• No results found

THE  ORIGIN  AND  EVOLUTION   OF  THE  

N/A
N/A
Protected

Academic year: 2021

Share "THE  ORIGIN  AND  EVOLUTION   OF  THE  "

Copied!
108
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

  1    

THE  ORIGIN  AND  EVOLUTION   OF  THE  

MESA  PROJECTILE  POINT  

 

   

B Y :   M A R J O L E I N   A D M I R A A L   S 1 7 1 6 7 9 4  

 

 

V 2 . 0               A U G U S T   1 4 ,   2 0 1 3  

(2)

 

University  of  Groningen,  the  Netherlands    

       

“The  Origin  and  Evolution  of  the  Mesa  Projectile  Point”  

                       

A  thesis  submitted  in  partial  fulfilment  of  the     requirements  for  the  degree  of  Master  of  Arts  in    

Archaeology               By  

 

Marjolein  Admiraal    

        Supervisors:  

Prof.  Dr.  Louwrens  Hacquebord   Dr.  Dennis  Stanford  

Dr.  Hans  Peeters    

     

     

(3)

  3  

ACKNOWLEDGEMENTS  

I  owe  thanks  to  many  people  for  supporting  and  guiding  me  during  the  process  of  writing   this  thesis.  First  of  all,  many  thanks  to  my  three  supervisors:  prof.dr.  Louwrens  Hacquebord,   Dr.   Dennis   Stanford   and   Dr.   Hans   Peeters.   Louwrens,   as   my   professor   at   the   University   of   Groningen   has   been   my   mentor   for   four   years   and   has   inspired   me   to   choose   an   Arctic   specialization   during   my   study   Archaeology.   He   has   been   a   great   support   and   a   source   of   motivation.   Many   thanks   to   Dr.   Dennis   Stanford   of   the   Smithsonian   National   Museum   of   Natural  History  where  I  did  my  internship  during  the  summer  of  2012.  Dennis  inspired  me   with  his  inexhaustible  enthusiasm  and  has  been  a  great  help  in  discussing  the  thesis  subject,   which   he   handed   to   me   in   the   first   place.   And   thanks   to   Dr.   Hans   Peeters   for   spiking   my   interest  in  the  subject  of  the  Peopling  of  the  Americas  and  stone  tool  technology  as  well  as   guiding  me  through  the  process  of  writing  my  thesis.    

 

I  owe  an  amazing  experience  of  great  educational  value  to  Mike  Kunz,  now  retired  from  the   Bureau  of  Land  Management  in  Fairbanks,  Alaska  who  has  also  reviewed  this  thesis.  Mike   took  me  along  for  a  five-­‐day  trip  along  the  Northern  Brooks  Range  where  I  learned  first  hand   about   the   Mesa   projectile   point   complex.   I   want   to   thank   the   Western   Cultural   Resource   Management  Inc.  in  Reno  for  inviting  me  to  come  to  the  Great  Basin  area  and  letting  me   study  the  Fire  Creek  assemblage  of  Cougar  Mountain  points.  Many  thanks  to  Tom  Lennon,   Chuck  Wheeler,  Ed  Stoner,  Geoff  Cunnar  and  Mark  Estes  for  taking  me  along  on  a  survey  and   trip   to   the   Nevada   State   Museum   in   Carson   City   as   well   as   sharing   ideas   and   knowledge.  

Thanks  to  Eugene  Hattori  for  allowing  us  access  to  the  museum  collection.    

 

I   want   to   thank   Bill   Fitzhugh   of   the   Smithsonian   Arctic   Center   for   introducing   me   at   the   Smithsonian  as  an  intern.  Thanks  to  the  late  amateur  archaeologist  Tony  Baker  who  showed   great  interest  in  my  thesis  subject  which  we  discussed  multiple  times  on  the  phone.  Sadly  I   did  not  get  the  chance  to  meet  him  in  person  before  he  passed  away  in  spring,  2012.  Many   thanks  to  Frances  Seay  for  believing  in  me  and  supporting  me.  Thanks  to  Marcia  Bakry  of  the   Smithsonian   for   providing   me   with   the   map   used   in   this   thesis   and   offering   assistance   in   putting  in  site  locations.  Thanks  to  Jeff  Rasic  for  discussing  my  thesis  subject  with  me  during   my  stay  in  Fairbanks.    

 

(4)

INDEX  

 

Acknowledgements  ...  3  

List  of  figures  and  tables  ...  6  

Abstract  ...  8  

1.  Introduction  ...  8  

2.  Theory,  Material  and  Methods  ...  10  

2.1.  Problem  definition  ...  10  

2.2  Working  Hypothesis  and  Research  Questions  ...  15  

2.3.  Material  and  approach  ...  18  

3.  Thick-­‐bodied  Lanceolate  Projectile  Point  Types  ...  21  

3.1.  Mesa  and  Sluiceway  ...  21  

3.1.1.  Distribution  ...  22  

3.1.2.  Environment  ...  24  

3.1.3.  Dating  ...  27  

3.1.4.  Lithic  Technology  ...  29  

3.1.5.  Associated  Lithic  Assemblages  ...  34  

3.1.6.  Site  Characteristics  and  inferred  activities  ...  35  

3.1.7.  Mesa  and  Sluiceway:  the  differences  ...  36  

3.2.  Agate  Basin  ...  38  

3.2.1.  Distribution  ...  39  

3.2.2.  Environment  ...  41  

3.2.3.  Dating  ...  43  

3.2.4.  Lithic  technology  ...  44  

3.2.5.  Associated  lithic  assemblages  ...  47  

3.2.6.  Site  characteristics  and  inferred  activities  ...  48  

3.2.7.  Developed  out  of  Agate  Basin:  Hell  Gap  ...  49  

3.3  Haskett  ...  51  

3.3.1.  Distribution  ...  52  

3.3.2.  Environment  ...  55  

3.3.3.  Dating  ...  57  

3.3.4.  Lithic  technology  ...  58  

3.3.5.  Associated  lithic  assemblages  ...  62  

3.3.6.  Site  characteristics  and  inferred  activities  ...  63  

3.3.7.  Cougar  Mountain  ...  64  

3.4.  El  Jobo  ...  65  

3.4.1.  Distribution  ...  66  

3.4.2.  Environment  ...  67  

3.4.3.  Dating  ...  69  

3.4.4.  Lithic  technology  ...  71  

3.4.5.  Associated  lithic  assemblages  ...  73  

3.4.6.  Site  characteristics  and  inferred  activities  ...  74  

3.4.7.  Monte  Verde:  an  El  Jobo  site?  ...  75  

(5)

