Cellular Stress in Aging and Cancer
Sturmlechner, Ines
DOI:
10.33612/diss.170212168
IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.
Document Version
Publisher's PDF, also known as Version of record
Publication date:
2021
Link to publication in University of Groningen/UMCG research database
Citation for published version (APA):
Sturmlechner, I. (2021). Cellular Stress in Aging and Cancer. University of Groningen.
https://doi.org/10.33612/diss.170212168
Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).
Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.
Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.
Two-step senescence-focused cancer therapies
Cynthia J. Sieben*
Ines Sturmlechner*
Bart van de Sluis
Jan M. van Deursen
* These authors contributed equally to this work.
Trends in Cell Biology, 2018 Sep;28(9):723-737.
Review
Two-Step
Senescence-Focused
Cancer
Therapies
Cynthia
J.
Sieben,
1,4Ines
Sturmlechner,
2,3,4Bart
van
de
Sluis,
3and
Jan
M.
van
Deursen
1,2,*
Damagedcells atriskof neoplastic transformationcan beneutralized by apoptosisorengagementofthesenescenceprogram,whichinduces perma-nentcell-cyclearrestandabioactivesecretomethatisimplicatedintumor immunosurveillance.Whilefromanevolutionary perspectivesenescenceis beneficialinthatitprotectsagainstmalignancies,theaccumulationof senes-centcellsintissuesandorganswithagingandatsitesofvariouspathologiesis largelydetrimental.Becauseinductionofsenescenceincancercellsis emerg-ingasatherapeuticconcept,itwillbeimportanttoconsiderthesedetrimental effects,includingtumor-promotingpropertiesthatmaydrivetheformationof secondarytumorsorcancerrelapse.Inthisreviewwediscussthecomplex relationshipbetweensenescenceandcancer,andhighlightimportant consid-erationsfortherapeutics.
SenescentCells:ModulatorsofAgingandCancer
Advancedageistheleadingriskfactorfornumerouschronicdiseasesincludingvarious typesofcancer[1].Althoughthecausesandmechanismsofagingremainpoorly under-stood,senescentcellshaveemergedasacentralcontributortoprematureandnatural aging[2]andtoage-relateddiseases[3–5].Variousstudiesinmicedemonstratethat senescentcellsrepresentadruggabletargettoextendhealthylifespanandameliorate variouschronicdiseases[2–4,6].Thesefindingshavepromptedcollectiveinterestinthe fundamentalbiologyofsenescentcells,notonlyincellculturebutalsointissuesandorgans acrossspecies,withtheultimategoalofidentifyingmolecularvulnerabilitiesfortherapeutic purposes[7](Box1).
Rationaltargetingofsenescentcells,particularlyinthecontextofcancer,requiresa com-prehensiveunderstandingofthemolecularandphysiologicalpropertiesofsenescentcells, theirdifferentphenotypicvariations,andtheircomplexassociationwithcancer,whichcanbe bothbeneficialanddetrimental.Acutelygeneratedformsofsenescentcells(acute senes-centcells;seeGlossary),thatariseduringwoundhealingorembryogenesisforexample,are thoughttoenhance organismalfitness byinhibitingneoplastic transformation[8] orby recruitingimmunecells[9].However,chronicallyexistingsenescentcellsduringaging andchronic diseasescanbedeleteriousfor theorganism, for instanceby creating a microenvironmentthatpromotesneoplasticgrowth[10],metastasis[11],or immunosup-pression[12].Inthefollowingsectionswediscussthevariousformsofcancer-associated senescentcellsinhumanandmousetissuesaswellastheirtherapeuticimplications.We proposethatsenescentcellremoval,senotherapy,isnotonlyaviabletherapeuticoptionfor agingandage-relateddiseasesbutalsoforcombination,two-stagecancertreatment– pro-senescencechemotherapyfollowedbysenotherapy.Thisapproachcouldmaximize che-motherapeuticefficiency,preventingcancerrelapseandmaintainingananti-tumortissue microenvironment.
Highlights
Senescentcells are a cell cycle-arrestedbuthighlybioactivecelltype. Althoughtheproportionofsenescent cellsintissuesisrelativelylow,these cellsarecausallyimplicatedinaging andinanever-expandinglistof dis-easesincludingcancer. Cancer-associated senescent cells canmodulateall stagesof tumor development,withtheircontributions beingeitherdetrimentalorbeneficial towards tumor initiation, growth, metastasis,orcancerrelapse. Although highlycontext-dependent, thesenescence-associatedsecretory phenotype(SASP)servesmany func-tionsinthetumormicroenvironment, includingmitogenicinduction,immune surveillance,orimmunedeterrence. Atwo-stepanticancertherapeutic con-cept,senescence-inducing chemother-apy followed by senotherapy, may representaviableoptiontomaximizether-apeuticefficiencyandpatientoutcome.
1BiochemistryandMolecularBiology,
MayoClinic,200FirstStreetSW, Rochester,MN55905,USA
2DepartmentofPediatricand
AdolescentMedicine,MayoClinic, 200FirstStreetSW,Rochester,MN 55905,USA
3DepartmentofPediatrics,Molecular
GeneticsSection,Universityof Groningen,UniversityMedicalCenter Groningen,AntoniusDeusinglaan1, 9713AVGroningen,TheNetherlands
4Theseauthorscontributedequallyto
thiswork
*Correspondence:
(J.M.vanDeursen).
TrendsinCellBiology,September2018,Vol.28,No.9 https://doi.org/10.1016/j.tcb.2018.04.006 723
©2018ElsevierLtd.Allrightsreserved.
SenescentCellTypesImplicatedinCancer
SenescentNeoplasticCells
Historically,cellularsenescencehasbeendescribedasatumor-protectivemechanismthat inhibitstheuncontrolledproliferationofcancer-pronecells.Activationofparticularoncogenes orthelossofparticulartumor-suppressorgenesinducesthesenescenceprogramtoestablish adurablecell-cyclearrest[8](Figure1A,KeyFigure).Thismechanismisdescribedinaplethora ofcellularsystemswithmultipleoncogenesinvitro,aswellasinmurinetissues,includingbut notlimitedtoliver(RASactivation[9]),lymphocytes(RASactivation[13]),skin(BRAFactivation
[14]),thyroidgland(BRAForRASactivation[11,15]),mammarygland(RASactivation[16]), prostate(PtenorSkp2loss[17,18]),colon(Csnk1a1loss[19]),andpituitarygland(Pttg1loss
[20]).Evidencefor‘oncogene-inducedsenescence’(OIS)inhumanprimarytumorshasalso beenreported.Forinstance,melanocyteswithoncogenicBRAFmutationsundergo senes-cenceandremainbenigninmelanocytenevi[21,22].Likewise,senescencemarkershavebeen identifiedinearly-stageprostatetumors[17]aswellascolonadenomas[10],astrocytomas
[23],andneurofibromas[24].
Inactivationofsenescencepathwaysinmice,forinstancethroughinactivationofthe Cdkn2a-encodedcell-cycleinhibitorsp16INK4Aandp19ARF(humanp14ARF),leadstoearlydeathfrom
tumors[16,25],illustratingwhynaturalselectionhasfavoredthesenescenceprogram. Fur-thermore,alterationofCDKN2Ainhumans,eithergeneticallyorepigenetically,isoneofthe mostfrequenteventsinneoplasticlesions[26,27],indicatingthatdisruptionofthesenescence programisamajoreventduringhumantumordevelopment.p16canalsobepredictiveof tumorsubtypebecausehighp16levelsdistinguishearly-stagesmallcelllungcancerfromlung adenocarcinoma[28,29],andearly-stage papillarythyroidmicrocarcinomafrompapillary thyroidcarcinoma[30].Tumorsubtypesoftenshowdistincttherapeuticresponseprofiles, suggestingthatp16levelscouldpredicttherapeuticefficacy[28].Inprostateoropharynx cancer,elevatedp16levelscorrelatewithasuperiorresponsetoradiationtherapy[31].On theotherhand,itmustbetakenintoconsiderationthatp16levelsmayincreaseoutsidethe contextofsenescence,forexampleowingtolossofRb1[32],anotherkeycell-cycleregulator withfrequentloss-of-functionmutationsinhumantumors[26].Overall,senescentcellsare foundinbothbenignandpremalignanttumors,suggestingthatcellularsenescenceisan evolutionarycancer-protectivemechanismdesignedtoenhanceorganismalfitness.
Therapy-InducedSenescentCells
Albeit metabolicallyactive, senescentcellsare cellcycle-arrested,and thereforecellular senescencehasbeenviewedasadesirableoutcomeduringcancertreatment(Figure1B). Tothisend,senescence-inducingcompoundshavebeendeveloped,includingCDK4/6 inhibitorssuchasabemaciclib,palbociclib,andribociclib.Becausethisclassofdrugshas
Glossary
Acutesenescentcells:senescent cellsthataregeneratedquicklyafter anenvironmentalinsultorstress(for exampleduringwoundhealing)or duringprogrammedsenescencein embryogenesis.Thesecellsare typicallyeliminatedbytheimmune systeminafastandefficientmanner. Becausethesecellsareonly temporarilypresentandare associatedwithphysiological processes,acutesenescentcellsare hypothesizedtobebeneficialforthe organism.
