• No results found

A generalization of Hall-Wielandt theorem

N/A
N/A
Protected

Academic year: 2022

Share "A generalization of Hall-Wielandt theorem"

Copied!
14
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

A generalization of Hall-Wielandt theorem

M. Yasir Kızmaz

DepartmentofMathematics,BilkentUniversity,06800Bilkent,Ankara,Turkey

a r t i c l e i n f o a bs t r a c t

Article history:

Received15August2018 Availableonline17October2019 CommunicatedbyE.I.Khukhro

MSC:

20D10 20D20

Keywords:

Controllingp-transfer p-Nilpotency

Let G be a finite group and P ∈ Sylp(G). We denote the k’thtermoftheuppercentralseriesofG byZk(G) andthe normofG byZ(G).Inthisarticle,weprovethatifforevery tameintersectionP∩ Q suchthatZp−1(P )< P∩ Q< P ,the groupNG(P∩Q) isp-nilpotentthenNG(P ) controlsp-transfer in G.Forp= 2,wesharpenourresultsbyprovingifforevery tame intersection P ∩ Q such that Z(P ) < P ∩ Q < P , the group NG(P ∩ Q) is p-nilpotent then NG(P ) controls p-transferinG.Wealsoobtainseveralcorollarieswhichgive sufficient conditions for NG(P ) to control p-transfer in G as a generalization of somewellknown theorems,including Hall-Wielandt theorem and Frobenius normal complement theorem.

©2019ElsevierInc.Allrightsreserved.

1. Introduction

Throughoutthearticle,weassumethatallgroupsarefinite.Notationandterminology arestandardasin[1].LetG beagroupandP ∈ Sylp(G).WesaythatG isp-nilpotent if ithasanormalHallp-subgroup.LetN beasubgroupofG suchthat|G: N| iscoprime top.ThenN issaidtocontrol p-transfer inG ifN/Ap(N )∼= G/Ap(G).Afamousresult

E-mailaddress:yasirkizmaz@bilkent.edu.tr.

https://doi.org/10.1016/j.jalgebra.2019.10.018 0021-8693/©2019ElsevierInc. Allrightsreserved.

(2)

of Tate in [2] shows that N/Ap(N ) ∼= G/Ap(G) if and only if N/Op(N ) ∼= G/Op(G).

Thus,N controls p-transferinG ifandonlyifN/Op(N )∼= G/Op(G).Inthiscase,one canalsodeducethatN isp-nilpotentifandonlyifG isp-nilpotent.

Bya result due to Burnside, NG(P ) controls p-transfer in G if P is abelian. Later worksofHallandWielandtshowedthatNG(P ) controlsp-transferinG iftheclassofP isnot“toolarge”.Namely,theyprovedthefollowinggeneralizationofBurnside’sresult.

Theorem 1.1 (Hall-Wielandt).If the class of P is less than p, then NG(P ) controls p-transferinG.

In 1978, Yoshida introduced the concept of charactertheoretic transfer and by the meansofit,heobtainedthefollowinggeneralizationofHall-Wielandttheorem.

Theorem1.2. [7,Theorem 4.2] If P hasnoquotientisomorphic to Zp Zp thenNG(P ) controls p-transferinG.

Theoriginalproofofthisstrongtheoremdependsoncharactertheory.However,Isaacs providedacharacterfreeproofto Yoshida’stheorem inhis book(seesection10 in[1]).

Taking advantages of his method, we obtain another generalization of Hall-Wielandt theorem.

Before presenting ourmain theorem,it is convenient here to give someconventions thatweadoptthroughoutthepaper.LetP,Q∈ Sylp(G) (possiblyP = Q).Wesaythat P∩ Q isa tameintersection ifboth NP(P∩ Q) andNQ(P ∩ Q) areSylowp-subgroups of NG(P ∩ Q).For simplicity, we use directly“X∩ Y is a tame intersection” without specifyingwhatX and Y are. Inthis case,it shouldbe understoodthatX and Y are Sylowp-subgroupsofG foraprimep dividingorderofG andX∩Y isatameintersection accordingto theformaldefinition.

Thefollowingisthemaintheorem ofourarticle.

Theorem1.3. Assumethat foreachtame intersectionZp−1(P )< P ∩ Q< P , thegroup NG(P ∩ Q) isp-nilpotent. ThenNG(P ) controls p-transferinG.

ThenextremarkshowsthatourtheoremextendstheresultofHall-Wielandttheorem inadifferentdirectionthanwhatYoshida’stheoremdoes.