  5  

4.  Comparison  ...  76  

4.1  Distribution  ...  77  

4.2  Environment  ...  81  

4.3  Dating  ...  82  

4.4  Lithic  technology  ...  84  

4.5  Associated  lithic  assemblages  ...  87  

4.6  Site  characteristisc  and  inferred  activities  ...  87  

5.  Discussion  and  Conclusions  ...  89  

5.1  Aspects  of  technology  ...  89  

5.2  Chronology  and  Succession  ...  92  

5.3  Tracking  the  movement  of  a  technological  tradition  ...  93  

5.4  Conclusions  ...  97  

References  ...  102    

 

(6)

LIST  OF  FIGURES  AND  TABLES  

 

FIGURE  1:  FLAKING  PATTERNS  (WCRM,  2012:  MODIFIED  FROM  BECK  AND  JONES,  2009)  ...  13  

FIGURE  2:  THE  FOUR  STUDIED  PROJECTILE  POINT  TYPES  AS  PROPOSED  BY  KUNZ  AND  BAKER  (2011)  ...  14  

FIGURE  3:  VARIATIONS  IN  RADIOCARBON  CALIBRATION  (INTCAL09)  DURING  THE  YOUNGER  DRYAS  (BRONK   RAMSEY,  2009).  ...  16  

FIGURE  4:  THE  MESA  RIGHT  OF  ITERIAK  CREEK  (VIEW  FROM  THE  SOUTH)  (PHOTO:  M.  ADMIRAAL)  ...  21  

FIGURE  5:  DISTRIBUTION  OF  SIGNIFICANT  MESA-­‐  AND  SLUICEWAY  ARCHAEOLOGICAL  SITES                                              (NUMBERS   CORRESPOND  TO  TABLE  1)  ...  22  

FIGURE  6:  ARCTIC  FOOTHILLS  (PHOTO:  M.  ADMIRAAL)  ...  24  

FIGURE  7:  COASTAL  PLAIN  (PHOTO:  M.  ADMIRAAL)  ...  25  

FIGURE  8:  CALIBRATION  CURVE  FOR  THE  AMS  DATES  OF  THE  MESA  TYPE-­‐SITE.  AS  THE  CALIBRATED  DATA  IS  NOT   USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATIONS  ON  THE  Y-­‐AXIS  OF   THE  GRAPH  (BRONK  RAMSAY,  2009)  ...  27  

FIGURE  10:  MESA  TYPE-­‐SITE  POINTS  (KUNZ  ET  AL,  2003:  P.  28)  ...  30  

FIGURE  11:  DAMAGED  MESA  BASE  FROM  THE  TUPIK  SITE  (PHOTO:  M.  ADMIRAAL)  ...  31  

FIGURE  12:  MESA  WIDTH/THICKNESS  RATIO'S  (DATA  WAS  COLLECTED  BY  THE  AUTHOR  FROM  A  SELECTION  OF   MESA  PROJECTILE  POINTS  FROM  VARIOUS  SITES,  ALL  SPECIMENS  WERE  COMPLETE  AND  MEASURED  AT  THE   WIDEST  PART  OF  THE  POINT)  ...  32  

FIGURE  13:  GRAVERS  FROM  THE  MESA  TYPE-­‐SITE  (PHOTO:  WWW.LITHICCASTINGLAB.COM)  ...  34  

FIGURE  14:  MESA  (22  SPECIMENS)  AND  SLUICEWAY  (17  SPECIMENS)  WIDTH/THICKNESS  RATIO'S  (DATA  WAS   COLLECTED  FROM  A  SELECTION  OF  POINTS  FROM  THE  COLLECTION  OF  THE  BLM,  SOME  SLUICEWAY   SPECIMENS  WERE  DAMAGED)  ...  36  

FIGURE  15:  THE  AGATE  BASIN  SITE  AREA  (ARROW  INDICATES  SITE  LOCATION)  (FRISON,  1978  P.151)  ...  38  

FIGURE  16:  DISTRIBUTION  OF  AGATE  BASIN  AND  HELL  GAP  ARCHAEOLOGICAL  SITES  USED  IN  THIS   STUDY  (NUMBERS  CORRESPOND  TO  TABLE  2)  ...  39  

FIGURE  17:  BISON  HERD  ON  THE  GREAT  PLAINS  (PHOTO:  MARK  THIESSEN  FOR  NATIONAL   GEOGRAPHIC  MAGAZINE  D.O.A.  24-­‐02-­‐2013)  ...  42  

FIGURE  18:  CALIBRATION  CURVE  OF  VARIOUS  DATES  OF  SITES  YIELDING  AGATE  BASIN  PROJECTILE   POINTS.  AS  THE  CALIBRATED  DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE   RADIOCARBON  DETERMINATIONS  ON  THE  Y-­‐AXIS  OF  THE  GRAPH  (BRONK  RAMSAY,  2009).  ...  43  

FIGURE  19:  AGATE  BASIN  POINTS  FROM  THE  TYPE  SITE  (TAYLOR,  2006).  ...  44  

FIGURE  20:  AGATE  BASIN  WIDTH/THICKNESS  RATIOS  (DATA  WAS  COLLECTED  FROM  BAKER,  2009)  ...  45  

FIGURE  21:  FLAKE  TOOLS  OF  THE  AGATE  BASIN  SITE  (FRISON,  1978,  P.  163)  ...  47  

FIGURE  22:  AGATE  BASIN  TYPE-­‐SITE  BONE  BED  (FRISON,  1978  P.155)  ...  48  

FIGURE  23:  HELL  GAP  PROJECTILE  POINT  FROM  THE  CASPER  SITE  (FRISON,  1978:  P.  175)  ...  50  

FIGURE  24:  HASKETT  TYPE-­‐SITE  LOCATION  (BUTLER,  1978)  P.16  ...  51  

FIGURE  25:  HASKETT  (AND  SOME  COUGAR  MOUNTAIN  (WCRM))  ESTIMATED  SITE  LOCATIONS  ...  52  

FIGURE  26:  PROPOSED  HASKETT  POINTS  FROM  THE  COOPERS  FERRY  SITE  (BUTLER,  1969)  ...  53  

FIGURE  27:  HASKETT  POINT  FROM  THE  TYPE-­‐SITE  (BUTLER,  1964)  ...  53  

FIGURE  28:  STEMMED  POINTS  FROM  THE  PAISLEY  CAVES  SITE  (BRON)  ...  55  

FIGURE  29:  PYRAMID  LAKE  (NEVADA)  IN  THE  GREAT  BASIN  (PHOTO:  M.  ADMIRAAL)  ...  55  

FIGURE  30:  FALCON  HILL/COLEMAN  LOCALITY  NEXT  TO  DRAINED  WINNEMUCCA  LAKE  IN  THE  GREAT   BASIN  (PHOTO:  M.  ADMIRAAL)  ...  56  

