarediagnosedinagedpatients[68].In addition,5yearsurvivalformanycancertypesdramaticallydeclineswithage[68,69]. Epidemio-logicalstudiesshowthatfamilialfactorscorrespondtobothreducedcancerandlongevity,and mostgeneticanddietarymodificationsinmicethatimpactonagingalsohaveanimpactoncancer

[69,70].Further,severalprogeroidsyndromes(Hutchinson–Gilfordprogeriasyndrome,Werner syndrome,Bloomsyndrome,xerodermapigmentosum,ataxiatelangiectasia,andmosaic varie-gatedaneuploidysyndrome)arealsoassociatedwiththedevelopmentofcancer[71]. Althoughhistoricallycanceraggressivenesshasbeenthoughttodecreasewithage,several tumortypesincludingacutemyeloidleukemiaandovariancancerhaveaworseprognosiswith increasingage[72,73].Experimentalevidenceforarelationbetweenagingandcancerfrom animalmodelsisvariable,andappearstobetumororcelltype-dependent[69].Inprostate cancerandmelanomaxenograftexperiments,nochangeingrowthorfastergrowthinyoung micewasobserved,respectively[74,75].However,inthesestudies12-month-oldmicewere usedas‘aged’mice,buttheseverityofage-relatedtissue deteriorationorpresenceof senescentcellsatthisagemaybelimited.However,implantationofneoplasticliverepithelial cellsintoliversofyoungandoldratsresultedinreducedproliferationandmoreapoptosisin youngrats[76].Thissuggeststhatdifferencesbetweentumortype,celltype,and/orsiteof implantationmayexplainthevariationinresults.

Inothergeneticapproaches,continuedsenescentcellremovalinnaturallyagingmice (INK-ATTACtransgenicmice)throughoutadulthoodwasfoundtoextendlifespananddelaytumor latency[2],suggestingadetrimentalroleforage-relatedsenescentcellsintumorprogression. Thisresultisfurthersupportedbytimedsomaticp53deletioninyoungandoldmice,where reducedtumorlatencywasobservedinagedmice[77].Further,usinganinducibleconditional mousemodelexpressingthecellcycleinhibitorp27Kip1tomimicskinaging,otherresearchers

discoveredthepresenceofstromalsenescentcellsandincreasedrecruitmentofsuppressive myeloidcellswhichinhibittumorimmunesurveillanceandpromotetumorformation[12]. Collectively,thesestudiesshowthataccumulationofsenescentcellsintissueswithaging promotes tumorformationandgrowth (Figure1E),andhighlightsthesecellsasoptimal therapeutictargetsnotonlyfortheameliorationofage-relateddeteriorationbutalsoforcancer preventionandtreatment.

TrendsinCellBiology,September2018,Vol.28,No.9 727

(9)

CancerandtheAgingImmuneSystem

Boththeadaptiveandinnateimmunesystemsarecapableofinfiltratingandclearingtumor cells.WhileTcells(CD4+helperandCD8+cytotoxic),tumor-associatedmacrophages,and

naturalkiller(NK)cellspreventtumorgrowthbytargetingantigenictumorcells,regulatoryT cellsthatsecreteimmunosuppressivecytokinesaswellasmyeloidandstromalcellssuppress Tcellresponsesinlesionsthathavelostimmunogenicity[9,78,79].Interestingly,thesesame immunecelltypesareeffectiveineliminatingsenescentcells[9,37,38,80,81].Theimmune systemundergoesprofoundchangeswithagingasreflectedbyincreasedsusceptibilityto infection,autoimmunity,impairedresponsetovaccination,andcancerdevelopment[82,83]. Withincreasingage,boththeabilityoftheadaptiveimmunesystemtomountTcell-mediated responsesandtheregulationoftheinnateimmunesystemdecline,whichmayimpactonboth senescentandtumorcellclearance[84,85].

Interestingly,theaccumulationofagedimmunecells,referredtoasimmunosenescence, increaseswithageinbothBandTcellpopulations(Figure1F)[86].WefocushereonTcell immunosenescencebecauseTcellsfunctioninimmunosurveillanceoftumorsandsenescent cells.Tcellimmunosenescencecanbeinducedbymultiplemechanismsincluding,butnot limitedto,repeatedorchronicT cellstimulation(viruses,pathogens,tumorantigens,or immunogenicself-antigens)andaderegulatedinflammatoryenvironment[86,87].Senescent Tcellsarenonresponsivetostimulation,butaremetabolicallyactiveandproducecytokines includingIL-6andTNF-a[86].SenescentTcellscanbeprotumorigenicthroughtheirabilityto suppressproliferationofresponderTcells[88],butcanalsomodulatemacrophagecellfate andcontributetoantitumoralfunctions[89].

Oneof thehallmarksof canceristheabilityof tumor cellsto escapefromimmune surveillance[90].Severalrecentstudieshaveshownthatimmunosurveillanceoftumor andsenescentstromalcellsisanimportanttumorprotectionmechanism.Ithasbeen shownthatoncogene-inducedsenescenthepatocytessecretchemokines,whichfacilitate clearanceby theadaptiveimmunesystem(CD4+T cell-mediated),whereasimpaired

immunesurveillanceresultedinthedevelopmentofhepatocellularcarcinomas[9].This suggeststhatdecreasedimmunesurveillance,asobservedwithage,maydrivetumor formation.Indeed,inamousemodelofsquamouscellcarcinoma,conditionalinductionof mutantHRASinkeratinocytesresultedindysplasticchangesand50%tumorincidencein agedmiceonly,whichshowedincreasedcellularsenescenceindermalimmunecells[91]. Bycontrast,twostudiesdemonstratedthatsenescentcellswithintumorsfacilitatedNKcell recruitmentandtumorelimination,suggestingthatsenescentcellsmayprovidebeneficial immuneattractionproperties[37,80].Together,theseresultssuggestthatpresenceof senescentcellsmaybeabenefitordetrimenttoneoplasticcells/tumorsbyavertingor attractingimmunecells.

Inaddition,theimmunosuppressivenatureofthetumormicroenvironmentlimitstheabilityof immunecellstoinfiltrateandtargettumorcells[92].Senescentcellswithintumorstroma,for example,maydeterimmunecellinfiltrationanddrivetumorigenesis.Onestudyshowedthat myeloid-derivedsuppressorcells(MDSCs)promotedanage-relatedincreaseinlungcancer growthinmice,andthatthesecellsincreasewithageinthecirculationofhumansandinthe spleensofmice[93].Further,inamodelofskinaging,senescentstromalcellsweresufficientto recruitandincreaseMDSCs,whichinhibitTcellresponsesandpromotetumorgrowth[12]. Overall,theagingprocessincreasesthesenescentcellburdenandimpairsimmunefunction, whichinturn escalatessenescent cellaccumulationandinferiorneoplasticsurveillance, establishingaprotumorigenicenvironment(Figure1F).