CDKN2A:thegeneencodingthe tumorsuppressorsp16INK4Aand
p19ARF(humanp14ARF),bothof
whichinhibitcyclin-dependent kinasesandthereforeregulatethe cellcycle.
Chronicsenescentcells:asubset ofsenescentcellsthatarenot efficientlyremovedorevadeimmune cellclearance,andtherefore accumulaterelativelyslowlyinseveral tissuesduringagingoratsitesof chronicpathologies.These senescentcellsareviewedas detrimentalfordiseaseprogression andaging.
Immunesurveillance: immunosurveillanceisacomplex processbywhichimmunecellsfrom theinnateoradaptiveimmune systemdetectandremove pathogensordamagedcells,which canincludesenescentcells. Inflammaging:ahypothesisthat tissuedeteriorationisassociatedwith low-gradetissueinflammation, usuallyinthecontextofagingand age-relatedaccumulationof senescentcellswhichsecrete pro-inflammatorycytokines. INK-ATTACtransgenicmice:a mousemodelcontaininganFK506 binding-protein–caspase8(FKBP– Casp8)fusionproteinandgreen fluorescentprotein(GFP)underthe controlofaminimalCdkn2a(p16) promoterfragmentthatis transcriptionallyactiveinsenescent cells,allowingeliminationof senescentcellsinthepresenceof thedimerizerAP20187(AP)which activatesFKBP–Casp8. PD1immunecheckpoint: programmedcelldeathprotein1 (PD1)isacell-surfacereceptorand immunecheckpointthatguards againstautoimmunitybypromoting
Box1.KeyAspectsofSenescentCells
Cellularsenescencereferstoamolecularprogramactivatedinresponsetoenvironmentalcuesorstressincluding,but notlimitedto,theendofreplicativelifespan/telomereerosion,DNAdamage,mechanicalstress,andoncogenicstimuli. Senescentcellsarecommonlycharacterizedbyadurablecell-cyclearrest,apoptosisresistance,andabioactive secretomereferredtoastheSASP.Combinationsofmultiplesenescencemarkersarewidelyusedtoidentifysenescent cells,suchasp16INK4A,p14ARF(murinep19ARF)(encodedbyCDNK2A),andp21CIP1/WAF1(encodedbyCDKN1A),DNA
damagemarkers(e.g.,g-H2AXfoci,53BP1foci),senescence-associatedb-galactosidaseactivity,chromatin altera-tionssuchaslaminBdeficiencyorheterochromatinfoci,andexpressionofseveralSASPfactors(proinflammatory cytokines,growthfactors,extracellularenzymes,andMMPs).Thereleaseofthesebioactivemoleculesaffectsand potentiallyharmsneighboringcellsorsignalstotheimmunesystem,andcollectivelymaycontributetotissue deteriorationorremodeling,chronicpathologies,andorganismalaging.Itshouldbenotedthatinthecaseofcancer, wherethegenomicregioncontainingCDKN2Aisfrequentlydeleted,itisimportanttoevaluateadditionalmarkersof senescencebecausep16INK4A-independentsenescencemayalsooccurinthesecases.
apoptosisinantigen-specificTcells whilesimultaneouslysuppressing apoptosisinregulatoryTcells. Signaltransducerandactivator oftranscription3(STAT3):a transcriptionfactorthatis phosphorylatedbyJanuskinases (JAKs)inresponsetocytokinesand growthfactors,triggering translocationtothenucleuswhereit actsasatranscriptionalactivatorand mediatescellgrowthandapoptosis. SRChomologyphosphatase2 (SHP2):alsoknownasPTPN11 (tyrosine-proteinphosphatase non-receptortype11),SHP2isan enzymeandsignalingmoleculethat regulatescellgrowth,mitoticcell cycle,differentiation,andoncogenic transformation.
KeyFigure
Cancer-Associated
Senescent
Cells
Affect
Tumors
in
Multiple
Ways
Age-related senescence (E) Stroma cell senescence Oncogene-induced senescence Immuno-senescence RAS Senescence during therapy
Healthy Ɵssue cell NeoplasƟc cell Senescent cell Senescent tumor cell Immune cell Senescent immune cell SASP factors Phenotypic transiƟons SASP signaling Blood vessel (A) (B) (C) (F) (D) senescenceParacrine
Figure1.Acutesenescentcellsthatariseduetooncogeneactivation(A)(oncogenicRASforexample)orchemotherapy (B)showtumor-suppressingproperties,includingcell-cyclearrestandSASPproductionthatmaypromote immuno-surveillance.However,prolongedpresenceofthesecells,inadditiontotumor-inducedorparacrinesenescenceinthe stroma(C,D)orage-relatedsenescence(E),canpromoteseveralhallmarksofcancer.Stromalsenescentcellsmayarise fromparacrinesignalsoriginatingfromtumorcells(C)(greyandwhitesecretedfactors)orothersenescentcells(D)(colored SASPfactors).Age-relatedsenescentcellsarehypothesizedtopromotebothneoplastictransformationofadjacentcells andproliferationoftumorcells(E).Immunosenescence(F)isacomplexprocess,butlargelyrendersimmunecells (especiallyTcells)unresponsivetoactivatingsignalsandalsopromotesaSASPwithprotumorigeniccapacities. Abbreviation:SASP,senescence-associatedsecretoryphenotype.
TrendsinCellBiology,September2018,Vol.28,No.9 725
shownpromiseintreatingseveralcancersinpreclinicalandclinicalstudies[33–35], high-throughputscreenshavebeenemployedtofindadditionaldrugtargetsthattriggersenescence incancercells[36].Studiesinmicesupportthebeneficialeffectsofsenescenceinductionin tumorcellsbecausethisnotonlyleadstotumorstallingbutalsoactivatesaSASP-mediated immuneresponse(Box1)thatcanresultineliminationofthesenescenttumorcells,aswellas neighboringneoplasticcells,ultimatelyleadingtotumorregression[9,37,38].
Conversely, accumulatingevidenceindicatesthat senescenttumorcells promotetumor relapse,aggressiveness,andmetastasis(Figure1B).Ithasbeenreportedthatp53-mediated senescenceinmammarytumorscanhinderchemotherapeuticefficiencyandpromoterapid cancerrelapse,comparedtoslowlyrelapsingtumorsinp53mutantmicethatfailtoarrestbut undergoapoptosisduetomitoticcatastrophe[39].Similarly,p16-positivepatienttumorsare associatedwithcancerrecurrence[40,41].Strikingly,arecentstudyshowsthat therapy-inducedsenescenceisassociatedwithstemcellandself-renewingfeatures,andcanpromote bothcancerinitiationandaggressiveness,inseveralmousetumormodelsincludingBcell lymphomaandTcellacutelymphoblasticleukemia[42].Inadditiontocancerrecurrence, senescentcellswithinthyroidtumorshavealsobeenlinkedtoinvasion,suggestingthatcancer metastasisispromotedbysenescentcellnon-autonomousfeatures[11].Importantly,while chronicsenescentcellsinducedbyradiationtherapyorchemotherapeuticdrugscontributeto localandsystemicinflammation,targetedremovalofthesecellsintransgenicmiceattenuates cancerrecurrenceanddetrimentalsideeffectsincludingbone marrowsuppressionand cardiacdysfunction[6,43].Therefore,althoughsenescenceinductionincancercellsisaviable therapeuticoptiontoreduceinitialtumorgrowth,chronicallypersistingsenescentcellsneedto beremovedtominimizeregressionriskandavoiddeleterioussideeffects.
SenescenceInductioninTissueAdjacenttoTumors
Thepresenceofsenescentcellswithintissuescanpromoteproliferationofneighboringcells, includingpreneoplasticcells[10].Thispropertyofsenescentcellshasbeenwellstudiedinvivo usingxenograftmodelsandcoinjectionofcancercellsandeithersenescentornon-senescent fibroblasts[12,44–46].Invitrostudiesshowthatsenescentcellnon-autonomouseffects,via secretionofSASPfactors(furtherdetailedinalatersection),inducegrowth,angiogenesis,and invasivepropertiesinneighboringcells[10,47,48].Establishedtumorsorneoplasticcellscan alsoinducecellularsenescenceinneighboringcells(Figure1C).Indeed,senescentcellshave beenidentifiedinthestromaofhepatocellularcarcinoma[49]andovariancancer[50],and usingap16–luciferasemousemodel,onegroupshowedthatinjectionoftumorcellsinduced senescenceinthestromasurroundingtumors[51].
Stromalsenescentcellsdrivetumorgrowthinseveralstudies,andthegeneexpressionprofiles ofcancer-associatedfibroblastsandsenescentcellsaresimilar,suggestingthatsenescent cellsdriveneoplasticcellproliferationthroughsimilarparacrinemechanisms[52,53].Infact, increasedp16levelsinthestromasurroundinghumanmammaryductalcarcinomainsitu lesionspredictdiseaserecurrenceindependentlyofothertypicalhistologicalmarkers[54]. Recentstudieshavealsoshownthatsenescentcellscanpromotetumorgrowthby establish-inganimmunosuppressivemicroenvironmentviasecretingcytokinesthatrecruit myeloid-derivedsuppressorcells,whichinhibitTlymphocyte-mediatedtargetingoftumorcells[55]. Overall,senescentcellsareinducedbyneighboringneoplasticcellsortumors,andsupporta protumorigenicmicroenvironmentandincreasedriskofrelapse.