FIGURE  31:  CALIBRATION  CURVE  OF  THE  VARIOUS  HASKETT  COMPLEX  DATES.  AS  THE  CALIBRATED   DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON   DETERMINATIONS  ON  THE  Y-­‐AXIS  OF  THE  GRAPH  (BRONK  RAMSEY,  2009)  ...  57  

FIGURE  32:  HASKETT  POINTS  FROM  THE  TYPE-­‐SITE  (BUTLER,  1965  P.19).  THE  HASKETT  POINT  ON   THE  LEFT  (H)  PROBABLY  HAS  BEEN  ERRONEOUSLY  REFITTED  (JEFF  RASIC  PERSONAL   COMMUNICATION,  2012)  ...  59  

FIGURE  33:  HASKETT  WIDTH/THICKNESS  RATIO'S.  DATA  WAS  COLLECTED  FROM:  (BUTLER,  1965;  BUTLER,   1967)  AND  ORIGINATES  FROM  THE  HASKETT  TYPE-­‐SITE.  ...  60  

(7)

  7  

FIGURE  34:  SCRAPERS  (A-­‐C),  FLAKE  KNIFE  (D)  AND  UTILIZED  FLAKE  (E)  FROM  THE  RUNNING  

ANTELOPE  SITE  (RUSSELL,  1993)  ...  62  

 FIGURE  35:  COUGAR  MOUNTAIN  POINTS  FROM  COUGAR  MOUNTAIN  CAVE  (LAFAYETTE,  2006:  P.51)  ...  64  

FIGURE  36:  TAIMA-­‐TAIMA  SITE  (OLIVER,  2013)  ...  65  

FIGURE  37:  DISTRIBUTION  OF  EL  JOBO  ARCHAEOLOGICAL  SITES  (NUMBERS  CORRESPOND  TO  TABLE  4)  ...  66  

FIGURE  38:  TAIMA-­‐TAIMA  SITE  SETTING  (KUNZ  AND  BAKER,  2011)  ...  68  

FIGURE  39:  CALIBRATION  CURVE  FOR  THE  RADIOCARBON  DATES  OF  THE  EL  JOBO  COMPLEX.  AS  THE  CALIBRATED   DATA  IS  NOT  USED  IN  THIS  THESIS  PLEASE  PAY  ATTENTION  TO  THE  RADIOCARBON  DETERMINATION  ON  THE   Y-­‐AXIS  OF  THE  GRAPH.  DATA  COMES  FROM  THE  MUACO,  TAIMA-­‐TAIMA  AND  EL  VANO  SITES  (BRONK  RAMSAY,   2009).  ...  70  

FIGURE  40:  EL  JOBO  WIDTH/THICKNESS  RATIOS.  DATA  WAS  COLLECTED  FROM  THE  EL  JOBO  TYPE-­‐SITE  (NAMI,   1994)  AND  FROM  THE  TAIMA-­‐TAIMA  SITE  (CRUXENT,  1979)  ...  71  

FIGURE  41:  EL  JOBO  PROJECTILE  POINTS  (KUNZ  AND  BAKER,  2011)  ...  72  

FIGURE  42:  EL  JOBO  MIDSECTION  WITH  SERRATED  EDGES  (PHOTO:  MOJAVE,  WWW.ARROWHEADOLOGY.COM)  ...  73  

FIGURE  43:  TOOLS  ASSOCIATED  WITH  EL  JOBO  POINTS  (PERFORATING  TOOL,  PLANO-­‐CONVEX  SCRAPER,  BLADE,   HAND  AXE)  (OLIVER,  2013)  ...  74  

FIGURE  44:  POINTED  TOOL  FROM  THE  MONTE  VERDE  SITE,  CHILE  (WWW.ELE.NET)  ...  75  

FIGURE  45:  DISTRIBUTION  OF  SITES  CONTAINING  THE  FOUR  PROJECTILE  POINT  TYPES  ...  77  

FIGURE  46:  SANTA  ISABEL  IZTAPAN  BIFACES  (AVELEYRA  A.  DE  ANDA,  1956)  ...  78  

 FIGURE  47:  BIFACE  FROM  UNIT  E,  HUEYATLACO  SITE  IN  PUABLA,  MEXICO  (PHOTO:  JOE  GINGERICH)  ...  78  

FIGURE  48:  SITE  DISTRIBUTION  AND  MOVEMENT  FROM  RAW  MATERIAL  SOURCES.  RED  ARROWS  SHOW   THE  MOVEMENT  OF  THE  RAW  MATERIAL  SOURCE  LOCATION  TO  THE  SITE  WHERE  THE  MATERIAL   WAS  EXCAVATED.  (LOCATIONS  ARE  ESTIMATED  WITH  LITTLE  CONSEQUENCE  FOR  SCALE).  ...  80  

FIGURE  49:  RADIOCARBON  DATES  OF  THE  FOUR  PROJECTILE  POINT  COMPLEXES  COMBINED  (MESA:   RED;  AGATE  BASIN:  GREEN;  HASKETT:  YELLOW;  EL  JOBO:  BLUE)  ...  82  

FIGURE  50:  OLDEST  TWO  DATES  OF  EACH  PROJECTILE  POINT  COMPLEX  COMBINED  (MESA:  RED;  AGATE   BASIN:  GREEN;  HASKETT:  YELLOW;  EL  JOBO:  BLUE)  ...  83  