(10)

TheSASPandCancer

Senescentcellsrestrictandcontributetocancerviabothcell-autonomous(restrictionofcell proliferationortransformation)andcellnon-autonomousmechanisms(SASP)thatcanresultin extracellularmatrixremodeling,growthstimulation,orsuppressionofadjacentcellsand signalingtotheimmunesystem.Senescence-associatedparacrinesignalingseemstobe context-dependent,withthetypeofsenescencestimulusandcelltypehavingdramatic consequencesontheSASPprofile[47,94].

TheestablishmentandregulationoftheSASPcanbeorchestrated,atleastinvitro,bymultiple signalingpathwaysandtranscriptionfactornetworks,includingNF-kBsignaling[95],thep38 MAPKpathway[96],thecGAS–STINGpathway[62,97],inflammosomeactivation[57],TGF-b signaling[98],JAK–STATsignaling[55],PI3K–AKT–mTORsignaling[99],GATA4activation

[100],andC/EBP-bactivation[10](Figure2).Whichofthesesignalingpathwaysandnetworks areactiveseemstobedependentonsenescentcellmaturation[63,98]andorigin[42]. Extensivecrosstalkamongpathwaysandnetworkshasbeenobserved[99,101].EachSASP signalingpathwaymaydrivetheexpression,translation,orproteinstabilityofnumerousSASP factors.However,onlyafewofthesefactorshavebeenmechanisticallylinkedtophysiological eventsintissuesordiseases,andthemechanisticactionofsinglecomponentsisstilllargely basedonstudiesperformedinculturedcells.WedescribebelowselectSASPfactorsto illustratetheircontext/potentialinimpactingcancer-associatedprocesses(Figure2). IL-1aisanimportantSASPinitiatorandisactivatedintherapy-induced[99,101], oncogene-induced[102],andage-relatedsenescentcells[2].IL-1adrivesautocrineproinflammatory signalingincludingNF-kBactivationandtheexpressionofkeycytokinessuchasIL-6andIL-8

[99].IL-1acanactlocallyasamembrane-boundcytokinethatmayrecruithematopoieticcells orbecleavedbyextracellularproteasesandpromotesystemicinflammation.IL-1asignaling maythereforenotonlycontributetosenescentcellimmunosurveillancebutalsototissue inflammaging.Studiestodeterminetheroleofsenescentcell-derivedIL-1aintumorgrowth haveyettobeconducted[103].

IL-6andIL-8aretwoofthemostinvestigatedproinflammatorySASPfactors,andhavebeen linkedtooncogene-inducedsenescentcells,senescentstroma[10–12,15,104],andmurine senescentcellsduringnaturalaging,progeria,anddisease[2,4,105].Inadditiontopromoting aninflammatoryresponseandimmunosurveillancetocontrollivertumorprogression[80], CXCR2receptoractivationviaIL-6andIL-8reinforcessenescence andcell-cyclearrest throughelevatedROSproductionandactivationoftheDNAdamageresponse[61,101].In someinstances,however, stromalcell-derivedIL-6 canactinimmunosuppression [12]. AlthoughfunctionsascribedtoIL-6andIL-8 suchasprofibroticsignaling[106]or pro-proliferativesignaling[107]areunexploredinthecontextofsenescence,investigatingthese characteristicsmaybeofintegralimportanceinthecontextofcancerandcancer-associated senescence.

ChemokinessuchasCXCL1/GROaarebroadlyexpressedinseveralsenescencecontexts. CXCL1isnotonlyhighlyexpressedinoncogene-inducedsenescentcellsinvitroandinmice

[50,104]butalsoinhumanovariancancersamples[50].SecretionofCXCL12by cancer-inherent, likelyoncogene-induced,senescentcells promotesthyroidtumorinvasionand metastasisinmice[11],andthecytokineCCL2/MCP-1hasbeenlinkedtoOISintheliver andimmunesurveillanceofpremalignanthepatocytes[38]orsenescentlivertumorcells[37]. However,inthecontextofestablishedhepatocellularcarcinoma,CCL2amongothersrestricts NKcellfunctionthroughtherecruitmentofimmunosuppressivemyeloidcells,andfacilitatesthe

TrendsinCellBiology,September2018,Vol.28,No.9 729

(11)

establishmentofadvanceddisease[38].Ontheotherhand,CXCL1canalsobesecretedby tumorcellsandconfersparacrinestromalsenescencethat,inturn,couldpromotetumor growth[50].Whilethesestudiesillustratethatsenescentcell-derivedchemokinesareintegral SASPcomponents,theirphysiologicalcontributionstocancerareofacomplexand context-dependentnature.

Growthfactorsorextracellularvesicleswithgrowth-stimulatorypropertiesaresecretedby senescentcellsandmaycontributetotumorinitiation,growth,andangiogenesis[47,108]. Vascularendothelialcellproliferationmaybemediatedbysenescentcellsofvariousorigins

Oncogene-induced

senescent cells

Age-associated

senescent cells

Senescent cells

during therapy

Senescent

stromal cells

IL-6, IL-1α, MMPs

CXCL1, HGF

IL-1α, IL-6/8,

CCL2,

CXCL1/12,

MMPs

IL-6, MMPs,

osteoponƟn

IL-1α, CCL2

Healthy

Ɵssue cells

NeoplasƟc cells

Phenotypic transiƟons

SASP signaling

SASP factors

Secreted factors (from non-senescent cells)

Figure2.SecretoryDiversityofCancer-AssociatedSenescentCells.SelectedSASPcomponentswith tumor-modulatingactivitiesforeachofthediscussedsenescencetypesaredepicted.Whileage-associatedsenescentcells, oncogene-inducedsenescentcells,andtherapy-inducedsenescentcellsoftenseemtosecretecytokinesand chemo-kines(includingIL-6,CCL2,etc.),theprotumorigenicactivityofstromalsenescentcellsbenefitsmostlyfromthesecretion ofgrowthfactors(suchasosteopontin)andmatrixmetalloproteinases(MMPs).Tumorcellsthemselvesarealsoableto secretebioactivefactorsthat,insomeinstances,arecausallyimplicatedinthedevelopmentofstromalsenescentcells. Abbreviations:HGF,hepatocytegrowthfactor;SASP,senescence-associatedsecretoryphenotype.

(12)

throughsecretionofpro-angiogenicVEGF,resultingintumorvascularization[45].Osteopontin (OPN),asecretedglycoprotein,ishighlyproducedbysenescentstromalcellsinmurineskin papillomas,andcoinjectionofOPN-deficientsenescentcellsrestrictstumorgrowthcompared toOPN-expressingsenescentcells[109].Conversely,hepatocytegrowthfactorderivedfrom tumorcells orascitic fluidofan ovariancancer-patientcan alsoinducesenescence in mesothelialcells,andthismaymodulateovariancancerdevelopmentandpotentially metas-tasis[110,111].