Inaddition,senescentcellscanalsopotentiatetheirowneffectsbyinducingsenescencein neighboringcellsthroughparacrinemechanisms(bystander effect)viatheSASPorgap
junction-mediatedcell–cellcontact(Figure1D)[56,57].Indeed,severalstudieshave demon-stratedthiseffectinvitrousingsenescentcellconditionedmedia,andhaveshownthat numerousSASPfactorsorsignalingpathways,includingTGFB1[58,59],reactiveoxygen species(ROS)-activatedNF-kBsignaling[60],IL-8andCXCL1[61],andcGAS–STING signal-ing[62],canmediatetheinductionofparacrinesenescence.Further,anothergroupshowed thatshort-termexposureofnormalcellstoSASPfromsenescentcellsinducesexpressionof stemcellmarkersconferringregenerativecapacity;however,prolongedexposureinduces senescence[63],suggestingthatonlyshort-termexposuremaybebeneficial.Inductionof senescenceinneighboringcellshasalsobeendemonstratedinvivo,inpituitarystemcell clustersinmousemodelsofpediatriccraniopharyngioma[64]andinischemicretinalcellsina mousemodelofischemicretinopathy[65].Senescentcellsclustershavealsobeenidentifiedin thethymusofagedmice[66],hepatocytesfrommouselivers[56],andintervertebraldiscsof patientssufferingfromintervertebraldiscdegeneration[67].Together,paracrinesenescence inductionbyneighboringsenescentcellsrepresentsamechanismforsenescentcellsto potentiatetheireffects,andmayamplifynegativeimpactsoncancer(Figure1D),aging, andotherage-relateddiseases.
Aging-RelatedSenescentCells
Agingisamajorriskfactorforcancer,andmosttumorsarediagnosedinagedpatients[68].In addition,5yearsurvivalformanycancertypesdramaticallydeclineswithage[68,69]. Epidemio-logicalstudiesshowthatfamilialfactorscorrespondtobothreducedcancerandlongevity,and mostgeneticanddietarymodificationsinmicethatimpactonagingalsohaveanimpactoncancer
[69,70].Further,severalprogeroidsyndromes(Hutchinson–Gilfordprogeriasyndrome,Werner syndrome,Bloomsyndrome,xerodermapigmentosum,ataxiatelangiectasia,andmosaic varie-gatedaneuploidysyndrome)arealsoassociatedwiththedevelopmentofcancer[71]. Althoughhistoricallycanceraggressivenesshasbeenthoughttodecreasewithage,several tumortypesincludingacutemyeloidleukemiaandovariancancerhaveaworseprognosiswith increasingage[72,73].Experimentalevidenceforarelationbetweenagingandcancerfrom animalmodelsisvariable,andappearstobetumororcelltype-dependent[69].Inprostate cancerandmelanomaxenograftexperiments,nochangeingrowthorfastergrowthinyoung micewasobserved,respectively[74,75].However,inthesestudies12-month-oldmicewere usedas‘aged’mice,buttheseverityofage-relatedtissue deteriorationorpresenceof senescentcellsatthisagemaybelimited.However,implantationofneoplasticliverepithelial cellsintoliversofyoungandoldratsresultedinreducedproliferationandmoreapoptosisin youngrats[76].Thissuggeststhatdifferencesbetweentumortype,celltype,and/orsiteof implantationmayexplainthevariationinresults.
Inothergeneticapproaches,continuedsenescentcellremovalinnaturallyagingmice (INK-ATTACtransgenicmice)throughoutadulthoodwasfoundtoextendlifespananddelaytumor latency[2],suggestingadetrimentalroleforage-relatedsenescentcellsintumorprogression. Thisresultisfurthersupportedbytimedsomaticp53deletioninyoungandoldmice,where reducedtumorlatencywasobservedinagedmice[77].Further,usinganinducibleconditional mousemodelexpressingthecellcycleinhibitorp27Kip1tomimicskinaging,otherresearchers
discoveredthepresenceofstromalsenescentcellsandincreasedrecruitmentofsuppressive myeloidcellswhichinhibittumorimmunesurveillanceandpromotetumorformation[12]. Collectively,thesestudiesshowthataccumulationofsenescentcellsintissueswithaging promotes tumorformationandgrowth (Figure1E),andhighlightsthesecellsasoptimal therapeutictargetsnotonlyfortheameliorationofage-relateddeteriorationbutalsoforcancer preventionandtreatment.
TrendsinCellBiology,September2018,Vol.28,No.9 727
CancerandtheAgingImmuneSystem
Boththeadaptiveandinnateimmunesystemsarecapableofinfiltratingandclearingtumor cells.WhileTcells(CD4+helperandCD8+cytotoxic),tumor-associatedmacrophages,and
naturalkiller(NK)cellspreventtumorgrowthbytargetingantigenictumorcells,regulatoryT cellsthatsecreteimmunosuppressivecytokinesaswellasmyeloidandstromalcellssuppress Tcellresponsesinlesionsthathavelostimmunogenicity[9,78,79].Interestingly,thesesame immunecelltypesareeffectiveineliminatingsenescentcells[9,37,38,80,81].Theimmune systemundergoesprofoundchangeswithagingasreflectedbyincreasedsusceptibilityto infection,autoimmunity,impairedresponsetovaccination,andcancerdevelopment[82,83]. Withincreasingage,boththeabilityoftheadaptiveimmunesystemtomountTcell-mediated responsesandtheregulationoftheinnateimmunesystemdecline,whichmayimpactonboth senescentandtumorcellclearance[84,85].
Interestingly,theaccumulationofagedimmunecells,referredtoasimmunosenescence, increaseswithageinbothBandTcellpopulations(Figure1F)[86].WefocushereonTcell immunosenescencebecauseTcellsfunctioninimmunosurveillanceoftumorsandsenescent cells.Tcellimmunosenescencecanbeinducedbymultiplemechanismsincluding,butnot limitedto,repeatedorchronicT cellstimulation(viruses,pathogens,tumorantigens,or immunogenicself-antigens)andaderegulatedinflammatoryenvironment[86,87].Senescent Tcellsarenonresponsivetostimulation,butaremetabolicallyactiveandproducecytokines includingIL-6andTNF-a[86].SenescentTcellscanbeprotumorigenicthroughtheirabilityto suppressproliferationofresponderTcells[88],butcanalsomodulatemacrophagecellfate andcontributetoantitumoralfunctions[89].
Oneof thehallmarksof canceristheabilityof tumor cellsto escapefromimmune surveillance[90].Severalrecentstudieshaveshownthatimmunosurveillanceoftumor andsenescentstromalcellsisanimportanttumorprotectionmechanism.Ithasbeen shownthatoncogene-inducedsenescenthepatocytessecretchemokines,whichfacilitate clearanceby theadaptiveimmunesystem(CD4+T cell-mediated),whereasimpaired
immunesurveillanceresultedinthedevelopmentofhepatocellularcarcinomas[9].This suggeststhatdecreasedimmunesurveillance,asobservedwithage,maydrivetumor formation.Indeed,inamousemodelofsquamouscellcarcinoma,conditionalinductionof mutantHRASinkeratinocytesresultedindysplasticchangesand50%tumorincidencein agedmiceonly,whichshowedincreasedcellularsenescenceindermalimmunecells[91]. Bycontrast,twostudiesdemonstratedthatsenescentcellswithintumorsfacilitatedNKcell recruitmentandtumorelimination,suggestingthatsenescentcellsmayprovidebeneficial immuneattractionproperties[37,80].Together,theseresultssuggestthatpresenceof senescentcellsmaybeabenefitordetrimenttoneoplasticcells/tumorsbyavertingor attractingimmunecells.
Inaddition,theimmunosuppressivenatureofthetumormicroenvironmentlimitstheabilityof immunecellstoinfiltrateandtargettumorcells[92].Senescentcellswithintumorstroma,for example,maydeterimmunecellinfiltrationanddrivetumorigenesis.Onestudyshowedthat myeloid-derivedsuppressorcells(MDSCs)promotedanage-relatedincreaseinlungcancer growthinmice,andthatthesecellsincreasewithageinthecirculationofhumansandinthe spleensofmice[93].Further,inamodelofskinaging,senescentstromalcellsweresufficientto recruitandincreaseMDSCs,whichinhibitTcellresponsesandpromotetumorgrowth[12]. Overall,theagingprocessincreasesthesenescentcellburdenandimpairsimmunefunction, whichinturn escalatessenescent cellaccumulationandinferiorneoplasticsurveillance, establishingaprotumorigenicenvironment(Figure1F).