FIGURE  51:  WIDTH/THICKNESS  RATIOS  OF  ALL  FOUR  PROJECTILE  POINT  COMPLEXES  ...  85  

FIGURE  52:  SOCKETED  SHAFT  HAFTING  (DIXON,  1999)  ...  90  

FIGURE  53:  PROPOSED  ROUTES  OF  THE  THICK-­‐BODIED  LANCEOLATE  PROJECTILE  POINT  TECHNOLOGY  ...  94  

  T A B L E S    

TABLE  1:  MESA  AND  SLUICEWAY  SITES,  LOCATIONS  AND  14C  DATES  ...  23  

TABLE  2:  BASAL  CONDITIONS  FOR  66  EXAMINED  MESA  PROJECTILE  POINTS  ...  31  

TABLE  3:  AGATE  BASIN  (AND  HELL  GAP)  SITES,  LOCATIONS  AND  14C  DATES  ...  40  

TABLE  4:  HASKETT  (AND  SOME  COUGAR  MOUNTAIN)  SITES,  LOCATIONS  AND  14C  DATES  ...  54  

TABLE  5:  EL  JOBO  SITES,  LOCATIONS  AND  14C  DATES  ...  67  

TABLE  6:  TAIMA-­‐TAIMA  RADIOCARBON  DATES  (BRYAN,  ET  AL.,  1978)  ...  69  

TABLE  7:  CALIBRATED  AGES  OF  THE  FOUR  COMPLEXES  ...  84  

TABLE  8:  MANUFACTURING  TRAITS  OF  THE  FOUR  PROJECTILE  POINT  TYPES  ...  85  

TABLE  9:  AVERAGE  WIDTH/THICKNESS  RATIOS  FOR  ALL  FOUR  PROJECTILE  POINT  COMPLEXES  ...  86  

TABLE  10:  FINAL  STAGES  OF  PROJECTILE  POINT  MANUFACTURE  ...  86  

TABLE  11:  PRESENCE  OF  TOOL  TYPES  OF  THE  FOUR  PROJECTILE  POINT  TYPE  COMPLEXES  ...  87  

TABLE  12:  PROJECTILE  POINT  COMPLEX  CHARACTERISTICS  ...  97  

 

 

(8)

ABSTRACT  

Approximately  10.500  

14

C  years  ago  a  people  lived  in  Arctic  Alaska  that  made  a  typical  kind   of  projectile  points.  These  points  were  tipped  on  atlatl  darts  and  used  to  hunt  animals  such   as  horse  and  bison.  We  refer  to  these  points  as  Mesa  points.  These  bifacial  projectile  points   represent   the   Paleoindian   type   that   is   found   south   of   the   continental   ice-­‐sheets   covering   North  America  during  the  last  ice  age.  No  other  bifacial  technologies  are  known  north  of  the   ice-­‐sheets.  So  the  question  is:  where  lies  the  origin  of  this  technological  tradition?  

 

Three  projectile  point  complexes  in  the  Americas  show  close  similarities  to  the  Mesa  type:  

Agate  Basin  from  the  Great  Plains,  Haskett  from  the  Great  Basin  and  El  Jobo  from  Venezuela.  

The   points   are   lanceolate   in   shape,   relatively   thick   with   respect   to   their   width   and   have   many   technological   traits   in   common.   Could   these   complexes   be   connected   to   the   Mesa   complex?  The  dating  of  these  four  complexes  has  shown  a  succession  in  time.  From  old  to   young:   El   Jobo   -­‐>   Haskett   -­‐>   Agate   Basin   -­‐>   Mesa.   This   is   an   indication   for   a   possible   migration   or   transmission   of   technological   knowledge   through   contact   from   Venezuela   all   the  way  to  the  Arctic.  Or  could  this  similarity  be  the  result  of  independent  innovation?  The   reason  why  these  projectile  points  are  so  similar  is  most  probably  found  in  the  employment   of  socketed  shaft  hafting.  This  technique  required  a  specific  kind  of  projectile  point  shape.  

However,   flaking   patterns   are   also   generally   the   same   with   the   exception   of   Agate   Basin,   which  has  more  parallel  flake  scars  opposed  to  the  collateral  flaking  of  the  other  three  types.  

 

El  Jobo  (13.000  –  11.000  

14

C  BP)  might  have  migrated  towards  the  north  because  megafauna   was   becoming   extinct   in   Venezuela   and   they   were   looking   for   new   hunting   grounds.  

However,  there  is  little  evidence  for  such  a  migration.  The  area  between  El  Jobo  and  Haskett   encompasses  some  6000  km  without  any  sites  similar  to  El  Jobo  and  thus  this  idea  has  been   rejected.  Haskett  (10.800  –  9.800  

14

C  BP)  might  very  well  have  been  in  contact  with  Agate   Basin  (10.500  -­‐9.700  

14

C  BP)  as  the  Great  Basin  and  Great  Plains  areas  are  bordering.  Both   hunting  traditions  probably  hunted  bison.  At  10.500  

14

C  BP  Bison  antiquus  from  the  Great   Plains   migrated   northward   and   is   found   in   the   ice-­‐free   corridor.   Agate   Basin   is   known   to   have  moved  northward  during  this  period.  They  may  have  followed  their  prey  species  and   ended  up  in  the  Arctic  where  they  adapted  their  way  of  projectile  point  manufacture  due  to   environmental  differences,  and  become  what  we  refer  to  as  Mesa  (10.300  –  9.700  

14

C  BP).    

1.  INTRODUCTION  

10.500  (

14

C)

 

years  ago  a  people  lived  on  the  Northern  slope  of  the  Brooks  Range  in  the  Arctic   part  of  Alaska.  It  was  a  period  of  climatic  change.  Summers  began  to  get  warmer  as  the  last   ice  age  came  to  an  end.  These  people  left  behind  traces  of  their  existence  on  hilltops  and   other  localities  on  higher  ground.  On  these  high  spots  they  were  able  to  see  far  and  wide  in   most  directions.  They  were  scouting  for  migrating  herds  of  big-­‐game  animals  on  which  they   depended  as  a  means  of  subsistence.  In  1978  Michael  Kunz,  archaeologist  at  the  Bureau  of   Land   Management   in   Alaska   started   excavations   on   a   mesa   (a   flat-­‐topped   elevation   with   steep  sides)  situated  at  the  foothills  of  the  Northern  Brooks  Range.  In  the  preserved  deposits   of   the   site   he   found   projectile   points   made   in   a   certain,   to   American   archaeologists,   recognizable  fashion.  The  points  were  thick-­‐bodied,  lanceolate  shaped  and  bifacial  (worked   on  both  sides).  They  bear  the  name  of  their  type-­‐site:  Mesa  (Kunz  et  al,  2003).    