Matrixmetalloproteinases(MMPs),secretedenzymesthatprocessanddegradeextracellular matrix(ECM)components,contributetotissueremodelingandareoftenreleasedbysenescent cells.ThisclassofSASPfactorsiswelldescribedinmultipletissueswithage[2,112]and age-relateddiseases[3,4],aswellasinthyroidtumorsassociatedwithsenescentcells[11].While destructionoftheECMbarrierpersemayfacilitatetumorgrowthandcellinvasion,growth factorsandcytokinesthataresequesteredbyECMcomponentscanalsobeliberatedbyMMP activity[113].Indeed,senescentcell-derivedMMPswereshowntosupporttumorgrowth[44]

andpromoteVEGF-stimulatedtumorvascularizationofmurinexenografts[114].Further, stromalcell-derivedMMP1cancleaveprotease-activatedreceptorsontumorcellstoenable migrationandtumorcellinvasion[115];however,whetherthismechanismappliestosenescent cell-derivedMMPsremainstobeexplored.Therefore,whiletumor-inherentsenescentcells couldrendertumortissuepermissivetocancergrowth,vascularization,orcellinvasion, age-associatedsenescentcellsmayrendertargettissuepermissivetometastases.

Overall,theSASPofage-relatedsenescentcellsandofsenescentcellsinestablishedtumors appearstobemostlydetrimentalbecauseitcatalyzesseveralhallmarksofcancer,andremoval ofsenescentcellsduringnaturalagingdelaystumorlatency[2].Onekeyfeatureistheinterplay betweentumorcells,cancer-associatedsenescentcells,andtheimmunesystem orchestrat-ingimmuneresponses.Althoughonlyfewstudiesaddressthisrelationship,itisapparentthat senescentcellandtumorimmunesurveillanceiscomplexandoftencontext-dependent. Molecularmechanistic insightsintothe implicatedevents, proteins,and kineticswillbe necessarytounderstandandpredicttherapeuticoutcome.Althoughdissectingtheidentity andoriginofdonorandrecipientcellsduringparacrinesignalingistechnicallychallenging, recentadvancesinsingle-cellsequencingtechniquesandsingle-cellproteomicswillaidethese effortsandaddressthenotionthattargetingofsenescentcellsortheirsecretomeincancer patientsmayrepresentaviabletherapeuticoptionthatshouldbeconsideredasasupplement tochemotherapy.

SenotherapyasanAnticancerStrategy

Althoughthecentralobjectiveofchemo-andradiationtherapiesistopreventtheproliferationof cancercellsthroughtheinductionofcellularsenescenceorcelldeath[116],thepersistenceof therapy-inducedsenescentcellsaftertreatmentisdetrimental.Theuseofsenotherapyin combinationwithcurrentlyusedcancertherapiesshouldbetakenintoconsiderationtocontrol thisproblem[43].Severalcancertypesarediscussedherewhichrepresentsuitablecandidates forconsiderationofcombinationcancerandsenotherapies(Table1).

Indeed,treatmentwiththeCDK4/6inhibitorpalbociclibisinitiallyeffectiveininhibiting mela-nomatumorgrowth;however,prolongedtreatmentinducedsenescenceandSASP produc-tioninstromalcells,whichbecametumor-promoting[117].Inaddition,inhibitionofSRC homologyphosphatase2(SHP2)preventedandarrestedmammarytumorgrowthinmice throughtheinductionofsenescence;however,theactivationofsignaltransducerand activatoroftranscription3(STAT3)andSASPsecretionsuppressedimmunesurveillance

TrendsinCellBiology,September2018,Vol.28,No.9 731

(13)

Table1.Senescence-AssociatedCancerTypesandTherapeuticPotential

Tissue/tumortype Model Senescentcelltype Potentialsenotherapeutic

outcome(aspect)

Refs Brain

Adamantinomatouscraniopharyngioma Mouse,human Oncogene-induced,age-related Beneficial(initiation) [64]

Breast

Mammarytumors Mouse Therapy-induced Beneficial(recurrence) [39]

Xenograft(breastcancer) Mouse,coinjection (tumorandsenescentcells)

Therapy-induced Beneficial(growth) [44]

Xenograft(mammaryepithelialcancer) Mouse,coinjection (tumorandsenescentcells)

Replicative,oncogene-induced, andp16overexpression

Beneficial(vascularization) [45]

Mammaryductalcarcinoma Human Tumor-induced Beneficial(recurrence) [54]

Liver

Hepatocellularcarcinoma Mouse Oncogene-induced(andothers?) Detrimental,earlystages (immunosurveillance)

[9,37,38]

Beneficial,latestages (immunosurveillance)

Hepatocellularcarcinoma Mouse Geneticp53

reactivation

Detrimental (immunosurveillance)

[80]

Hepatocellularcarcinoma Human Age-relatedortumor-induced? Unclear [49]

Hepatictumors Mouse,tumorcellinjection Age-related Beneficial(growth) [76]

Lung

Lungcancer Mouse,tumorcellinjection Age-related Beneficial(growth) [93]

Lymphoma/leukemia

Bcelllymphoma Mouse,tumorcellinjection Therapy-induced Beneficial(initiation,growth) [42]

Tcellacutelymphoblasticleukemia Mouse,tumorcellinjection Therapy-induced Beneficial(initiation,growth) [42]

Multiple

Lymphoma,sarcoma,carcinoma (age-relatedcancerinmice)

Mouse Age-related Beneficial(growth,initiation?) [2,77]

Xenograft(breast,pancreatic, endometrial,andlungcancer)

Mouse,tumorcellinjection Tumor-induced Unclear [51]

Xenograft(humanepidermalkeratinocytes, immortalizedmousemammaryepithelial cells,humanbreastcancer)

Mouse,coinjection (tumorandsenescentcells)

Oncogene-induced,replicative Beneficial(initiation,growth) [46]

Ovary

Ovariancarcinoma Human Tumor-induced Beneficial(growth) [50]

Prostate

Prostatecarcinoma Human Unclear Beneficial(recurrence) [40,41]

Prostatecancer Mouse Ptendeletion Beneficial(immunosurveillance,

growth,andchemoresistance)

[55]

Skin

Skinpapillomas Mouse Tumor-induced Beneficial(growth) [109]

Skin(squamouscellcarcinoma) Mouse Age-related Beneficial(initiation,growth?) [91]

Skin(squamouscellcarcinoma) Mouse,coinjection (tumorandsenescentcells)

Geneticp27overexpression Beneficial(immunosurveillance, growth)

[12]

Thyroid

(14)

[118].Further,twomousestudiesshowedthatremovalofsenescentcellsaftercancertherapy alleviatedtheirdetrimentaleffects,including reducedbonemarrowsuppression,cardiac dysfunction,cancerrecurrence,andimprovedphysicalactivityandstrength[6,43].Together, theseresultsunderpintherelevanceandpotentialbenefitofsenotherapyfollowingcancer therapeutics.