TheSASPandCancer
Senescentcellsrestrictandcontributetocancerviabothcell-autonomous(restrictionofcell proliferationortransformation)andcellnon-autonomousmechanisms(SASP)thatcanresultin extracellularmatrixremodeling,growthstimulation,orsuppressionofadjacentcellsand signalingtotheimmunesystem.Senescence-associatedparacrinesignalingseemstobe context-dependent,withthetypeofsenescencestimulusandcelltypehavingdramatic consequencesontheSASPprofile[47,94].
TheestablishmentandregulationoftheSASPcanbeorchestrated,atleastinvitro,bymultiple signalingpathwaysandtranscriptionfactornetworks,includingNF-kBsignaling[95],thep38 MAPKpathway[96],thecGAS–STINGpathway[62,97],inflammosomeactivation[57],TGF-b signaling[98],JAK–STATsignaling[55],PI3K–AKT–mTORsignaling[99],GATA4activation
[100],andC/EBP-bactivation[10](Figure2).Whichofthesesignalingpathwaysandnetworks areactiveseemstobedependentonsenescentcellmaturation[63,98]andorigin[42]. Extensivecrosstalkamongpathwaysandnetworkshasbeenobserved[99,101].EachSASP signalingpathwaymaydrivetheexpression,translation,orproteinstabilityofnumerousSASP factors.However,onlyafewofthesefactorshavebeenmechanisticallylinkedtophysiological eventsintissuesordiseases,andthemechanisticactionofsinglecomponentsisstilllargely basedonstudiesperformedinculturedcells.WedescribebelowselectSASPfactorsto illustratetheircontext/potentialinimpactingcancer-associatedprocesses(Figure2). IL-1aisanimportantSASPinitiatorandisactivatedintherapy-induced[99,101], oncogene-induced[102],andage-relatedsenescentcells[2].IL-1adrivesautocrineproinflammatory signalingincludingNF-kBactivationandtheexpressionofkeycytokinessuchasIL-6andIL-8
[99].IL-1acanactlocallyasamembrane-boundcytokinethatmayrecruithematopoieticcells orbecleavedbyextracellularproteasesandpromotesystemicinflammation.IL-1asignaling maythereforenotonlycontributetosenescentcellimmunosurveillancebutalsototissue inflammaging.Studiestodeterminetheroleofsenescentcell-derivedIL-1aintumorgrowth haveyettobeconducted[103].
IL-6andIL-8aretwoofthemostinvestigatedproinflammatorySASPfactors,andhavebeen linkedtooncogene-inducedsenescentcells,senescentstroma[10–12,15,104],andmurine senescentcellsduringnaturalaging,progeria,anddisease[2,4,105].Inadditiontopromoting aninflammatoryresponseandimmunosurveillancetocontrollivertumorprogression[80], CXCR2receptoractivationviaIL-6andIL-8reinforcessenescence andcell-cyclearrest throughelevatedROSproductionandactivationoftheDNAdamageresponse[61,101].In someinstances,however, stromalcell-derivedIL-6 canactinimmunosuppression [12]. AlthoughfunctionsascribedtoIL-6andIL-8 suchasprofibroticsignaling[106]or pro-proliferativesignaling[107]areunexploredinthecontextofsenescence,investigatingthese characteristicsmaybeofintegralimportanceinthecontextofcancerandcancer-associated senescence.
ChemokinessuchasCXCL1/GROaarebroadlyexpressedinseveralsenescencecontexts. CXCL1isnotonlyhighlyexpressedinoncogene-inducedsenescentcellsinvitroandinmice
[50,104]butalsoinhumanovariancancersamples[50].SecretionofCXCL12by cancer-inherent, likelyoncogene-induced,senescentcells promotesthyroidtumorinvasionand metastasisinmice[11],andthecytokineCCL2/MCP-1hasbeenlinkedtoOISintheliver andimmunesurveillanceofpremalignanthepatocytes[38]orsenescentlivertumorcells[37]. However,inthecontextofestablishedhepatocellularcarcinoma,CCL2amongothersrestricts NKcellfunctionthroughtherecruitmentofimmunosuppressivemyeloidcells,andfacilitatesthe
TrendsinCellBiology,September2018,Vol.28,No.9 729
establishmentofadvanceddisease[38].Ontheotherhand,CXCL1canalsobesecretedby tumorcellsandconfersparacrinestromalsenescencethat,inturn,couldpromotetumor growth[50].Whilethesestudiesillustratethatsenescentcell-derivedchemokinesareintegral SASPcomponents,theirphysiologicalcontributionstocancerareofacomplexand context-dependentnature.
Growthfactorsorextracellularvesicleswithgrowth-stimulatorypropertiesaresecretedby senescentcellsandmaycontributetotumorinitiation,growth,andangiogenesis[47,108]. Vascularendothelialcellproliferationmaybemediatedbysenescentcellsofvariousorigins
Oncogene-induced
senescent cells
Age-associated
senescent cells
Senescent cells
during therapy
Senescent
stromal cells
IL-6, IL-1α, MMPs
CXCL1, HGF
IL-1α, IL-6/8,
CCL2,
CXCL1/12,
MMPs
IL-6, MMPs,
osteoponƟn
IL-1α, CCL2
Healthy
Ɵssue cells
NeoplasƟc cells
Phenotypic transiƟons
SASP signaling
SASP factors
Secreted factors (from non-senescent cells)
Figure2.SecretoryDiversityofCancer-AssociatedSenescentCells.SelectedSASPcomponentswith tumor-modulatingactivitiesforeachofthediscussedsenescencetypesaredepicted.Whileage-associatedsenescentcells, oncogene-inducedsenescentcells,andtherapy-inducedsenescentcellsoftenseemtosecretecytokinesand chemo-kines(includingIL-6,CCL2,etc.),theprotumorigenicactivityofstromalsenescentcellsbenefitsmostlyfromthesecretion ofgrowthfactors(suchasosteopontin)andmatrixmetalloproteinases(MMPs).Tumorcellsthemselvesarealsoableto secretebioactivefactorsthat,insomeinstances,arecausallyimplicatedinthedevelopmentofstromalsenescentcells. Abbreviations:HGF,hepatocytegrowthfactor;SASP,senescence-associatedsecretoryphenotype.
throughsecretionofpro-angiogenicVEGF,resultingintumorvascularization[45].Osteopontin (OPN),asecretedglycoprotein,ishighlyproducedbysenescentstromalcellsinmurineskin papillomas,andcoinjectionofOPN-deficientsenescentcellsrestrictstumorgrowthcompared toOPN-expressingsenescentcells[109].Conversely,hepatocytegrowthfactorderivedfrom tumorcells orascitic fluidofan ovariancancer-patientcan alsoinducesenescence in mesothelialcells,andthismaymodulateovariancancerdevelopmentandpotentially metas-tasis[110,111].
Matrixmetalloproteinases(MMPs),secretedenzymesthatprocessanddegradeextracellular matrix(ECM)components,contributetotissueremodelingandareoftenreleasedbysenescent cells.ThisclassofSASPfactorsiswelldescribedinmultipletissueswithage[2,112]and age-relateddiseases[3,4],aswellasinthyroidtumorsassociatedwithsenescentcells[11].While destructionoftheECMbarrierpersemayfacilitatetumorgrowthandcellinvasion,growth factorsandcytokinesthataresequesteredbyECMcomponentscanalsobeliberatedbyMMP activity[113].Indeed,senescentcell-derivedMMPswereshowntosupporttumorgrowth[44]
andpromoteVEGF-stimulatedtumorvascularizationofmurinexenografts[114].Further, stromalcell-derivedMMP1cancleaveprotease-activatedreceptorsontumorcellstoenable migrationandtumorcellinvasion[115];however,whetherthismechanismappliestosenescent cell-derivedMMPsremainstobeexplored.Therefore,whiletumor-inherentsenescentcells couldrendertumortissuepermissivetocancergrowth,vascularization,orcellinvasion, age-associatedsenescentcellsmayrendertargettissuepermissivetometastases.
Overall,theSASPofage-relatedsenescentcellsandofsenescentcellsinestablishedtumors appearstobemostlydetrimentalbecauseitcatalyzesseveralhallmarksofcancer,andremoval ofsenescentcellsduringnaturalagingdelaystumorlatency[2].Onekeyfeatureistheinterplay betweentumorcells,cancer-associatedsenescentcells,andtheimmunesystem orchestrat-ingimmuneresponses.Althoughonlyfewstudiesaddressthisrelationship,itisapparentthat senescentcellandtumorimmunesurveillanceiscomplexandoftencontext-dependent. Molecularmechanistic insightsintothe implicatedevents, proteins,and kineticswillbe necessarytounderstandandpredicttherapeuticoutcome.Althoughdissectingtheidentity andoriginofdonorandrecipientcellsduringparacrinesignalingistechnicallychallenging, recentadvancesinsingle-cellsequencingtechniquesandsingle-cellproteomicswillaidethese effortsandaddressthenotionthattargetingofsenescentcellsortheirsecretomeincancer patientsmayrepresentaviabletherapeuticoptionthatshouldbeconsideredasasupplement tochemotherapy.