 

(9)

  9   When  and  from  where  humans  first  migrated  to  the  American  continent  has  been  a  topic  of   extensive  research  for  decades.  The  general  belief  is  that  the  Arctic  functioned  as  a  gateway   to   the   New   World.   During   the   last   ice   age   sea-­‐levels   were   lowered   due   to   the   storage   of   water  in  land  ice  and  the  Bering  Land  Bridge  was  exposed  for  an  extensive  period  of  time   (Goebel   et   al,   2008;   Stanford,   2006;   Waguespack,   2007;   Yesner,   2001).   People   may   have   crossed   the   Bering   Land   Bridge   and   ended   up   in   Alaska   where   they   met   two   great   continental  ice-­‐sheets  blocking  their  way.  The  earliest  possible  terrestrial  migration  into  the   Americas  is  through  the  ice-­‐free  corridor  and  not  before  11.500  

14

C  BP.  Because  there  are   various  sites  south  of  the  ice-­‐sheets  that  are  dated  beyond  11.500  

14

C  BP  another  possible   migration  route  has  been  suggested:  the  Coastal  Route.  This  route,  along  the  western  coast   of  the  American  continent,  was  passable  already  by  14.000  

14

C  BP  (Dixon,  2011;  Mandryk  et   al,  2001).  

 

As   organic   material   is   often   poorly   preserved,   even   in   the   Arctic,   the   evidence   consists   of   lithic  artefacts.  Studies  of  stone  tools  of  the  period  of  the  proposed  entry  into  America  have   shown  a  significant  difference  between  the  stone  tool  industries  of  Northeastern  Asia  and   those  of  the  Americas  south  of  the  ice-­‐sheets  (Dumond,  2001;  Slobodin,  2001).  In  Asia  and   north   of   the   North   American   ice-­‐sheets   microblade   technologies   prevail   while   in   the   Americas  biface  technologies  with  large  projectile  points  of  the  Paleoindian  type,  such  as  the   famous  Clovis  and  Folsom  traditions,  predominate.    

 

The  discovery  of  the  Mesa  site  and  associated  projectile  points  that  closely  resemble  those   of  the  Paleoindian  type  of  the  mid-­‐latitudes  was  big  news  among  New  World  archaeologists.  

It   was   reason   for   the   renewal   of   old   discussions   about   the   origin   and   timing   of   the   first   migration.  Some  believe  that  the  origin  of  the  Mesa  points  is  to  be  found  in  Asia  among  the   microblade   industries.   Others   look   to   the   south   for   ancestral   traces   of   this   northern   archaeological  complex.  In  2011,  Kunz  and  Tony  Baker  compared  the  Mesa  points  to  other   thick-­‐bodied  lanceolate  shaped  projectile  points  of  the  continent  (Agate  Basin,  Haskett  and   El  Jobo)  and  suggested  a  possible  technological  and  chronological  connection  between  these   point   types   (Kunz   and   Baker,   2011).   A   Paleoindian   complex   north   of   the   ice-­‐sheets   could   indicate   many   things.   The   Mesa   complex   could   be   the   link   between   the   Paleoindian   complexes  of  the  south  and  their,  up  to  this  day  still  undiscovered,  Asian  counterpart.  Then   there  is  also  the  possibility  of  a  migration  from  the  south  to  the  north.  This  is  an  interesting   notion  that  deserves  further  investigation.  In  this  thesis  the  ideas  of  Kunz  and  Baker  will  be   further  examined  and  the  four  projectile  point  complexes  will  be  discussed  in  detail.    

 

The  background  to  this  research  as  well  as  methods  and  material  will  be  discussed  in  chapter  

two.   Chapter   three   is   a   descriptive   chapter   of   the   four   point   complexes.   The   comparison  

between   the   four   complexes   will   be   made   in   chapter   four.   In   the   discussion   the   relevant  

data  will  be  discussed  with  a  focus  on  the  meaning  of  similarities  and  differences  between  

the  projectile  points.  A  possible  scenario  will  be  drawn  on  the  basis  of  the  comparison  of  the  

point  types  in  hopes  of  answering  the  main  research  question:  “What  can  be  said  about  the  

origin  and  migration  patterns  of  the  Palaeolithic  people  of  the  Mesa  archaeological  site  by  

examining  the  various  thick-­‐bodied  lanceolate  projectile  points  of  the  Americas?”    

(10)

2.  THEORY,  MATERIAL  AND  METHODS    

2.1.  PROBLEM  DEFINITION    

In  this  thesis  four  different  projectile  point  types  from  different  regions  in  the  Americas  are   studied   by   looking   at   several   characteristics.   The   main   aspect   that   is   studied   is   the   lithic   technology   that   was   employed   to   manufacture   these   projectile   points.   The   four   projectile   point   types   occur   during   a   period   between   approximately   12.000   and   10.000  

14

C   BP   (uncalibrated   radiocarbon   years   before   present).   It   seems   that   these   four   projectile   point   complexes  are  occurring  more  or  less  as  successors  through  time  in  the  following  order:    El   Jobo  –>  Haskett  –>  Agate  Basin  –>  Mesa  (Kunz  and  Baker,  2011).    

 

Based   on   similar   technological   traits   Kunz   and   Baker   (2011)   suggested   that   a   relationship   between  these  projectile  point  complexes  might  exist.  If  these  lithics  complexes  are  related   then   the   question   is   what   may   be   the   mechanism   behind   the   spread   of   this   technology.  

Three  possible  explanations  are  given:  

 

1)  Diffusion  of  technological  knowledge  through  social  contact   2)  Dispersal  of  material  culture  through  migration  

3)  Convergence  of  the  technological  trait  through  independent  innovation    

In  this  context  it  should  be  kept  in  mind  that  a  certain  projectile  type  (such  as  Mesa,  Agate   Basin,   Haskett   and   El   Jobo   but   also,   for   example,   Clovis   and   Folsom)   differs   from   a   technological  tradition.  Usually  certain  projectile  point  types  are  confined  to  a  specific  area   and  time  frame.  It  is  assumed  that  this  pattern  reflects  the  use  of  a  point  type  by  a  specific   group  of  people.  A  technological  tradition  can  reach  further  in  both  time  and  space  than  a   specific   tool   type.   Multiple   groups   of   hunters   may   have   used   different   types   of   projectile   points  made  with  the  same  manufacturing  techniques  during  the  same  time  (Bryan,  1980).      