Threeprinciplecategoriescanbeconsideredforsenotherapy:permanentremovalof senes-centcells(senolysis),immune-mediatedsenescentcellclearance,andSASPneutralization[7]. Althoughsenescentcellshavebeeneliminatedwithoutnegativeconsequencesduringaging anddisease[2,4,105],acutelygeneratedsenescentcellsinadultsexhibitsomebeneficial effectsinwoundhealing[2,119]andtissueregeneration[63].Senolyticdrugswhichtargetthe antiapoptoticresponseinsenescentcells,suchassignalingthroughBCL-2familymembers (navitoclax/ABT-263 orABT-737), haveprovedto beeffectiveininducingcelldeathin senescentcells;however,thesecompoundsareunlikelytomeetrequiredsafetystandards owingtotherisksofthrombocytopeniaandneutropenia[7,120,121].However,theseriskscan beminimizedbyshort-termtreatment,andpotentiallybylocalizeddelivery,whereapplicable. Effectivetargetingofsenescenttumorcellshasbeenachievedusinginhibitionoflysosomal ATPases,therebyexploitingthehighmetabolicactivityofcyclophosphamide-or adriamycin-inducedsenescentlymphomacellsinmice[122].

Treatmenttoenhanceimmuneactivitycouldalsobeharnessedtoimprovetheantitumor activityofsenescentcell-recruitedimmunecells[123].Thiscouldbeachievedthroughtheuse ofipilimumab,anantibodythatenhancesactivationofcytotoxicCTLA-4receptor,orwith antibodiesagainstthePD1immunecheckpoint,bothofwhichareinclinicaluseforthe treatmentofmelanoma[124].SASPmodulationmayalsobeemployed,andcanbeachieved byblockingpro-SASPsignalingorinhibitingindividualSASPcomponents[7].Blocking pro-SASPsignalingmaybecomplexbecauseperturbationofthesepathwaysistumorigenicin somecases,forexampleIL-6isnecessarytomaintainthesenescentcellstate[101].In addition,SASPreductionthroughNF-kBinhibitioninalymphomamousemodeldisrupts immunosurveillancefollowingtherapy-inducedsenescence,andleadstotreatmentresistance andrelapse[95].Similarly,inhibitionofmTORC1,acomponentofthePI3K–AKT–mTOR pathway,withrapamycindiminishesp53translationinPten-deficientsenescentcellsand promotesmurineprostatetumorigenesis[125].Ontheotherhand,STAT3inhibitionhad beneficialeffectsinalleviatingdetrimentalSASPeffects,andresultedinreducedsecretion ofimmunosuppressive cytokines,triggering astrongCD8+ Tlymphocyte responseand

prostatetumorregression[55].Together,thissuggeststhatinhibitionofpro-SASPsignaling ispathway-dependent,andfurtherinvestigationintotheefficiencyandriskofthesestrategiesis required.InhibitionofselectedSASPcomponentscanalsobebeneficialbecauseofreduced off-targeteffects.PerhapsthemostprominentSASPfactors,forwhichapproveddrugsare available,includeIL-1a(IL-1receptordruganakinra,currentlyusedfortreatmentofrheumatoid arthritis),andIL-6(IL-6antibodysiltuximab,currentlyusedfortreatmentofCastlemandisease; IL-6receptorinhibitortocilizumab,currentlyusedfortreatmentofrheumatoidarthritis)[126– 128].Thesestrategieshavenotyetbeentestedinpreclinicalmodelsofcanceroraging,but representpromising targetsfor futurestudy.Together, several suitableapproaches are availablefortargetingsenescentcellsincombinationwithchemotherapyorinthecontext ofagingtopromoteeffectivetherapy,minimizerelapse,anddelayorpreventcanceronset; however,furthertestingofthesestrategiesincancerisrequired.

Inaddition,carefulconsiderationofthetimelineforsenotherapyincombinationwithcancer therapyshouldbetakenintoconsiderationbecausesenescentcellshavebothbeneficialand

TrendsinCellBiology,September2018,Vol.28,No.9 733

(15)

detrimentaleffectsontumorinitiation,growth,andrelapseinacell/tumortype-dependent fashion.Withcurrentknowledge,incorporationofsenotherapymaybebeneficial(i)before cancertherapyto increasetherapeuticefficacyby removingexistingsenescentcells,(ii) followingcyclesofcancertherapytoimprovetherapeuticoutcome,and(iii)afterfinaltreatment toreduceriskofrecurrenceandalleviatethenegativeimpactsofindirectsenescenceinduction duringtherapy.Inallcases,senescentcellremovalbysenolysisorimprovingimmunetargeting wouldbemostefficacious;however,ifmodulationofparticularSASPfactorscanprove beneficial,withminimaloff-targeteffects,thismayalsobeaviableoption.Inallinstances, however,additionalstudyusingpreclinicalanimalmodelswillbenecessarytodeterminethe safetyandefficiencyofthesestrategies.

ConcludingRemarksandFutureDirections

Cellularsenescenceisafeatureofcancerthatcanbeinducedbymultiplemechanismsinand aroundtumors,andcanhavebothbeneficialanddetrimentaleffectsontumorinitiation,growth, therapeuticefficacy,andtumor recurrence.However, thefeatures of thesedifferentsenescentcell types,aswellasthemechanismsfortheirphenotypicimpactonneoplasticcells,remain incompletelyunderstood,andin-depthinvivoanalysisiscurrentlylacking(seeOutstanding Questions).Althoughthesestudiesaretechnicallychallenging,itisdifficulttotranslateinvitro findings.Further,giventhecomplexandimportantroleofimmunesurveillanceintumorigenesis andcellularsenescence,experimentationinimmunocompetentanimalmodelsisrequired.In addition,theroleofsenescentcellsindifferenttumortypesappearstoberelativelyvariable,and furtheringourunderstandingofthesedifferencesisanimportantconsiderationforbothcancer andsenotherapy.Withcurrentknowledge,itseemsthatthedetrimentaleffectsofsenescentcells incancerappeartooutweighthebeneficialeffectsthatareobservedinsomeinstances. Nevertheless,increasingourunderstandingofthedifferencesbetweentheSASPofsenescent cellsderivedfrommultiplemechanisms,andhowthesecomponentscontributetoimmune attractionanddeterrence,willbecrucialforconsiderationofcombinationcancerand senother-apy.Althoughadditionalstudieswillbenecessarytodeterminethesafetyandefficiencyof combinationcancerandsenotherapy,thisconceptshowsgreatpromiseinimprovingcurrent cancertherapeuticsandoverallthehealthandoutcomesofcancerpatients.