SenotherapyasanAnticancerStrategy
Althoughthecentralobjectiveofchemo-andradiationtherapiesistopreventtheproliferationof cancercellsthroughtheinductionofcellularsenescenceorcelldeath[116],thepersistenceof therapy-inducedsenescentcellsaftertreatmentisdetrimental.Theuseofsenotherapyin combinationwithcurrentlyusedcancertherapiesshouldbetakenintoconsiderationtocontrol thisproblem[43].Severalcancertypesarediscussedherewhichrepresentsuitablecandidates forconsiderationofcombinationcancerandsenotherapies(Table1).
Indeed,treatmentwiththeCDK4/6inhibitorpalbociclibisinitiallyeffectiveininhibiting mela-nomatumorgrowth;however,prolongedtreatmentinducedsenescenceandSASP produc-tioninstromalcells,whichbecametumor-promoting[117].Inaddition,inhibitionofSRC homologyphosphatase2(SHP2)preventedandarrestedmammarytumorgrowthinmice throughtheinductionofsenescence;however,theactivationofsignaltransducerand activatoroftranscription3(STAT3)andSASPsecretionsuppressedimmunesurveillance
TrendsinCellBiology,September2018,Vol.28,No.9 731
Table1.Senescence-AssociatedCancerTypesandTherapeuticPotential
Tissue/tumortype Model Senescentcelltype Potentialsenotherapeutic
outcome(aspect)
Refs Brain
Adamantinomatouscraniopharyngioma Mouse,human Oncogene-induced,age-related Beneficial(initiation) [64]
Breast
Mammarytumors Mouse Therapy-induced Beneficial(recurrence) [39]
Xenograft(breastcancer) Mouse,coinjection (tumorandsenescentcells)
Therapy-induced Beneficial(growth) [44]
Xenograft(mammaryepithelialcancer) Mouse,coinjection (tumorandsenescentcells)
Replicative,oncogene-induced, andp16overexpression
Beneficial(vascularization) [45]
Mammaryductalcarcinoma Human Tumor-induced Beneficial(recurrence) [54]
Liver
Hepatocellularcarcinoma Mouse Oncogene-induced(andothers?) Detrimental,earlystages (immunosurveillance)
[9,37,38]
Beneficial,latestages (immunosurveillance)
Hepatocellularcarcinoma Mouse Geneticp53
reactivation
Detrimental (immunosurveillance)
[80]
Hepatocellularcarcinoma Human Age-relatedortumor-induced? Unclear [49]
Hepatictumors Mouse,tumorcellinjection Age-related Beneficial(growth) [76]
Lung
Lungcancer Mouse,tumorcellinjection Age-related Beneficial(growth) [93]
Lymphoma/leukemia
Bcelllymphoma Mouse,tumorcellinjection Therapy-induced Beneficial(initiation,growth) [42]
Tcellacutelymphoblasticleukemia Mouse,tumorcellinjection Therapy-induced Beneficial(initiation,growth) [42]
Multiple
Lymphoma,sarcoma,carcinoma (age-relatedcancerinmice)
Mouse Age-related Beneficial(growth,initiation?) [2,77]
Xenograft(breast,pancreatic, endometrial,andlungcancer)
Mouse,tumorcellinjection Tumor-induced Unclear [51]
Xenograft(humanepidermalkeratinocytes, immortalizedmousemammaryepithelial cells,humanbreastcancer)
Mouse,coinjection (tumorandsenescentcells)
Oncogene-induced,replicative Beneficial(initiation,growth) [46]
Ovary
Ovariancarcinoma Human Tumor-induced Beneficial(growth) [50]
Prostate
Prostatecarcinoma Human Unclear Beneficial(recurrence) [40,41]
Prostatecancer Mouse Ptendeletion Beneficial(immunosurveillance,
growth,andchemoresistance)
[55]
Skin
Skinpapillomas Mouse Tumor-induced Beneficial(growth) [109]
Skin(squamouscellcarcinoma) Mouse Age-related Beneficial(initiation,growth?) [91]
Skin(squamouscellcarcinoma) Mouse,coinjection (tumorandsenescentcells)
Geneticp27overexpression Beneficial(immunosurveillance, growth)
[12]
Thyroid
[118].Further,twomousestudiesshowedthatremovalofsenescentcellsaftercancertherapy alleviatedtheirdetrimentaleffects,including reducedbonemarrowsuppression,cardiac dysfunction,cancerrecurrence,andimprovedphysicalactivityandstrength[6,43].Together, theseresultsunderpintherelevanceandpotentialbenefitofsenotherapyfollowingcancer therapeutics.
Threeprinciplecategoriescanbeconsideredforsenotherapy:permanentremovalof senes-centcells(senolysis),immune-mediatedsenescentcellclearance,andSASPneutralization[7]. Althoughsenescentcellshavebeeneliminatedwithoutnegativeconsequencesduringaging anddisease[2,4,105],acutelygeneratedsenescentcellsinadultsexhibitsomebeneficial effectsinwoundhealing[2,119]andtissueregeneration[63].Senolyticdrugswhichtargetthe antiapoptoticresponseinsenescentcells,suchassignalingthroughBCL-2familymembers (navitoclax/ABT-263 orABT-737), haveprovedto beeffectiveininducingcelldeathin senescentcells;however,thesecompoundsareunlikelytomeetrequiredsafetystandards owingtotherisksofthrombocytopeniaandneutropenia[7,120,121].However,theseriskscan beminimizedbyshort-termtreatment,andpotentiallybylocalizeddelivery,whereapplicable. Effectivetargetingofsenescenttumorcellshasbeenachievedusinginhibitionoflysosomal ATPases,therebyexploitingthehighmetabolicactivityofcyclophosphamide-or adriamycin-inducedsenescentlymphomacellsinmice[122].
Treatmenttoenhanceimmuneactivitycouldalsobeharnessedtoimprovetheantitumor activityofsenescentcell-recruitedimmunecells[123].Thiscouldbeachievedthroughtheuse ofipilimumab,anantibodythatenhancesactivationofcytotoxicCTLA-4receptor,orwith antibodiesagainstthePD1immunecheckpoint,bothofwhichareinclinicaluseforthe treatmentofmelanoma[124].SASPmodulationmayalsobeemployed,andcanbeachieved byblockingpro-SASPsignalingorinhibitingindividualSASPcomponents[7].Blocking pro-SASPsignalingmaybecomplexbecauseperturbationofthesepathwaysistumorigenicin somecases,forexampleIL-6isnecessarytomaintainthesenescentcellstate[101].In addition,SASPreductionthroughNF-kBinhibitioninalymphomamousemodeldisrupts immunosurveillancefollowingtherapy-inducedsenescence,andleadstotreatmentresistance andrelapse[95].Similarly,inhibitionofmTORC1,acomponentofthePI3K–AKT–mTOR pathway,withrapamycindiminishesp53translationinPten-deficientsenescentcellsand promotesmurineprostatetumorigenesis[125].Ontheotherhand,STAT3inhibitionhad beneficialeffectsinalleviatingdetrimentalSASPeffects,andresultedinreducedsecretion ofimmunosuppressive cytokines,triggering astrongCD8+ Tlymphocyte responseand
prostatetumorregression[55].Together,thissuggeststhatinhibitionofpro-SASPsignaling ispathway-dependent,andfurtherinvestigationintotheefficiencyandriskofthesestrategiesis required.InhibitionofselectedSASPcomponentscanalsobebeneficialbecauseofreduced off-targeteffects.PerhapsthemostprominentSASPfactors,forwhichapproveddrugsare available,includeIL-1a(IL-1receptordruganakinra,currentlyusedfortreatmentofrheumatoid arthritis),andIL-6(IL-6antibodysiltuximab,currentlyusedfortreatmentofCastlemandisease; IL-6receptorinhibitortocilizumab,currentlyusedfortreatmentofrheumatoidarthritis)[126– 128].Thesestrategieshavenotyetbeentestedinpreclinicalmodelsofcanceroraging,but representpromising targetsfor futurestudy.Together, several suitableapproaches are availablefortargetingsenescentcellsincombinationwithchemotherapyorinthecontext ofagingtopromoteeffectivetherapy,minimizerelapse,anddelayorpreventcanceronset; however,furthertestingofthesestrategiesincancerisrequired.
Inaddition,carefulconsiderationofthetimelineforsenotherapyincombinationwithcancer therapyshouldbetakenintoconsiderationbecausesenescentcellshavebothbeneficialand
TrendsinCellBiology,September2018,Vol.28,No.9 733
detrimentaleffectsontumorinitiation,growth,andrelapseinacell/tumortype-dependent fashion.Withcurrentknowledge,incorporationofsenotherapymaybebeneficial(i)before cancertherapyto increasetherapeuticefficacyby removingexistingsenescentcells,(ii) followingcyclesofcancertherapytoimprovetherapeuticoutcome,and(iii)afterfinaltreatment toreduceriskofrecurrenceandalleviatethenegativeimpactsofindirectsenescenceinduction duringtherapy.Inallcases,senescentcellremovalbysenolysisorimprovingimmunetargeting wouldbemostefficacious;however,ifmodulationofparticularSASPfactorscanprove beneficial,withminimaloff-targeteffects,thismayalsobeaviableoption.Inallinstances, however,additionalstudyusingpreclinicalanimalmodelswillbenecessarytodeterminethe safetyandefficiencyofthesestrategies.