Remark 1.4.Let G be a group having a Sylow p-subgroup P isomorphic to Zp Zp. Clearly,Yoshida’s theoremis notapplicablehere.If NG(P ) doesnotcontrolp-transfer in G then there exists a Sylow p-subgroup Q of G such that |P : P ∩ Q| = p and NG(P∩ Q) isnotp-nilpotentbyTheorem1.3.Noticethatthisisexactlythecasewhere G= S4 andp= 2. Wecansay inanother way thatNG(P ) controls p-transfer in G if

|P : P ∩ Px|> p for eachx∈ G\ NG(P ).

SomeoftheimmediatecorollariesofTheorem1.3 areasfollows.

(3)

Corollary 1.5.Assume that for any two distinct Sylow p-subgroups P and Q of G, the inequality|P ∩ Q|≤ |Zp−1(P )| is satisfied.ThenNG(P ) controlsp-transferinG.

The next corollary is a generalization of the well-known Frobenius normal comple- menttheorem,whichguaranteesthep-nilpotencyofG ifNG(X) is p-nilpotentforeach nontrivial p-subgroupX ofP .

Corollary 1.6. Assume that for each tame intersection Zp−1(P ) < P ∩ Q, the group NG(P ∩ Q) isp-nilpotent. ThenG isp-nilpotent.

Remark1.7. Themainingredientinprovingmostof thep-nilpotencytheoremsinclud- ingThompson-Glaubermanp-nilpotencytheoremsistheFrobeniusnormalcomplement theorem,andhenceitsabovegeneralizationcanbeusedinprovingstrongerp-nilpotency theorems.

Whenp= 2,Theorem 1.3guaranteesthatifNG(P ∩ Q) isp-nilpotentforeachtame intersectionZ(P )< P∩ Q< P , thenNG(P ) controlsp-transfer inG.Infact,weshall extendthisresultfurther.

LetZ(P ) denotethenormofP ,whichisdefinedas Z(P ) := 

H≤P

NP(H).

We haveclearlyZ(P )≤ Z(P ).Onecanrecursively defineZi(P ) fori≥ 1 as thefull inverseimageofZ(P/Zi−1 (P )) inP andsetZ0(P )= 1.WealsosaythatP isofnorm lengthat mosti ifZi(P )= P .Weshouldalsonote thatitiswell knownthatZ(P ) is containedinthesecondcenterofP .

Theorem 1.8.Assume that for each tame intersection Z(P ) < P ∩ Q< P , the group NG(P ∩ Q) isp-nilpotent. ThenNG(P ) controlsp-transferin G.

The followingcorollary isstrongerthanCorollary1.6 whenp= 2 although itisalso trueforoddprimes(asTheorem 1.8isalsotrueforoddprimes).

Corollary1.9.AssumethatforeachtameintersectionZ(P )< P∩Q,thegroupNG(P∩ Q) is p-nilpotent.ThenG is p-nilpotent.

The following theorem is a generalization of a theorem due to Grün (see Theo- rem 14.4.4 in [4]), which states that the normalizer of a p-normal subgroup controls p-transfer inG.Wealsouseournexttheorem intheproofofTheorem 1.8.

Theorem 1.10.LetK≤ Z(P ) be aweaklyclosed subgroupof P . ThenNG(K) controls p-transferin G.

(4)

Thenextcorollary canalsobe easilydeducedbythemeansofTheorem1.8.

Corollary1.11. Assumethat forany twodistinct Sylow p-subgroups P and Q ofG, the inequality|P ∩ Q|≤ |Z(P )| is satisfied.ThenNG(P ) controlsp-transferinG.

Remark1.12.InTheorems1.3and1.8,theassumption“NG(P∩Q) isp-nilpotent”could be replacedwithaweakerassumption “NG(P ∩ Q)/CG(P ∩ Q) isap-group”. Thiscan beobservedwiththeproofsofTheorems 1.3and1.8.

2. Preliminaries

LetH ≤ G and T ={ti | i= 1,2. . . ,n} be aright transversalfor H inG.Themap V : G→ H definedby

V (g) =

n i=1

tig(ti.g)−1

iscalled apretransfermap fromG to H.Whentheorder oftheproduct isnotneeded to specify, we simply write V (g) = 

t∈Ttg(t.g)−1. Notice that the kernel of “dot ac- tion” is CoreG(H), and so t.g = t for all g ∈ CoreG(H). In the case that G is a p-group, Z(G/CoreG(H)) = 1 whenever H is a proper subgroup of G. If x∈ G such thatxCoreG(H)∈ Z(G/CoreG(H)) isoforderp,theneachx -orbithaslengthp when weconsidertheactionofx onT .