Acknowledgments

The authorswouldliketoacknowledgethefollowingfunding andsupportsources:NIH(R01CA166347and R01CA96985),theGlennFoundationforMedicalResearch,MayoClinicCenterforBiomedicalDiscovery,andtheMayo ClinicGraduateSchoolofBiomedicalSciences.

References

1. Kennedy,B.K.etal.(2014)Geroscience:linkingagingtochronic disease.Cell159,709–713

2. Baker,D.J.etal.(2016)Naturallyoccurringp16(Ink4a)-positive cellsshortenhealthylifespan.Nature530,184–189 3. Childs,B.G.etal.(2016)Senescentintimalfoamcellsare

deleteriousatallstagesofatherosclerosis.Science354, 472–477

4. Jeon,O.H.etal.(2017)Localclearanceofsenescentcells attenuatesthedevelopmentofpost-traumaticosteoarthritis andcreatesapro-regenerativeenvironment.Nat.Med.23, 775–781

5. Sturmlechner,I.etal.(2017)Cellularsenescenceinrenalageing anddisease.Nat.Rev.Nephrol.13,77–89

6. Chang,J.etal.(2016)ClearanceofsenescentcellsbyABT263 rejuvenatesagedhematopoieticstemcellsinmice.Nat.Med.22, 78–83

7. Childs,B.G.etal.(2017)Senescentcells:anemergingtargetfor diseasesofageing.Nat.Rev.DrugDiscov.16,718–735

8. Serrano,M.etal.(1997)Oncogenicrasprovokesprematurecell senescenceassociated with accumulation of p53 and p16INK4a.Cell88,593–602

9. Kang,T.W.etal.(2011)Senescencesurveillanceof pre-malig-nanthepatocyteslimitslivercancerdevelopment.Nature479, 547–551

10. Kuilman,T.etal.(2008)Oncogene-inducedsenescencerelayed byaninterleukin-dependentinflammatorynetwork.Cell133, 1019–1031

11. Kim,Y.H.etal.(2017)Senescenttumorcellsleadthecollective invasioninthyroidcancer.Nat.Commun.8,15208 12. Ruhland,M.K.etal.(2016)Stromalsenescenceestablishesan

immunosuppressivemicroenvironmentthatdrives tumorigene-sis.Nat.Commun.7,11762

13. Braig,M.etal.(2005)Oncogene-inducedsenescenceasan initialbarrierinlymphomadevelopment.Nature436,660–665 14. Dhomen,N.etal.(2009)OncogenicBrafinducesmelanocyte senescenceandmelanomainmice.CancerCell15,294–303

OutstandingQuestions

Towhatextentcancombination can-cer therapy and senotherapy be employedtoimprovetherapeutic effi-cacy,reduceriskofrecurrence,and ultimatelyimprovepatientoutcome? Canremovalofage-relatedsenescent cellsinhumansreducecancerrisk? Dodifferentcell/tumortypeshave dif-ferent dependencies on senescent cells,inotherwordsmoreorless ben-eficialordetrimentalroles,withintheir niche?

Whatisthemechanismforsenescent cellinductionofregenerativecapacity inneighboringcellswithshort-term exposure,andcanthiscontributeto the protumorigenic properties of senescentcells?

Whichpropertiesofsenescentcells determinetheirroleinimmune attrac-tionordeterrence,andhowcanthese bedifferentiallymediatedinsenescent cellsinducedbysimilarmechanisms? Doesimmuneefficiencyunderliethese differences?

Do beneficial tumor-suppressing senescentcellsmodulate immunosur-veillancedifferentlyfromdetrimental, cancer-promotingsenescentcells? Howdosenescentcellfeaturesand SASPfromsenescentcellsinduced bydifferentmechanisms (oncogene-induced, therapy-induced, tumor-induced,age-related,and bystander-induced)differinvivo,andhowdoes thisimpactthetumor microenviron-mentandimmunesurveillance? WhichSASPcomponentsareinvolved indrivinggrowthandbystander senes-cenceinneighboringcells,immune attraction,andimmunedeterrencein vivo?

How do tumors/neoplastic cells induce senescence in neighboring cells/tumorstroma?

(16)

15.Vizioli,M.G.etal.(2014)OncogenicRAS-inducedsenescence inhumanprimarythyrocytes:moleculareffectorsand inflamma-torysecretomeinvolved.Oncotarget5,8270–8283 16.Sarkisian,C.J.etal.(2007)Dose-dependentoncogene-induced

senescenceinvivoanditsevasionduringmammary tumorigen-esis.Nat.CellBiol.9,493–505

17.Chen,Z.etal.(2005)Crucialroleofp53-dependentcellular senescenceinsuppressionofPten-deficienttumorigenesis. Nature436,725–730

18.Lin,H.K.etal.(2010)Skp2targetingsuppressestumorigenesis byArf–p53-independentcellularsenescence.Nature464,374– 379

19.Elyada,E.etal.(2011)CKIalphaablationhighlightsacriticalrole forp53ininvasivenesscontrol.Nature470,409–413 20.Chesnokova,V.etal.(2007)Senescencemediatespituitary

hypoplasiaandrestrainspituitarytumorgrowth.CancerRes. 67,10564–10572

21.Pollock,P.M.etal.(2003)HighfrequencyofBRAFmutationsin nevi.Nat.Genet.33,19–20

22.Bennett,D.C.(2003)Humanmelanocytesenescenceand mel-anomasusceptibilitygenes.Oncogene22,3063–3069 23.Jacob,K.etal.(2011)GeneticaberrationsleadingtoMAPK

pathwayactivationmediateoncogene-inducedsenescencein sporadicpilocyticastrocytomas. Clin.Cancer Res.17, 4650–4660 24.Courtois-Cox,S.etal.(2006)Anegativefeedbacksignaling networkunderliesoncogene-inducedsenescence.CancerCell 10,459–472

25.Sharpless,N.E.etal.(2004)Thedifferentialimpactofp16 (INK4a)orp19(ARF)deficiencyoncellgrowthand tumorigene-sis.Oncogene23,379–385

26.Solimini,N.L.etal.(2012)Recurrenthemizygousdeletionsin cancersmayoptimizeproliferativepotential.Science337,104– 109

27.Gonzalgo,M.L.etal.(1998)TheroleofDNAmethylationin expressionofthep19/p16locusinhumanbladdercancercell lines.CancerRes.58,1245–1252

28.LaPak,K.M.andBurd,C.E.(2014)Themolecularbalancingactof p16(INK4a)incancerandaging.Mol.CancerRes.12,167–183 29.Otterson,G.A.etal.(1994)Absenceofp16INK4proteinis restrictedtothesubsetoflungcancerlinesthatretainswildtype RB.Oncogene9,3375–3378