ConcludingRemarksandFutureDirections
Cellularsenescenceisafeatureofcancerthatcanbeinducedbymultiplemechanismsinand aroundtumors,andcanhavebothbeneficialanddetrimentaleffectsontumorinitiation,growth, therapeuticefficacy,andtumor recurrence.However, thefeatures of thesedifferentsenescentcell types,aswellasthemechanismsfortheirphenotypicimpactonneoplasticcells,remain incompletelyunderstood,andin-depthinvivoanalysisiscurrentlylacking(seeOutstanding Questions).Althoughthesestudiesaretechnicallychallenging,itisdifficulttotranslateinvitro findings.Further,giventhecomplexandimportantroleofimmunesurveillanceintumorigenesis andcellularsenescence,experimentationinimmunocompetentanimalmodelsisrequired.In addition,theroleofsenescentcellsindifferenttumortypesappearstoberelativelyvariable,and furtheringourunderstandingofthesedifferencesisanimportantconsiderationforbothcancer andsenotherapy.Withcurrentknowledge,itseemsthatthedetrimentaleffectsofsenescentcells incancerappeartooutweighthebeneficialeffectsthatareobservedinsomeinstances. Nevertheless,increasingourunderstandingofthedifferencesbetweentheSASPofsenescent cellsderivedfrommultiplemechanisms,andhowthesecomponentscontributetoimmune attractionanddeterrence,willbecrucialforconsiderationofcombinationcancerand senother-apy.Althoughadditionalstudieswillbenecessarytodeterminethesafetyandefficiencyof combinationcancerandsenotherapy,thisconceptshowsgreatpromiseinimprovingcurrent cancertherapeuticsandoverallthehealthandoutcomesofcancerpatients.
Acknowledgments
The authorswouldliketoacknowledgethefollowingfunding andsupportsources:NIH(R01CA166347and R01CA96985),theGlennFoundationforMedicalResearch,MayoClinicCenterforBiomedicalDiscovery,andtheMayo ClinicGraduateSchoolofBiomedicalSciences.
References
1. Kennedy,B.K.etal.(2014)Geroscience:linkingagingtochronic disease.Cell159,709–713
2. Baker,D.J.etal.(2016)Naturallyoccurringp16(Ink4a)-positive cellsshortenhealthylifespan.Nature530,184–189 3. Childs,B.G.etal.(2016)Senescentintimalfoamcellsare
deleteriousatallstagesofatherosclerosis.Science354, 472–477
4. Jeon,O.H.etal.(2017)Localclearanceofsenescentcells attenuatesthedevelopmentofpost-traumaticosteoarthritis andcreatesapro-regenerativeenvironment.Nat.Med.23, 775–781
5. Sturmlechner,I.etal.(2017)Cellularsenescenceinrenalageing anddisease.Nat.Rev.Nephrol.13,77–89
6. Chang,J.etal.(2016)ClearanceofsenescentcellsbyABT263 rejuvenatesagedhematopoieticstemcellsinmice.Nat.Med.22, 78–83
7. Childs,B.G.etal.(2017)Senescentcells:anemergingtargetfor diseasesofageing.Nat.Rev.DrugDiscov.16,718–735
8. Serrano,M.etal.(1997)Oncogenicrasprovokesprematurecell senescenceassociated with accumulation of p53 and p16INK4a.Cell88,593–602
9. Kang,T.W.etal.(2011)Senescencesurveillanceof pre-malig-nanthepatocyteslimitslivercancerdevelopment.Nature479, 547–551
10. Kuilman,T.etal.(2008)Oncogene-inducedsenescencerelayed byaninterleukin-dependentinflammatorynetwork.Cell133, 1019–1031
11. Kim,Y.H.etal.(2017)Senescenttumorcellsleadthecollective invasioninthyroidcancer.Nat.Commun.8,15208 12. Ruhland,M.K.etal.(2016)Stromalsenescenceestablishesan
immunosuppressivemicroenvironmentthatdrives tumorigene-sis.Nat.Commun.7,11762
13. Braig,M.etal.(2005)Oncogene-inducedsenescenceasan initialbarrierinlymphomadevelopment.Nature436,660–665 14. Dhomen,N.etal.(2009)OncogenicBrafinducesmelanocyte senescenceandmelanomainmice.CancerCell15,294–303
OutstandingQuestions
Towhatextentcancombination can-cer therapy and senotherapy be employedtoimprovetherapeutic effi-cacy,reduceriskofrecurrence,and ultimatelyimprovepatientoutcome? Canremovalofage-relatedsenescent cellsinhumansreducecancerrisk? Dodifferentcell/tumortypeshave dif-ferent dependencies on senescent cells,inotherwordsmoreorless ben-eficialordetrimentalroles,withintheir niche?
Whatisthemechanismforsenescent cellinductionofregenerativecapacity inneighboringcellswithshort-term exposure,andcanthiscontributeto the protumorigenic properties of senescentcells?
Whichpropertiesofsenescentcells determinetheirroleinimmune attrac-tionordeterrence,andhowcanthese bedifferentiallymediatedinsenescent cellsinducedbysimilarmechanisms? Doesimmuneefficiencyunderliethese differences?
Do beneficial tumor-suppressing senescentcellsmodulate immunosur-veillancedifferentlyfromdetrimental, cancer-promotingsenescentcells? Howdosenescentcellfeaturesand SASPfromsenescentcellsinduced bydifferentmechanisms (oncogene-induced, therapy-induced, tumor-induced,age-related,and bystander-induced)differinvivo,andhowdoes thisimpactthetumor microenviron-mentandimmunesurveillance? WhichSASPcomponentsareinvolved indrivinggrowthandbystander senes-cenceinneighboringcells,immune attraction,andimmunedeterrencein vivo?
How do tumors/neoplastic cells induce senescence in neighboring cells/tumorstroma?
15.Vizioli,M.G.etal.(2014)OncogenicRAS-inducedsenescence inhumanprimarythyrocytes:moleculareffectorsand inflamma-torysecretomeinvolved.Oncotarget5,8270–8283 16.Sarkisian,C.J.etal.(2007)Dose-dependentoncogene-induced
senescenceinvivoanditsevasionduringmammary tumorigen-esis.Nat.CellBiol.9,493–505
17.Chen,Z.etal.(2005)Crucialroleofp53-dependentcellular senescenceinsuppressionofPten-deficienttumorigenesis. Nature436,725–730
18.Lin,H.K.etal.(2010)Skp2targetingsuppressestumorigenesis byArf–p53-independentcellularsenescence.Nature464,374– 379
19.Elyada,E.etal.(2011)CKIalphaablationhighlightsacriticalrole forp53ininvasivenesscontrol.Nature470,409–413 20.Chesnokova,V.etal.(2007)Senescencemediatespituitary
hypoplasiaandrestrainspituitarytumorgrowth.CancerRes. 67,10564–10572
21.Pollock,P.M.etal.(2003)HighfrequencyofBRAFmutationsin nevi.Nat.Genet.33,19–20
22.Bennett,D.C.(2003)Humanmelanocytesenescenceand mel-anomasusceptibilitygenes.Oncogene22,3063–3069 23.Jacob,K.etal.(2011)GeneticaberrationsleadingtoMAPK
pathwayactivationmediateoncogene-inducedsenescencein sporadicpilocyticastrocytomas. Clin.Cancer Res.17, 4650–4660 24.Courtois-Cox,S.etal.(2006)Anegativefeedbacksignaling networkunderliesoncogene-inducedsenescence.CancerCell 10,459–472
25.Sharpless,N.E.etal.(2004)Thedifferentialimpactofp16 (INK4a)orp19(ARF)deficiencyoncellgrowthand tumorigene-sis.Oncogene23,379–385
26.Solimini,N.L.etal.(2012)Recurrenthemizygousdeletionsin cancersmayoptimizeproliferativepotential.Science337,104– 109
27.Gonzalgo,M.L.etal.(1998)TheroleofDNAmethylationin expressionofthep19/p16locusinhumanbladdercancercell lines.CancerRes.58,1245–1252
28.LaPak,K.M.andBurd,C.E.(2014)Themolecularbalancingactof p16(INK4a)incancerandaging.Mol.CancerRes.12,167–183 29.Otterson,G.A.etal.(1994)Absenceofp16INK4proteinis restrictedtothesubsetoflungcancerlinesthatretainswildtype RB.Oncogene9,3375–3378
30.Vizioli,M.G.etal.(2011)Evidenceofoncogene-induced senes-cenceinthyroidcarcinogenesis.Endocr.Relat.Cancer18,743– 757
31.Lassen,P.etal.(2014)ImpactofHPV-associated p16-expres-siononradiotherapyoutcomeinadvancedoropharynxand non-oropharynxcancer.Radiother.Oncol.113,310–316 32.Parry,D.etal.(1995)LackofcyclinD-Cdkcomplexesin
Rb-negativecellscorrelateswithhighlevelsofp16INK4/MTS1 tumoursuppressorgeneproduct.EMBOJ.14,503–511 33.Geoerger,B.etal.(2017)APhaseIstudyoftheCDK4/6inhibitor
ribociclib(LEE011)inpediatricpatientswithmalignantrhabdoid tumors,neuroblastoma,andothersolidtumors.Clin.Cancer Res.23,2433–2441