Let t1,t2. . . ,tk be representatives of all distinct orbits of x on T . As t.x and tx represent the same right coset of H in G for each t ∈ T , the set T = {tixj | i {1,2,...,k}andj ∈ {0,1,...,p− 1}} is alsoarighttransversal forH in G.LetV be a pretransfermap constructedbyusing T.Since V (u)≡ V(u)modH,wemayreplace T withT withoutloss ofgeneralitywheneversuchasituationoccurs.

Wedenoteallpretransfermapswithuppercaselettersandeachcorrespondinglower caselettershowsthecorrespondingtransfermap.

Theorem 2.1.[1,Theorem 10.8] Let G be a group, and suppose that H ≤ K ≤ G. Let U : G→ K,W : K → H andV : G→ H be pretransfermaps. Thenfor allg∈ G, we haveV (g)≡ W (U(g))mod H,thatis, v(g)= w(U (g)).

Theorem2.2. [1,Theorem 10.10] LetX beasetofrepresentativesforthe(H,K) double cosetsinagroupG,whereH andK aresubgroupsofG.LetV : G→ H beapretransfer map, and foreach element x∈ X, let Wx : K → K ∩ Hx be a pretransfer map. Then fork∈ K,wehave

V (k)≡ 

x∈X

xWx(k)x−1 mod H.

(5)

Now wegiveatechnicallemma,whichis essentiallythemethodused intheproof of Yoshida’stheorem(seeproofofTheorem 10.1in[1]).Forthesakecompleteness,wegive theproof ofthislemmahere.

Lemma 2.3. Let G be agroup and, letP ∈ Sylp(G) and NG(P ) ≤ N. Supposethat N does not control p-transfer in G and let X be a set of representatives for the (N,P ) double cosetsin G,which containstheidentity e.Thenthefollowinghold:

(a) There existsa normalsubgroup M of N of indexp such that V (G)⊆ M for every pretransfermapV fromG to N .

(b) For each u∈ P \ M, there exists a nonidentity x∈ X such that W (u)∈ P ∩ M/ x where W isapretransfer mapfromP toP∩ Nx.

(c) Forx in part(b),wehave P∩ Nx< P and|P ∩ Nx: P∩ Mx|= p.

Proof. (a) It followsby([1], Lemma 10.11).

(b) Let u∈ P \ M.Let Wx be apretransfermap from P toP ∩ Nx for eachx∈ X.

Thenwehave

V (u)≡ 

x∈X

xWx(u)x−1 mod N

byTheorem2.2.SinceN≤ M andV (u)∈ M,weget



x∈X

xWx(u)x−1∈ M.

Notice that for x = e, We : P → P and We(u) = u = eWe(u)e−1 ∈ M./ Thus, there alsoexists e = x∈ X suchthatxWx(u)x−1∈ M./ SetWx= W .Thenweget W (u)∈ P ∩ Nx\ P ∩ Mx.

(c) Set R = P ∩ Nx and Q = P ∩ Mx. If R = P then Px−1 ≤ N, and hence there exists y ∈ N suchthatPx−1y = P . Sincex−1y∈ NG(P )≤ N, weget x∈ N.This isnotpossible asN xP = N eP andx = e.It followsthat R < P . NotethatR = Q by part (b). Moreover, the inequality 1 < |R : Q| ≤ |Nx : Mx| = p forces that

|R : Q|= p. 2

3. Mainresults

The following lemma serves as the key tool in proving our main theorems since it enables us to useinduction intheproofs of “controlp-transfer theorems”. Throughout the section, G isagroupand P is aSylow p-subgroupofG for aprimep dividing the order ofG.

Lemma 3.1. Let NG(P ) ≤ N ≤ G, Z ≤ P and Z  G. Assume that N/Z controls p-transferin G/Z andthat oneof thefollowingholds:

(6)

(a) [Z,g,. . . ,g]p−1≤ Φ(Z) forallg∈ P . (b) Z≤ Φ(P ).

ThenN controls p-transferinG.

Weneedthefollowing lemmaintheproof ofLemma3.1.

Lemma3.2. LetNG(P )≤ N ≤ G,Z ≤ P andZ G.Assume that N does notcontrol p-transferinG andN/Z controlsp-transferinG/Z. ThenZ  M andwehaveW (u)∈ P∩ Nx\ P ∩ Mx foreach u∈ Z \ M whereW,M andx are asinLemma2.3.

Proof. Set G/Z = G. Let V be a pretransfer map from G to N . Let T be a right transversalsetusedforconstructingV .Itfollowsthatthereexist anormalsubgroupM ofN withindexp such thatV (G)⊆ M byLemma2.3(a).