30.Vizioli,M.G.etal.(2011)Evidenceofoncogene-induced senes-cenceinthyroidcarcinogenesis.Endocr.Relat.Cancer18,743– 757

31.Lassen,P.etal.(2014)ImpactofHPV-associated p16-expres-siononradiotherapyoutcomeinadvancedoropharynxand non-oropharynxcancer.Radiother.Oncol.113,310–316 32.Parry,D.etal.(1995)LackofcyclinD-Cdkcomplexesin

Rb-negativecellscorrelateswithhighlevelsofp16INK4/MTS1 tumoursuppressorgeneproduct.EMBOJ.14,503–511 33.Geoerger,B.etal.(2017)APhaseIstudyoftheCDK4/6inhibitor

ribociclib(LEE011)inpediatricpatientswithmalignantrhabdoid tumors,neuroblastoma,andothersolidtumors.Clin.Cancer Res.23,2433–2441

34.Goldman,J.W.etal.(2016)Treatmentrationaleandstudy designfortheJUNIPERstudy:arandomizedPhaseIIIstudy ofabemaciclibwithbestsupportivecareversuserlotinibwith bestsupportivecareinpatientswithstageIVnon-small-celllung cancerwithadetectableKRASmutationwhosediseasehas progressedafterplatinum-basedchemotherapy.Clin.Lung Cancer17,80–84

35.Turner,N.C.etal.(2015)Palbociclibin hormone-receptor-posi-tiveadvancedbreastcancer.N.Engl.J.Med.373,209–219 36.Wang,L.etal.(2017)High-throughputfunctionalgeneticand

compoundscreensidentifytargetsforsenescenceinductionin cancer.CellRep.21,773–783

37.Iannello,A.etal.(2013)p53-dependentchemokineproduction bysenescenttumorcellssupportsNKG2D-dependenttumor eliminationbynaturalkillercells.J.Exp.Med.210,2057–2069

38. Eggert,T.etal.(2016)Distinctfunctionsof senescence-associ-atedimmuneresponsesinlivertumorsurveillanceandtumor progression.CancerCell30,533–547

39. Jackson,J.G.etal.(2012)p53-mediatedsenescenceimpairs theapoptoticresponsetochemotherapyandclinicaloutcomein breastcancer.CancerCell21,793–806

40. Lee,C.T.etal.(1999)Overexpressionofthecyclin-dependent kinaseinhibitorp16isassociatedwithtumorrecurrencein humanprostatecancer.Clin.CancerRes.5,977–983 41. Henshall,S.M.etal.(2001)Overexpressionofthecellcycle

inhibitorp16INK4Ainhigh-gradeprostaticintraepithelial neo-plasiapredictsearlyrelapseinprostatecancerpatients.Clin. CancerRes.7,544–550

42. Milanovic,M.etal.(2018)Senescence-associated reprogram-mingpromotescancerstemness.Nature553,96–100 43. Demaria,M.etal.(2017)Cellularsenescencepromotesadverse

effectsofchemotherapyandcancerrelapse.CancerDiscov.7, 165–176

44. Liu,D.andHornsby,P.J.(2007)Senescenthumanfibroblasts increasetheearlygrowthofxenografttumorsviamatrix metal-loproteinasesecretion.CancerRes.67,3117–3126 45. Coppe,J.P.etal.(2006)Secretionofvascularendothelial

growthfactorbyprimaryhumanfibroblastsatsenescence.J. Biol.Chem.281,29568–29574

46. Krtolica,A.etal.(2001)Senescentfibroblastspromoteepithelial cellgrowthandtumorigenesis:alinkbetweencancerandaging. Proc.Natl.Acad.Sci.U.S.A.98,12072–12077 47. Coppe,J.P.etal.(2008)Senescence-associatedsecretory

phenotypesrevealcell-nonautonomousfunctionsofoncogenic RASandthep53tumorsuppressor.PLoSBiol.6,2853–2868 48. Laberge,R.M.etal.(2012)Glucocorticoidssuppressselected componentsofthesenescence-associatedsecretory pheno-type.AgingCell11,569–578

49. Paradis,V.etal.(2001)Replicativesenescenceinnormalliver, chronichepatitisC,andhepatocellularcarcinomas.Hum. Pathol.32,327–332

50. Yang,G.etal.(2006)Thechemokinegrowth-regulated onco-gene1(Gro-1)linksRASsignalingtothesenescenceofstromal fibroblastsandovariantumorigenesis.Proc.Natl.Acad.Sci.U. S.A.103,16472–16477

51. Burd,C.E.etal.(2013)Monitoringtumorigenesisandsenescence invivowithap16(INK4a)-luciferasemodel.Cell152,340–351 52. Campisi,J.(2005)Senescentcells,tumorsuppression,and

organismalaging:goodcitizens,badneighbors.Cell120, 513–522

53. Bavik,C.etal.(2006)Thegeneexpressionprogramofprostate fibroblastsenescencemodulatesneoplasticepithelialcell pro-liferationthroughparacrinemechanisms.CancerRes.66,794– 802

54. Witkiewicz,A.K.etal.(2011)AssociationofRB/p16-pathway perturbationswithDCISrecurrence:dependenceontumor versustissuemicroenvironment.Am.J.Pathol.179,1171– 1178

55. Toso,A.etal.(2014)Enhancingchemotherapyefficacyin Pten-deficientprostatetumorsbyactivatingthe senescence-associ-atedantitumorimmunity.CellRep.9,75–89 56. Nelson,G.etal.(2012)Asenescentcellbystandereffect:

senescence-inducedsenescence.AgingCell11,345–349 57. Acosta,J.C.etal.(2013)Acomplexsecretoryprogram

orches-tratedbytheinflammasomecontrolsparacrinesenescence. Nat.CellBiol.15,978–990

58. Mikula-Pietrasik,J.etal.(2013)Bystandersenescencein humanperitonealmesotheliumandfibroblastsisrelatedto thrombospondin-1-dependent activation of transforming growthfactor-beta1.Int.J.Biochem.CellBiol.45,2087–2096 59. Hubackova,S.etal.(2012)IL1-andTGFbeta–Nox4signaling, oxidativestressandDNAdamageresponsearesharedfeatures ofreplicative,oncogene-induced,anddrug-inducedparacrine ‘bystandersenescence’.Aging(Milano)4,932–951

TrendsinCellBiology,September2018,Vol.28,No.9 735

(17)

60. Nelson,G.etal.(2018)Thesenescentbystandereffectis causedbyROS-activatedNF-kappaBsignalling.Mech.Ageing Dev.170,30–36

61. Acosta,J.C.etal.(2008)ChemokinesignalingviatheCXCR2 receptorreinforcessenescence.Cell133,1006–1018 62. Gluck,S.etal.(2017)Innateimmunesensingofcytosolic

chromatinfragmentsthroughcGASpromotessenescence. Nat.CellBiol.19,1061–1070

63. Ritschka,B.etal.(2017)Thesenescence-associatedsecretory phenotypeinducescellularplasticityandtissueregeneration. GenesDev.31,172–183