34.Goldman,J.W.etal.(2016)Treatmentrationaleandstudy designfortheJUNIPERstudy:arandomizedPhaseIIIstudy ofabemaciclibwithbestsupportivecareversuserlotinibwith bestsupportivecareinpatientswithstageIVnon-small-celllung cancerwithadetectableKRASmutationwhosediseasehas progressedafterplatinum-basedchemotherapy.Clin.Lung Cancer17,80–84
35.Turner,N.C.etal.(2015)Palbociclibin hormone-receptor-posi-tiveadvancedbreastcancer.N.Engl.J.Med.373,209–219 36.Wang,L.etal.(2017)High-throughputfunctionalgeneticand
compoundscreensidentifytargetsforsenescenceinductionin cancer.CellRep.21,773–783
37.Iannello,A.etal.(2013)p53-dependentchemokineproduction bysenescenttumorcellssupportsNKG2D-dependenttumor eliminationbynaturalkillercells.J.Exp.Med.210,2057–2069
38. Eggert,T.etal.(2016)Distinctfunctionsof senescence-associ-atedimmuneresponsesinlivertumorsurveillanceandtumor progression.CancerCell30,533–547
39. Jackson,J.G.etal.(2012)p53-mediatedsenescenceimpairs theapoptoticresponsetochemotherapyandclinicaloutcomein breastcancer.CancerCell21,793–806
40. Lee,C.T.etal.(1999)Overexpressionofthecyclin-dependent kinaseinhibitorp16isassociatedwithtumorrecurrencein humanprostatecancer.Clin.CancerRes.5,977–983 41. Henshall,S.M.etal.(2001)Overexpressionofthecellcycle
inhibitorp16INK4Ainhigh-gradeprostaticintraepithelial neo-plasiapredictsearlyrelapseinprostatecancerpatients.Clin. CancerRes.7,544–550
42. Milanovic,M.etal.(2018)Senescence-associated reprogram-mingpromotescancerstemness.Nature553,96–100 43. Demaria,M.etal.(2017)Cellularsenescencepromotesadverse
effectsofchemotherapyandcancerrelapse.CancerDiscov.7, 165–176
44. Liu,D.andHornsby,P.J.(2007)Senescenthumanfibroblasts increasetheearlygrowthofxenografttumorsviamatrix metal-loproteinasesecretion.CancerRes.67,3117–3126 45. Coppe,J.P.etal.(2006)Secretionofvascularendothelial
growthfactorbyprimaryhumanfibroblastsatsenescence.J. Biol.Chem.281,29568–29574
46. Krtolica,A.etal.(2001)Senescentfibroblastspromoteepithelial cellgrowthandtumorigenesis:alinkbetweencancerandaging. Proc.Natl.Acad.Sci.U.S.A.98,12072–12077 47. Coppe,J.P.etal.(2008)Senescence-associatedsecretory
phenotypesrevealcell-nonautonomousfunctionsofoncogenic RASandthep53tumorsuppressor.PLoSBiol.6,2853–2868 48. Laberge,R.M.etal.(2012)Glucocorticoidssuppressselected componentsofthesenescence-associatedsecretory pheno-type.AgingCell11,569–578
49. Paradis,V.etal.(2001)Replicativesenescenceinnormalliver, chronichepatitisC,andhepatocellularcarcinomas.Hum. Pathol.32,327–332
50. Yang,G.etal.(2006)Thechemokinegrowth-regulated onco-gene1(Gro-1)linksRASsignalingtothesenescenceofstromal fibroblastsandovariantumorigenesis.Proc.Natl.Acad.Sci.U. S.A.103,16472–16477
51. Burd,C.E.etal.(2013)Monitoringtumorigenesisandsenescence invivowithap16(INK4a)-luciferasemodel.Cell152,340–351 52. Campisi,J.(2005)Senescentcells,tumorsuppression,and
organismalaging:goodcitizens,badneighbors.Cell120, 513–522
53. Bavik,C.etal.(2006)Thegeneexpressionprogramofprostate fibroblastsenescencemodulatesneoplasticepithelialcell pro-liferationthroughparacrinemechanisms.CancerRes.66,794– 802
54. Witkiewicz,A.K.etal.(2011)AssociationofRB/p16-pathway perturbationswithDCISrecurrence:dependenceontumor versustissuemicroenvironment.Am.J.Pathol.179,1171– 1178
55. Toso,A.etal.(2014)Enhancingchemotherapyefficacyin Pten-deficientprostatetumorsbyactivatingthe senescence-associ-atedantitumorimmunity.CellRep.9,75–89 56. Nelson,G.etal.(2012)Asenescentcellbystandereffect:
senescence-inducedsenescence.AgingCell11,345–349 57. Acosta,J.C.etal.(2013)Acomplexsecretoryprogram
orches-tratedbytheinflammasomecontrolsparacrinesenescence. Nat.CellBiol.15,978–990
58. Mikula-Pietrasik,J.etal.(2013)Bystandersenescencein humanperitonealmesotheliumandfibroblastsisrelatedto thrombospondin-1-dependent activation of transforming growthfactor-beta1.Int.J.Biochem.CellBiol.45,2087–2096 59. Hubackova,S.etal.(2012)IL1-andTGFbeta–Nox4signaling, oxidativestressandDNAdamageresponsearesharedfeatures ofreplicative,oncogene-induced,anddrug-inducedparacrine ‘bystandersenescence’.Aging(Milano)4,932–951
TrendsinCellBiology,September2018,Vol.28,No.9 735
60. Nelson,G.etal.(2018)Thesenescentbystandereffectis causedbyROS-activatedNF-kappaBsignalling.Mech.Ageing Dev.170,30–36
61. Acosta,J.C.etal.(2008)ChemokinesignalingviatheCXCR2 receptorreinforcessenescence.Cell133,1006–1018 62. Gluck,S.etal.(2017)Innateimmunesensingofcytosolic
chromatinfragmentsthroughcGASpromotessenescence. Nat.CellBiol.19,1061–1070
63. Ritschka,B.etal.(2017)Thesenescence-associatedsecretory phenotypeinducescellularplasticityandtissueregeneration. GenesDev.31,172–183
64. MarioGonzalez-Meljem,J.etal.(2017)Stemcellsenescence drivesage-attenuatedinductionofpituitarytumoursinmouse modelsofpaediatriccraniopharyngioma.Nat.Commun.8, 1819
65. Oubaha,M.etal.(2016)Senescence-associatedsecretory phenotypecontributestopathologicalangiogenesisin retinop-athy.Sci.Transl.Med.8,362ra144
66. Burnley,P.etal.(2013)Roleofthep63–FoxN1regulatoryaxisin thymicepithelialcellhomeostasisduringaging.CellDeathDis. 4,e932
67. Wang,X.etal.(2015)Metabolictriggeredinflammationin oste-oarthritis.Osteoarthr.Cartil.23,22–30
68. deMagalhaes,J.P.(2013)Howageingprocessesinfluence cancer.Nat.Rev.Cancer13,357–365
69. Anisimov,V.N.etal.(2009)Relationshipsbetweencancerand aging:amultilevelapproach.Biogerontology10,323–338 70. Christensen,K.etal.(2012)Cancerandlongevity–istherea
trade-off?AstudyofcooccurrenceinDanishtwinpairs born1900–1918.J.Gerontol.ABiol.Sci.Med.Sci.67,489– 494
71. Kubben,N.andMisteli,T.(2017)Sharedmolecularandcellular mechanismsofprematureageingandageing-associated dis-eases.Nat.Rev.Mol.CellBiol.18,595–609 72. Maas,H.A.etal.(2005)Theinfluenceofageandco-morbidity
ontreatmentandprognosisofovariancancer:a population-basedstudy.Gynecol.Oncol.97,104–109
73. Lancet,J.E.etal.(2000)Acutemyelogenousleukemiaand aging.Clinicalinteractions.Hematol.Oncol.Clin.NorthAm. 14,251–267
74. Reed,M.J.etal.(2007)Theeffectsofagingontumorgrowth andangiogenesisaretumor-celldependent.Int.J.Cancer120, 753–760
75. Ershler,W.B.etal.(1984)B16murinemelanomaandaging: slowergrowthandlongersurvivalinoldmice.J.Natl.Cancer Inst.72,161–164
76. McCullough,K.D.etal.(1997)Age-dependentinductionof hepatictumorregressionbythetissuemicroenvironmentafter transplantationofneoplasticallytransformedratliverepithelial cellsintotheliver.CancerRes.57,1807–1813 77. Hinkal,G.etal.(2009)Timedsomaticdeletionofp53inmice
revealsage-associateddifferencesintumorprogression.PLoS One4,e6654
78. Braumuller,H.etal.(2013)T-helper-1-cellcytokinesdrive can-cerintosenescence.Nature494,361–365
79. Galon,J.etal.(2006)Type,density,andlocationofimmune cellswithinhumancolorectaltumorspredictclinicaloutcome. Science313,1960–1964
80. Xue,W.etal.(2007)Senescenceandtumourclearanceis triggeredbyp53restorationinmurinelivercarcinomas.Nature 445,656–660
81. Krizhanovsky,V.etal.(2008)Senescenceofactivatedstellate cellslimitsliverfibrosis.Cell134,657–667
82. Panda,A.etal.(2009)Humaninnateimmunosenescence: causesandconsequencesforimmunityinoldage.Trends Immunol.30,325–333
83. Gruver,A.L.etal.(2007)Immunosenescenceofageing.J. Pathol.211,144–156
84.Hewitt,G.etal.(2012)Telomeresarefavouredtargetsofa persistentDNAdamageresponseinageingandstress-induced senescence.Nat.Commun.3,708
85.LeGarff-Tavernier,M.etal.(2010)HumanNKcellsdisplaymajor phenotypicandfunctionalchangesoverthelifespan.AgingCell 9,527–535
86.Vicente,R.etal.(2016)Cellularsenescenceimpactonimmune cellfateandfunction.AgingCell15,400–406 87.Effros,R.B.etal.(2003)Invitrosenescenceofimmunecells.