 

Terminology  and  background  

It   is   important   to   distinguish   between   cultural,   stylistic   and   technological   traditions.   One  

cannot  be  sure  that  one  cultural  group  did  not  use  multiple  types  of  projectile  points  with  

different   styles   and/or   technologies   for   different   purposes.   Moreover,   often   a   ‘cultural  

group’   cannot   be   distinguished   in   the   archaeological   record   (even   though   many   have  

attempted  to  do  so  anyway).  Often  it  cannot  be  determined  whether  different  kinds  of  sites  

(kill-­‐   vs.   base   camps,   ect.)   are   the   product   of   the   same   group   of   people   because   these  

different   activity   sites   often   yield   different   kinds   of   archaeological   remains.   Binford   and  

Bordes   discussed   this   topic   extensively   with   reference   to   explaining   the   variability   in  

Mousterian   assemblages   (Binford,   1972;   Binford   and   Binford,   1966;   Bordes   and  

deSonneville-­‐Bordes,  1970).  Similar  stylistic  assemblages  can  be  defined  as  cultural  groups  

(Bordes   and   deSonneville-­‐Bordes,   1970)   while   functional   similarities   represent   different  

activity  areas  (Binford,  1972;  Binford  and  Binford,  1966).  However,  distinguishing  a  cultural  

group  in  the  archaeological  record  remains  problematic.  It  can  be  stated  that  the  artefacts  

central  to  this  study  (projectile  points)  represent  a  specific  activity:  hunting.  I  will  refer  to  

the   proposed   group   of   people   as   hunters   that   use   the   specific   projectile   point   (e.g.   Agate  

Basin   hunters,   Mesa   hunters,   etc).   But   can   you   define   a   hunting   culture   by   looking   at   the  

lithic   technology?   This   question   will   be   discussed   in   chapter   5.   The   Haskett   (Butler,   1965)  

(11)

  11   and   Mesa   (Kunz   et   al,   2003)   complexes   lack   evidence   of   the   proposed   hunted   animals.   If   there  are  no  bones  the  function  of  the  projectile  points  becomes  less  evident.    

 

The   lithic   technology   of   different   projectile   point   types   is   an   interesting   subject   to   study,   assuming  that  one  can  link  these  different  types  as  one  technological  tradition.  However,  a   question  arises  here:  the  question  of  independent  innovation.  Can  two  completely  unrelated   people  invent  something  without  having  any  contact?  This  is  possible  to  a  certain  degree  as   is   seen   in   the   use   of   various   tool   types   (for   example:   projectile   points,   microblade   technologies,   the   innovation   of   bow   and   arrow,   and   atlatl)   all   around   the   world.   For   example:   spear-­‐throwers   (atlatls)   were   used   by   the   Solutrean   in   France   but   also   by   the   Australian  Aborigines  as  well  as  Americas  Paleoindians  (Butler,  1975;  McClellan  III  and  Dorn,   2006).  Microblade  technology  was  employed  from  China  to  Europe,  as  well  as  in  Siberia  and   later  on  also  in  North  America.  Some  of  the  spread  of  these  technologies  can  be  explained   by   dispersal   or   diffusion.   However,   the   widespread   occurrence   of   these   technologies   indicates   that   it   was   innovated   separately   in   different   areas   (Owen,   1988).   Independent   innovation   becomes   less   likely   when   stylistic   and   technological   traits   are  strikingly   similar.  

For   example   the   connection   between   the   Solutrean   and   Clovis   traditions   based   on   lithic   technology  as  was  argued  by  Stanford  and  Bradley  (2012).  When  stylistic  and  technological   traits   are   very   similar   it   is   interesting   to   explore   possible   explanations   for   contact   or   migration.  

 

Care  should  be  practiced  when  talking  about  a  cultural  complex.  Material  culture  does  not   necessarily   define   a   culture,   as   a   culture   encompasses   behaviour,   beliefs,   and   other   practices   of   a   specific   group   of   people   in   a   specific   period   in   time.   Similarities   in   material   culture   are   no   substantial   evidence   for   an   actual   cultural   connection.   Many   different   cultures  could  have  made  use  of  the  same  projectile  point  technology.  For  example:  many   people   in   the   world   nowadays   use   knives   and   forks,   that   does   not   mean   that   everybody   belongs  to  the  same  culture.  The  studied  areas  are  much  too  big  and  geographically  distant   from  each  other  to  be  compared  without  keeping  in  mind  the  environment  and  its  impact  on   human  adaptations.  Swanson  (Swanson,  1962)  argues  for  the  importance  of  environmental   studies   in   the   archaeological   discipline.   He   describes   the   occurrence   of   clear   cultural   continuums  in  the  centre  of  an  environmentally  distinct  area.  The  further  one  approaches   the  border  of  an  environment  the  more  cultural  overlap  and  adaptations  one  observes  while   in  the  centre  of  a  specific  environmental  area  the  culture  is  less  subject  to  other  influences   and  does  not  need  to  adapt  to  different  kinds  of  environments  (Bryan,  1980).      

 

The  environment  has  great  influence  on  many  different  things  for  a  people  dependent  on   hunting  and  gathering  as  a  means  of  subsistence.    First  of  all,  the  animal  and  plant  species  as   well  as  other  resources  occurring  in  a  region  are  the  means  of  subsistence  for  human  groups   but  certain  species  only  thrive  in  certain  environments  and  climatic  zones.  This  is  seen  for   example  in  the  Great  Basin  region.  When  compared  to  the  Great  Plains  region,  big  game  was   much   less   abundant   in   the   Great   Basin   at   the   end   of   the   Pleistocene.   As   a   result   smaller   game   was   a   more   important   means   of   subsistence   here   than   it   was   on   the   Great   Plains   (Jenkins  et  al,  2004).  If  the  hunted  species  differ,  so  will  the  hunters  toolkit.  Meltzer,  (1981)   states  that  style  is  independent  of  its  environment  while  function  is  more  closely  related  to   environmental   aspects.   However,   Buchanan   and   Hamilton,   (2009)   tested   the   origin   of   variability  in  projectile  point  shape  and  found  no  correlation  to  environment  in  this  context.  