64. MarioGonzalez-Meljem,J.etal.(2017)Stemcellsenescence drivesage-attenuatedinductionofpituitarytumoursinmouse modelsofpaediatriccraniopharyngioma.Nat.Commun.8, 1819

65. Oubaha,M.etal.(2016)Senescence-associatedsecretory phenotypecontributestopathologicalangiogenesisin retinop-athy.Sci.Transl.Med.8,362ra144

66. Burnley,P.etal.(2013)Roleofthep63–FoxN1regulatoryaxisin thymicepithelialcellhomeostasisduringaging.CellDeathDis. 4,e932

67. Wang,X.etal.(2015)Metabolictriggeredinflammationin oste-oarthritis.Osteoarthr.Cartil.23,22–30

68. deMagalhaes,J.P.(2013)Howageingprocessesinfluence cancer.Nat.Rev.Cancer13,357–365

69. Anisimov,V.N.etal.(2009)Relationshipsbetweencancerand aging:amultilevelapproach.Biogerontology10,323–338 70. Christensen,K.etal.(2012)Cancerandlongevity–istherea

trade-off?AstudyofcooccurrenceinDanishtwinpairs born1900–1918.J.Gerontol.ABiol.Sci.Med.Sci.67,489– 494

71. Kubben,N.andMisteli,T.(2017)Sharedmolecularandcellular mechanismsofprematureageingandageing-associated dis-eases.Nat.Rev.Mol.CellBiol.18,595–609 72. Maas,H.A.etal.(2005)Theinfluenceofageandco-morbidity

ontreatmentandprognosisofovariancancer:a population-basedstudy.Gynecol.Oncol.97,104–109

73. Lancet,J.E.etal.(2000)Acutemyelogenousleukemiaand aging.Clinicalinteractions.Hematol.Oncol.Clin.NorthAm. 14,251–267

74. Reed,M.J.etal.(2007)Theeffectsofagingontumorgrowth andangiogenesisaretumor-celldependent.Int.J.Cancer120, 753–760

75. Ershler,W.B.etal.(1984)B16murinemelanomaandaging: slowergrowthandlongersurvivalinoldmice.J.Natl.Cancer Inst.72,161–164

76. McCullough,K.D.etal.(1997)Age-dependentinductionof hepatictumorregressionbythetissuemicroenvironmentafter transplantationofneoplasticallytransformedratliverepithelial cellsintotheliver.CancerRes.57,1807–1813 77. Hinkal,G.etal.(2009)Timedsomaticdeletionofp53inmice

revealsage-associateddifferencesintumorprogression.PLoS One4,e6654

78. Braumuller,H.etal.(2013)T-helper-1-cellcytokinesdrive can-cerintosenescence.Nature494,361–365

79. Galon,J.etal.(2006)Type,density,andlocationofimmune cellswithinhumancolorectaltumorspredictclinicaloutcome. Science313,1960–1964

80. Xue,W.etal.(2007)Senescenceandtumourclearanceis triggeredbyp53restorationinmurinelivercarcinomas.Nature 445,656–660

81. Krizhanovsky,V.etal.(2008)Senescenceofactivatedstellate cellslimitsliverfibrosis.Cell134,657–667

82. Panda,A.etal.(2009)Humaninnateimmunosenescence: causesandconsequencesforimmunityinoldage.Trends Immunol.30,325–333

83. Gruver,A.L.etal.(2007)Immunosenescenceofageing.J. Pathol.211,144–156

84.Hewitt,G.etal.(2012)Telomeresarefavouredtargetsofa persistentDNAdamageresponseinageingandstress-induced senescence.Nat.Commun.3,708

85.LeGarff-Tavernier,M.etal.(2010)HumanNKcellsdisplaymajor phenotypicandfunctionalchangesoverthelifespan.AgingCell 9,527–535

86.Vicente,R.etal.(2016)Cellularsenescenceimpactonimmune cellfateandfunction.AgingCell15,400–406 87.Effros,R.B.etal.(2003)Invitrosenescenceofimmunecells.

Exp.Gerontol.38,1243–1249

88.Montes,C.L.etal.(2008)Tumor-inducedsenescentTcellswith suppressorfunction:apotentialformoftumorimmuneevasion. CancerRes.68,870–879

89.Ramello,M.C.etal.(2014)Tumor-inducedsenescentTcells promotethesecretionofpro-inflammatorycytokinesand angio-genicfactorsbyhumanmonocytes/macrophagesthrougha mechanismthatinvolvesTim-3andCD40L.CellDeathDis. 5,e1507

90.Hanahan,D.andWeinberg,R.A.(2011)Hallmarksofcancer: thenextgeneration.Cell144,646–674

91.Golomb,L.etal.(2015)Age-associatedinflammationconnects RAS-inducedsenescencetostemcelldysfunctionand epider-malmalignancy.CellDeathDiffer.22,1764–1774 92.Feig,C.etal.(2013)TargetingCXCL12fromFAP-expressing

carcinoma-associatedfibroblastssynergizeswithanti-PD-L1 immunotherapyinpancreaticcancer.Proc.Natl.Acad.Sci. U.S.A.110,20212–20217

93.Chen,S.etal.(2015)Myeloid-derivedsuppressorcellspromote age-relatedincreaseoflungcancergrowthviaB7-H1.Exp. Gerontol.61,84–91

94.Coppe,J.P.etal.(2010)Ahuman-likesenescence-associated secretoryphenotypeisconservedinmousecellsdependenton physiologicaloxygen.PLoSOne5,e9188

95.Chien,Y.etal.(2011)Controlofthesenescence-associated secretoryphenotypebyNF-kappaBpromotessenescenceand enhanceschemosensitivity.GenesDev.25,2125–2136 96.Freund,A.etal.(2011)p38MAPKisanovelDNAdamage

response-independentregulatorofthesenescence-associated secretoryphenotype.EMBOJ.30,1536–1548 97.Dou,Z.etal.(2017)Cytoplasmicchromatintriggers

inflamma-tioninsenescenceandcancer.Nature550,402–406 98.Hoare,M.etal.(2016)NOTCH1mediatesaswitchbetweentwo

distinctsecretomesduringsenescence.Nat.CellBiol.18,979– 992

99.Laberge,R.M.etal.(2015)MTORregulatesthepro-tumorigenic senescence-associatedsecretoryphenotypebypromoting IL1Atranslation.Nat.CellBiol.17,1049–1061 100.Kang,C.etal.(2015)TheDNAdamageresponseinduces

inflammationandsenescencebyinhibitingautophagyof GATA4.Science349,aaa5612

101.Orjalo,A.V.etal.(2009)Cellsurface-boundIL-1alphaisan upstreamregulatorofthesenescence-associatedIL-6/IL-8 cytokinenetwork. Proc.Natl.Acad.Sci.U.S.A.106, 17031–17036