Exp.Gerontol.38,1243–1249
88.Montes,C.L.etal.(2008)Tumor-inducedsenescentTcellswith suppressorfunction:apotentialformoftumorimmuneevasion. CancerRes.68,870–879
89.Ramello,M.C.etal.(2014)Tumor-inducedsenescentTcells promotethesecretionofpro-inflammatorycytokinesand angio-genicfactorsbyhumanmonocytes/macrophagesthrougha mechanismthatinvolvesTim-3andCD40L.CellDeathDis. 5,e1507
90.Hanahan,D.andWeinberg,R.A.(2011)Hallmarksofcancer: thenextgeneration.Cell144,646–674
91.Golomb,L.etal.(2015)Age-associatedinflammationconnects RAS-inducedsenescencetostemcelldysfunctionand epider-malmalignancy.CellDeathDiffer.22,1764–1774 92.Feig,C.etal.(2013)TargetingCXCL12fromFAP-expressing
carcinoma-associatedfibroblastssynergizeswithanti-PD-L1 immunotherapyinpancreaticcancer.Proc.Natl.Acad.Sci. U.S.A.110,20212–20217
93.Chen,S.etal.(2015)Myeloid-derivedsuppressorcellspromote age-relatedincreaseoflungcancergrowthviaB7-H1.Exp. Gerontol.61,84–91
94.Coppe,J.P.etal.(2010)Ahuman-likesenescence-associated secretoryphenotypeisconservedinmousecellsdependenton physiologicaloxygen.PLoSOne5,e9188
95.Chien,Y.etal.(2011)Controlofthesenescence-associated secretoryphenotypebyNF-kappaBpromotessenescenceand enhanceschemosensitivity.GenesDev.25,2125–2136 96.Freund,A.etal.(2011)p38MAPKisanovelDNAdamage
response-independentregulatorofthesenescence-associated secretoryphenotype.EMBOJ.30,1536–1548 97.Dou,Z.etal.(2017)Cytoplasmicchromatintriggers
inflamma-tioninsenescenceandcancer.Nature550,402–406 98.Hoare,M.etal.(2016)NOTCH1mediatesaswitchbetweentwo
distinctsecretomesduringsenescence.Nat.CellBiol.18,979– 992
99.Laberge,R.M.etal.(2015)MTORregulatesthepro-tumorigenic senescence-associatedsecretoryphenotypebypromoting IL1Atranslation.Nat.CellBiol.17,1049–1061 100.Kang,C.etal.(2015)TheDNAdamageresponseinduces
inflammationandsenescencebyinhibitingautophagyof GATA4.Science349,aaa5612
101.Orjalo,A.V.etal.(2009)Cellsurface-boundIL-1alphaisan upstreamregulatorofthesenescence-associatedIL-6/IL-8 cytokinenetwork. Proc.Natl.Acad.Sci.U.S.A.106, 17031–17036
102.Tasdemir,N.andCelik,S.(2016)Self-reportedpainrelief inter-ventionsofpatientsbeforeemergencydepartmentarrival.Int. Emerg.Nurs.28,20–24
103.DiPaolo,N.C.andShayakhmetov,D.M.(2016)Interleukin 1alphaandtheinflammatoryprocess.Nat.Immunol.17, 906–913
104.Yoshimoto,S.etal.(2013)Obesity-inducedgutmicrobial metabolitepromoteslivercancerthroughsenescence secre-tome.Nature499,97–101
105.Baker,D.J.etal.(2011)Clearanceofp16Ink4a-positive senes-centcellsdelaysageing-associateddisorders.Nature479, 232–236
106.Fielding,C.A.etal.(2014)Interleukin-6signalingdrivesfibrosisin unresolvedinflammation.Immunity40,40–50
107.Ning,Y.etal.(2011)Interleukin-8isassociatedwithproliferation, migration,angiogenesisandchemosensitivityinvitroand invivoincoloncancercelllinemodels.Int.J.Cancer128,2038– 2049
108.Takasugi,M.etal.(2017)Smallextracellularvesiclessecreted fromsenescentcellspromotecancercellproliferationthrough EphA2.Nat.Commun.8,15729
109.Pazolli,E.etal.(2009)Senescentstromal-derivedosteopontin promotespreneoplasticcellgrowth.CancerRes.69,1230– 1239
110.Mikula-Pietrasik,J.etal.(2017)Oxidativestresscontributes tohepatocytegrowthfactor-dependentpro-senescence activityofovariancancercells.FreeRadic.Biol.Med.110,270– 279
111.Mikula-Pietrasik,J.etal.(2016)Ovariancancer-derivedascitic fluidsinduceasenescence-dependentpro-cancerogenic phe-notypeinnormalperitonealmesothelialcells.Cell.Oncol.39, 473–481
112.Malaquin,N.etal.(2013)Senescentfibroblastsenhanceearly skincarcinogeniceventsviaaparacrineMMP–PAR-1axis. PLoSOne8,e63607
113.Bonnans,C.etal.(2014)Remodellingtheextracellularmatrixin developmentanddisease.Nat.Rev.Mol.CellBiol.15,786–801 114.Woenne,E.C.etal.(2010)MMPinhibitionblocks fibroblast-dependentskincancerinvasion,reducesvascularizationand altersVEGF-AandPDGF-BBexpression.AnticancerRes.30, 703–711
115.Boire,A.etal.(2005)PAR1isamatrixmetalloprotease-1 receptorthatpromotesinvasionandtumorigenesisofbreast cancercells.Cell120,303–313
116.Nardella,C.etal.(2011)Pro-senescencetherapyforcancer treatment.Nat.Rev.Cancer11,503–511
117.Guan,X.etal.(2017)StromalsenescencebyprolongedCDK4/ 6inhibitionpotentiatestumorgrowth.Mol.CancerRes.15, 237–249
118.Lan,L.etal.(2015)Shp2signalingsuppressessenescencein PyMT-inducedmammaryglandcancerinmice.EMBOJ.34, 1493–1508
119.Demaria,M.etal.(2014)Anessentialroleforsenescentcellsin optimalwoundhealingthroughsecretionofPDGF-AA.Dev.Cell 31,722–733
120.Kaefer,A.etal.(2014)Mechanism-basedpharmacokinetic/ pharmacodynamic meta-analysisof navitoclax (ABT-263) inducedthrombocytopenia.CancerChemother.Pharmacol. 74,593–602
121.Tse,C.etal.(2008)ABT-263:apotentandorallybioavailable Bcl-2familyinhibitor.CancerRes.68,3421–3428 122.Dorr,J.R.etal.(2013)Syntheticlethalmetabolictargetingof
cellularsenescenceincancertherapy.Nature501,421–425 123.Lasry,A.andBen-Neriah,Y.(2015)Senescence-associated
inflammatoryresponses:aging andcancerperspectives. TrendsImmunol.36,217–228
124.Ott,P.A.etal.(2013)CTLA-4andPD-1/PD-L1blockade:new immunotherapeuticmodalitieswithdurableclinicalbenefitin melanomapatients.Clin.CancerRes.19,5300–5309 125.Alimonti,A.etal.(2010)Anoveltypeofcellularsenescencethat
canbeenhancedinmousemodelsandhumantumor xeno-graftstosuppressprostatetumorigenesis.J.Clin.Invest.120, 681–693
126.Fleischmann,R.(2006)Anakinrainthetreatmentofrheumatic disease.ExpertRev.Clin.Immunol.2,331–340 127.Deisseroth,A.etal.(2015)FDAapproval:siltuximabforthe
treatmentofpatientswithmulticentricCastlemandisease.Clin. CancerRes.21,950–954
128.Karsdal,M.A.etal.(2012)IL-6receptorinhibitionpositively modulatesbonebalanceinrheumatoidarthritispatientswith aninadequateresponsetoanti-tumornecrosisfactortherapy: biochemicalmarkeranalysisofbonemetabolisminthe tocili-zumabRADIATE study (NCT00106522).Semin. Arthritis Rheum.42,131–139
TrendsinCellBiology,September2018,Vol.28,No.9 737