Seasonality  is  of  importance  here  too.  In  Venezuela  the  season  are  much  less  pronounced   while  in  the  north  seasonal  differences  are  much  more  noticeable  (mainly  in  temperature).  

As  a  result  northern  big-­‐game  hunting  might  have  been  seasonal  and  larger  in  scale,  in  order  

to  secure  enough  food  for  the  winter  period,  while  in  the  south  the  hunted  animals  were  

(12)

present   throughout   the   year.   Technological   traits   are   subject   to   the   environment   to   the   degree   that   certain   materials   needed   to   be   available   for   certain   technologies   to   be   useful   (for   example   hafting   using   wood   or   hollow   reed   cane).   Lithic   technology   is   adapted   to   specific   prey-­‐species   as   well   as   hunting   strategies,   both   largely   dependent   on   the   environment.  For  example:  in  order  to  pierce  the  thick  hide  of  a  mastodon  a  projectile  point   needs   to   be   considerably   resistant   to   breakage;   in   open   terrain   it   is   expected   to   pay   if   a   projectile  design  has  good  aerodynamic  properties  (Buchanan  and  Hamilton,  2009).  Binford,   (1980)  states  that  hunter-­‐gatherer  variation  is  the  result  of  strategies  of  organization  around   environmental   resources.   The   diversity   among   hunter-­‐gatherers   has   been   extensively   discussed   by   Kelly,   (1995)   He   states   that   hunter-­‐gatherers   are   much   more   diverse   and   complicated   than   was   previously   believed.   This   diversity   can   often   be   explained   by   environmental  circumstances.  In  my  view  environments  can  be  distinguished  by  looking  at   climate,  fauna,  flora  and  physiographical  features.  The  four  discussed  environments  differ  in   some  of  these  aspects,  this  will  further  be  discussed  in  the  subsequent  chapters.  

 

The  use  of  the  term  ‘migration’  as  an  explanation  for  variability  in  the  archaeological  record   has  been  widely  employed  by  archaeologists  but  often  without  providing  a  clear  definition   of  what  is  meant  by  that  term  and  what  invokes  the  process.  Clark,  (1994)  has  discussed  the   matter   thoroughly   and   approaches   the   concept   of   migration   from   the   view   of   various   disciplines   (biology,   genetics,   anthropology,   archaeology).   In   recent   times   ‘migration’   is   mainly   a   density-­‐dependent   phenomenon.   It   is   questionable   if   this   played   a   major   role   in   hunter-­‐gatherer   societies   of   the   late   Pleistocene   (Clark,   1994).   I   assign   the   following   meaning  to  the  term  ‘migration’:  “a  movement  of  people  from  a  familiar  region  to  another  

‘unknown’   region,   carrying   with   them   genes,   beliefs,   material   culture   and   other   specific   cultural   traits”.   (Clark,   1994)   states   that   “Migration   does   not   ‘just   happen’”   (p.335),   migration  is  an  adaptive  strategy  and  it  needs  a  trigger  described  as  ‘push’  and  ‘pull’  factors.  

Push  factors  might  include:  population  growth,  resource  depletion  but  also  social  stress.  A   pull  factor  depends  on  the  attractiveness  of  the  recipient  region,  for  example:  desirable  prey   species,   no   hostile   inhabitants,   etc.   The   process   of   the   spread   of   people   in   prehistory   is   usually  gradual  unless  replacement  is  forced  by  these  push  and  pull  factors  (Clark,  1994).  

 

The  different  kinds  of  sites  discussed  in  this  thesis  are  determined  by  the  excavated  content.  

Kill-­‐sites  are  characterized  by  the  presence  of  animal  remains  with  marks  of  butchering  in   combination   with   the   presence   of   weapons   such   as   projectile   points.   These   kinds   of   sites   often  lack  the  presence  of  tools  that  were  used  for  other  purposes  such  as  scrapers,  gravers,   etc.   Sites   containing   these   kinds   of   artefacts   and   lacking   the   chaotic   deposition   of   animal   bones  are  often  described  as  camp-­‐sites.  In  many  cases  the  remains  of  hunted  animals  were   brought  back  to  the  camp  and  were  further  processed  there.  This  results  in  a  combination  of   a  camp-­‐site  and  a  processing  site  yielding  the  butchered  remains  of  hunted  animals,  in  this   case  these  are  regarded  as  separate  use-­‐areas  in  one  site.    

 

A   bias   can   occur   when   the   time   of   excavation,   and   the   excavation   techniques   that   were   employed  at  the  time,  differs.  Additionally,  the  sampling  of  radiocarbon  datable  material  at   sites  can  have  a  large  impact  on  the  results.  Contamination  can  happen  easily  and  produce   radiocarbon   dates   that   are   unreliable   in   their   context.   Therefore   sites   that   have   been   extensively   dated   (such   as   the   Mesa   site)   with   many   radiocarbon   dates   are   much   more   reliable   than   sites   that   have   been   dated   with   only   a   few   radiocarbon   dates.   Outliers   are   much  more  visible  in  a  big  group  of  dates.  Moreover,  the  difference  between  the  standard   radiocarbon  dating  and  Accelerator  Mass  Spectometry  AMS  dating  can  make  it  difficult  to   compare  results  of  dates  produced  by  both  two  methods.    

 

(13)

  13   Lithic  Technology  

Some  focus  should  be  on  the  technique  of  hafting,  as  this  mostly  determines  the  shape  of   the  projectile  point.  With  hafting  the  placement  of  the  projectile  point  into  the  foreshaft  of   an  atlatl  dart  or  spear  is  meant.  While  the  main  focus  in  this  thesis  is  on  lithic  technology,   morphology   is   also   of   importance   because   of   the   above   mentioned.   The   morphology   of   a   point  type  also  indicates  something  about  technology  in  this  case.  Shape  is  the  product  of   function   but   also   stylistic   tradition.   Bryan   (1980)   argues   that   if   the   two   are   often   found   together   a   hypothesis   that   they   are   part   of   one   cultural   tradition   is   easier   defendable.   In   Wiessner’s  (1983)  article  about  style  and  social  information  in  Kalahari  San  projectile  points   she   emphasizes   the   earlier   statement   of   (Binford,   1965)   that   when   looking   for   stylistic   aspects   the   analyst   is   often   looking   for   characteristics   that   are   non-­‐functional.   She   also   stresses  a  statement  of  (Sackett,  1972)  that  in  fact  social  information  might  be  contained  in   attributes  that  are  not  recognized  by  the  analyst.  These  attributes  might  be  shape,  flaking   methods,  etc  beside  obvious  decorations  of  the  shaft  (when  preserved).    