102.Tasdemir,N.andCelik,S.(2016)Self-reportedpainrelief inter-ventionsofpatientsbeforeemergencydepartmentarrival.Int. Emerg.Nurs.28,20–24

103.DiPaolo,N.C.andShayakhmetov,D.M.(2016)Interleukin 1alphaandtheinflammatoryprocess.Nat.Immunol.17, 906–913

104.Yoshimoto,S.etal.(2013)Obesity-inducedgutmicrobial metabolitepromoteslivercancerthroughsenescence secre-tome.Nature499,97–101

105.Baker,D.J.etal.(2011)Clearanceofp16Ink4a-positive senes-centcellsdelaysageing-associateddisorders.Nature479, 232–236

106.Fielding,C.A.etal.(2014)Interleukin-6signalingdrivesfibrosisin unresolvedinflammation.Immunity40,40–50

(18)

107.Ning,Y.etal.(2011)Interleukin-8isassociatedwithproliferation, migration,angiogenesisandchemosensitivityinvitroand invivoincoloncancercelllinemodels.Int.J.Cancer128,2038– 2049

108.Takasugi,M.etal.(2017)Smallextracellularvesiclessecreted fromsenescentcellspromotecancercellproliferationthrough EphA2.Nat.Commun.8,15729

109.Pazolli,E.etal.(2009)Senescentstromal-derivedosteopontin promotespreneoplasticcellgrowth.CancerRes.69,1230– 1239

110.Mikula-Pietrasik,J.etal.(2017)Oxidativestresscontributes tohepatocytegrowthfactor-dependentpro-senescence activityofovariancancercells.FreeRadic.Biol.Med.110,270– 279

111.Mikula-Pietrasik,J.etal.(2016)Ovariancancer-derivedascitic fluidsinduceasenescence-dependentpro-cancerogenic phe-notypeinnormalperitonealmesothelialcells.Cell.Oncol.39, 473–481

112.Malaquin,N.etal.(2013)Senescentfibroblastsenhanceearly skincarcinogeniceventsviaaparacrineMMP–PAR-1axis. PLoSOne8,e63607

113.Bonnans,C.etal.(2014)Remodellingtheextracellularmatrixin developmentanddisease.Nat.Rev.Mol.CellBiol.15,786–801 114.Woenne,E.C.etal.(2010)MMPinhibitionblocks fibroblast-dependentskincancerinvasion,reducesvascularizationand altersVEGF-AandPDGF-BBexpression.AnticancerRes.30, 703–711

115.Boire,A.etal.(2005)PAR1isamatrixmetalloprotease-1 receptorthatpromotesinvasionandtumorigenesisofbreast cancercells.Cell120,303–313

116.Nardella,C.etal.(2011)Pro-senescencetherapyforcancer treatment.Nat.Rev.Cancer11,503–511

117.Guan,X.etal.(2017)StromalsenescencebyprolongedCDK4/ 6inhibitionpotentiatestumorgrowth.Mol.CancerRes.15, 237–249

118.Lan,L.etal.(2015)Shp2signalingsuppressessenescencein PyMT-inducedmammaryglandcancerinmice.EMBOJ.34, 1493–1508

119.Demaria,M.etal.(2014)Anessentialroleforsenescentcellsin optimalwoundhealingthroughsecretionofPDGF-AA.Dev.Cell 31,722–733

120.Kaefer,A.etal.(2014)Mechanism-basedpharmacokinetic/ pharmacodynamic meta-analysisof navitoclax (ABT-263) inducedthrombocytopenia.CancerChemother.Pharmacol. 74,593–602

121.Tse,C.etal.(2008)ABT-263:apotentandorallybioavailable Bcl-2familyinhibitor.CancerRes.68,3421–3428 122.Dorr,J.R.etal.(2013)Syntheticlethalmetabolictargetingof

cellularsenescenceincancertherapy.Nature501,421–425 123.Lasry,A.andBen-Neriah,Y.(2015)Senescence-associated

inflammatoryresponses:aging andcancerperspectives. TrendsImmunol.36,217–228

124.Ott,P.A.etal.(2013)CTLA-4andPD-1/PD-L1blockade:new immunotherapeuticmodalitieswithdurableclinicalbenefitin melanomapatients.Clin.CancerRes.19,5300–5309 125.Alimonti,A.etal.(2010)Anoveltypeofcellularsenescencethat

canbeenhancedinmousemodelsandhumantumor xeno-graftstosuppressprostatetumorigenesis.J.Clin.Invest.120, 681–693

126.Fleischmann,R.(2006)Anakinrainthetreatmentofrheumatic disease.ExpertRev.Clin.Immunol.2,331–340 127.Deisseroth,A.etal.(2015)FDAapproval:siltuximabforthe

treatmentofpatientswithmulticentricCastlemandisease.Clin. CancerRes.21,950–954

128.Karsdal,M.A.etal.(2012)IL-6receptorinhibitionpositively modulatesbonebalanceinrheumatoidarthritispatientswith aninadequateresponsetoanti-tumornecrosisfactortherapy: biochemicalmarkeranalysisofbonemetabolisminthe tocili-zumabRADIATE study (NCT00106522).Semin. Arthritis Rheum.42,131–139

TrendsinCellBiology,September2018,Vol.28,No.9 737

(19)

Referenties

GERELATEERDE DOCUMENTEN

A recent study demonstrated the efficient differentiation of oligodendrocytes from human iPSC-derived neural progenitor cells by the overexpression of three transcription factors

This specific primate EAE model is considered the most adequate animal model of MS as it approximates (progressive) disease in clinical and pathological presentation. Important for

This showed that short expression of the 3 transcription factors and Ezh2 is necessary for the conversion of astrocytes into induced oligodendrocytes progenitor cells

However, upon glutamate treatment, aggregates form in SCA3 neurons but not in SCA3-derived iPSCs or iPSC-derived neural stem cells (NSCs).. Analysis of chaperone proteins expression

So, we have gratefully adopted the use of patient iPSC- derived cells as a tool to identify various risk factors in diseases like multiple sclerosis (MS).. In addition,

recent study demonstrated the efficient differentiation of oligodendrocytes from human iPSC-derived neural progenitor cells by the overexpression of three transcription factors

I’m deeply grateful for his time and scientific input throughout the years, and for his priceless support, advice and help during preparation of this thesis!. Bart’s qualities as

Chronic cellular stress drives tissue dysfunction and causes aging and disease. Cellular senescence is an evolving cell fate with beneficial and/or