NowweclaimthatZ M.Assumetothecontrary.NoticethatthesetT ={t | t∈ T } is a right transversal set for N in G. Thus if we construct a pretransfer map V by using T , then V (g) = V (g). It follows that V (G) = V (G) ⊆ M  N. Let F be a pretransfer map from N to P and f be the corresponding transfer map. Note that ker(f ) = Ap(N ) ≤ M as |N : M| = p, and hence f (M ) < f (N ). It then follows thatf (V (G)) < f (N ). Since f ◦ V is thetransfer map from G to P byTheorem 2.1, weget|G : Ap(G)| = |N : Ap(N )|,which contradictsthehypothesis.Thus, thereexists u∈ Z\M.ThenwehaveW (u)∈ P ∩Nx\P ∩Mxforeachu∈ Z\M byLemma2.3(b). 2 Proof of Lemma3.1. SupposethatN does notcontrolp-transfer inG.We derivecon- tradictionforbothparts.WeassumethenotationofLemma2.3.

Firstassume that(b) holds, thatis, Z ≤ Φ(P ). Note that|P : P ∩ M| = p,and so Z ≤ Φ(P ) ≤ M ∩ P . However,this is not possible by Lemma 3.2. This contradiction showsthatN controls p-transferinG when(b) holds.

Nowassume that(a) holds.LetX be asetof representatives for the(N,P ) double cosets inG,which containstheidentity e. ByLemma3.2, wesee thatZ  M andwe haveapretransfermapW : P → P ∩NxsuchthatW (u)∈ P ∩M/ xforsomenonidentity x∈ X whereu∈ Z \ M.SetR = P ∩ Nxand Q= P ∩ Mx.

NowletS bearight transversalset forR inP ,whichisused forconstructingW so thatwehaveW (u)=

s∈Ssu(s.u)−1. Sinceu∈ Z ≤ CoreP(R), wehave(s.u)= s for alls∈ S.Thus,we getW (u)=

s∈Ssus−1.

Set C = CoreP(R). Since R < P by Lemma 2.3(c), C is also proper in P . So we see thatZ(P/C) = 1. Now choosen∈ P such thatnC ∈ Z(P/C) isof order p. Then each orbitof n on S has length p. Let s1,s2. . . ,sk be representatives of all distinct orbits of n on S. Without loss of generality, we can suppose that S = {sinj | i {1,2,...,k} and j ∈ {0,1,...,p− 1}}. Now we compute the contribution of a single n -orbitto W (u).Fixs∈ S.

(snun−1s−1)(sn2un−2s−1) . . . (snp−1un−p+1s−1)(sus−1) = s(nu)p−1n−p+1us−1.

(7)

Wehaves(nu)p−1n−p+1us−1= (s(nu)ps−1)(su−1n−pus−1).SetH =n,u .Duetothe factthat|n C : C|= p,wehaveH≤ C.Notethatu∈ Z ≤ C, andso

[H, u , H, u ] ≡ 1 mod Φ(C).

Wecanexpandthepoweroftheproductasinthefollowingform

(nu)p≡ (npup)[u, n]p2[u, n, n]p3...[u, n, ..., n]pp−2[u, n, ..., n]p−1 mod Φ(C) due tothepreviouscongruence.

As C  P , we observe that s[u,n,...,n]is−1 ∈ C for i = 1,...,p − 1, and so (s[u,n,...,n]is−1)p ∈ Φ(C) for i = 1,...,p− 1. By using the fact that  p

i+1

 is divisi- ble byp fori= 1,. . . ,p− 2,weseethat

(s[u, n, ..., n]is−1)i+1p ∈ Φ(C) for i = 1, . . . , p − 2.

Note also that [u,n,...,n]p−1 ∈ Φ(Z) ≤ Φ(C) by hypothesis, and so we get that s[u,n,...,n]p−1s−1 ∈ Φ(C) sinceΦ(C) P .As aconsequence,weobtainthat

s(nu)ps−1 ≡ (snps−1)(sups−1)≡ snps−1 mod Φ(C).

It thenfollowsthat

(s(nu)ps−1)(su−1n−pus−1)≡ (snps−1)(su−1n−pus−1)≡ s[n−p, u]s−1≡ 1 mod Φ(C).

We only need to explain why the last congruence holds: Since both n−p and u are elements of C,we see that[n−p,u]∈ Φ(C). It follows thats[n−p,u]s−1 ∈ Φ(C) dueto the normality of Φ(C) in P . Then W (u) ∈ Φ(C) as the chosen n -orbit is arbitrary.