 

In  exploring  the  stylistic  traits  of  San  projectile  points  Wiessner,  (1983)  showed  that  most   stylistic  features,  containing  social  information  or  not,  were  incorporated  on  the  shaft  of  the   arrows   that   were   studied.   Of   the   materials   studied   in   this   thesis   no   shafts   have   been   preserved   and   thus   this   information   is   lost   to   us.   It   is   interesting   how   the   San   people   recognize   different   shapes   of   projectile   points   as   belonging   to   either   their   own   people   or   unknown,  and  thus  unpredictable,  people.  Discovering  an  unknown  projectile  point  on  their   territory   is   seen   as   a   threat   from   unknown   people.   In   this   sense   the   shape   of   a   projectile   point  can  hold  another  purpose:  recognition  of  information  about  groups  and  boundaries.  

The  options  for  stylistic  features  other  than  general  shape  on  the  here-­‐discussed  projectile   points  are  limited.  A  possible  stylistic  feature  on  lithic  projectile  points  can  be  various  types   of   flaking   as   is   displayed   on   figure   1.   Projectile   point   morphology   is   however   mainly   functional.   Shape   and   function   was   probably   determined   by   experiment   and   successful   designs  were  kept  in  use  (Meltzer,  1981;  Mesoudi  and  O'Brien,  2008).  

 

The   four   projectile   point   types   have   a   similar   morphology,   including   thickness/width   ratio   and  flaking  patterns.  This  is  the  main  reason  that  they  stood  out  and  were  linked  together  by   Kunz  and  Baker  (2011),  that  and  their  thickness.  They  are  all  made  by  a  bifacial  thickening   technology  which  leaves  the  point  narrow  and  thick  in  opposition  to  wide  and  thin  as  with   thinning  strategies  applied  by  Clovis  and  Folsom  toolmakers  (Stanford,  2006).  

 

FIGURE  1:  FLAKING  PATTERNS  (WCRM,  2012:  MODIFIED  FROM  BECK  AND  JONES,  2009)  

 

What   stands   out   most   about   the   lithic   technology   of   these   projectile   point   types   is   the  

collateral   flaking   technique   (fig.1)   that   is   nicely   visible   on   all   the   projectile   points   with  

exception  of  most  Agate  Basin  points.  Collateral  flaking  is  defined  as  the  removal  of  flakes  

that   meet   on   the   midline   of   the   core   (in   this   case   the   projectile   point).   As   a   result   a  

(14)

symmetric   pattern   dominates   the   projectile   points.   The   flake   scars   are   regular,   relatively   wide  and  feather  out  to  the  midline.  

FIGURE  2:  THE  FOUR  STUDIED  PROJECTILE  POINT  TYPES  AS  PROPOSED  BY  KUNZ  AND  BAKER  (2011)  

  Flaking   can   be   done   in   different   ways:   direct,   hard   percussion;   direct,   soft   percussion;  

indirect  percussion;  and  pressure  flaking.  Direct  percussion  flaking  can  be  done  in  a  hard  or   soft  manner,  with  a  hard  hammer  stone  or  a  softer  piece  of  bone,  wood  or  antler.  The  bases   of  antlers  are  known  to  have  been  used  as  hammers  for  percussion  flaking.  Hard  hammer   percussion  leaves  a  clearly  visible  bulb  on  point  of  impact  on  the  flake  and  the  impression  of   that  bulb  on  the  negative  of  that  flake  in  the  core.  Soft,  direct  percussion  leaves  less  of  a   distinctive  bulb  and  shows  a  small  lip  on  the  proximal  side  of  the  flake  (Beuker,  2010).  

 

The   quality   of   the   raw   material   has   great   influence   on   the   control   over   the   outcome   of   flaking   as   is   skill   of   the   flint   knapper.   However,   the   different   kinds   of   flint   knapping   have   some  influence  over  the  outcome  and  are,  in  this  case,  used  for  different  stages  of  projectile   point  manufacture.  Direct,  hard  percussion  can  be  very  effective  in  reducing  the  volume  of  a   piece  of  flint.  It  provides  less  control  on  how  the  flakes  and  scars  will  turn  out,  as  would  soft   direct  percussion  or  indirect  percussion.  Most  control  over  the  outcome  of  flake  removal  can   be  gained  by  using  pressure  flaking.  Instead  of  using  the  force  of  impact  to  remove  flakes   pressure   can   be   applied   on   the   sides   of   the   point   in   order   to   remove   small   flakes   in   a   controllable  fashion.  Pressure  flaking  provides  the  most  control  over  the  outcome  of  ones   actions,  more  than  direct  percussion  or  even  indirect  percussion  (Beuker,  2010)  although  the   toolmakers’  skill  and  the  quality  of  the  raw  material  remain  the  greatest  influencing  factors   of  outcome  (Peeters,  personal  communication,  2013).  

 

Referenties

GERELATEERDE DOCUMENTEN

The isofunctional character of the representation, which correlates various aspects of a neural construct with identifiable features of real-world objects, detaches the image from

To summarise, the findings of our empirical analysis of 182 cross-border acquisitions showed that an increase in the level of control will lead to higher cumulative abnormal

[r]

"   Number of UDGs roughly scales linearly with halo mass?. "   Total stellar mass in UDGs ≈ 0.2% of total cluster

To conclude, although tumours are chromosomal instability and the aneuploidy caused by that is random, within one tumour the karyotype and phenotype is selected

In the first case, the second clause holds immediately; in the second case, observe that there must be some later step in whose redex pattern the step under consideration occurs

De voordelen hiervan zijn onder andere het korte tijdsbestek waarin tot een akkoord kan worden gekomen (de lange UWV- procedure hoeft niet te worden afgewacht) en de lage kosten om