Since |R : Q| = p by Lemma 2.3(c), the containment Φ(C) ≤ Φ(R) ≤ Q holds. As a consequence,W (u)∈ Q.Thiscontradiction completestheproof. 2

Remark3.3. Intheproofsofmanyp-nilpotencytheorems,theminimalcounterexample G isap-solublegroupsuchthatOp(G)= 1 andG/Op(G) isp-nilpotent.Lemma3.1(a) guarantees the p-nilpotency of G if [Op(G),g,. . . ,g]p−1 ≤ Φ(Op(G)) for all g ∈ P . In particular ifOp(G)≤ Zp−1(P ) thenthep-nilpotencyofG follows.Thisboundseemsto be bestpossible sinceinthesymmetricgroupS4,O2(S4)≤ Z2(P ) andO2(G) Z(P ).

EvenifS4/O2(S4) is2-nilpotent,S4 failsto be2-nilpotent.

It is well known that if G/Z is p-nilpotent and Z ≤ Φ(P ) then G is p-nilpotent.

Lemma 3.1(b)generalizes this particularcase bystating thatifG/Op(G)∼= N /Op(N ) then G/Op(G)∼= N/Op(N ) whereG = G/Z andZ ≤ Φ(P ).

WealsoshouldnotethatinLemma3.1,weprovelittlemorethanwhatweneedhere as weseethatitmayhaveotherapplications too.

(8)

Proposition 3.4.Assume that for every characteristic subgroup of P that contains Zp−1(P ) is weaklyclosed in P .ThenNG(P ) controls p-transfer.

Proof. WeproceedbyinductionontheorderG.LetZ = Zp−1(P ).ThenNG(Z) controls p-transferinG by([4], Theorem 14.4.2).IfNG(Z)< G thenNG(P ) controlsp-transfer withrespect to groupNG(Z) by inductionappliedtoNG(Z). It followsthatP ∩ G = P∩ NG(Z) = P ∩ NG(P ),thatis, NG(P ) controlsp-transfer inG.

ThereforewemayassumeZ G.ItiseasytoseethatG/Z satisfiesthehypothesisof theproposition, and hence weget NG/Z(P/Z)= NG(P )/Z controlsp-transfer inG/Z byinductionappliedtoG/Z.ThentheresultfollowsbyLemma3.1(a). 2

Remark3.5. Intheaboveproposition,theassumptionthateverycharacteristicsubgroup containingZp−1(P ) isweaklyclosedcanbeweakenedtoZk(p−1)(P ) isweaklyclosedfor eachk = 1,...,n where Zn(p−1)(P )= P .Yetweshallnotneed thisfact.

AfterProposition3.4,itisnaturaltoaskthefollowing question.

Question 3.6. Does a Sylow p-subgroup P of a group G have a single characteristic subgroupwhose beingweaklyclosed inP issufficientto concludethatNG(P ) controls p-transferinG?

Proof of Theorem1.3. Let Zp−1 ≤ C beacharacteristicsubgroup ofP .Weclaimthat C is normal ineach Sylow subgroup of G that contains C. Assume the contrary and letQ∈ Sylp(G) suchthatC≤ Q and NQ(C)< Q.There exists x∈ NG(C) suchthat NQ(C)x= NQx(C)≤ P ,and henceNQx(C)≤ P ∩ Qx.

Set Qx = R. By Alperin Fusion theorem,we have R P P . Thus there are Sylow subgroupsQifori= 1,2,. . . ,n suchthatP∩R ≤ P ∩Q1and(P∩R)x1x2...xi≤ P ∩Qi+1

wherexi∈ NG(P ∩ Qi),P∩ Qi isatame intersectionandRx1x2...xn= P .

Note that NP(P ∩ Q1) is a Sylow p-subgroupof NG(P ∩ Q1) as P∩ Q1 is atame intersection. Moreover, NG(P ∩ Q1) is p-nilpotent by the hypothesis as Zp−1 ≤ C <

NQ(C)x≤ P ∩ R ≤ P ∩ Q1.Thenwehave

NG(P ∩ Q1) = NP(P ∩ Q1)CG(P ∩ Q1).

Thus,we canwritex1= s1t1 where t1 ∈ CG(P ∩ Q1) and s1∈ NP(P ∩ Q1). Notice that t1 also centralizes C as C ≤ P ∩ Q1 and s1 normalizes C as C P . It follows that Cx1 = Cs1t1 = C < (P ∩ R)x1 ≤ P ∩ Q2. Then we get that NG(P ∩ Q2) is p-nilpotentbythehypothesisand wemaywrite x2 = s2t2 where t2 ∈ CG(P ∩ Q2) and s2 ∈ NP(P ∩ Q2) in a similar way. Notice also that Cx1x2 = Cx2 = C. Proceeding inductively, we obtain that NG(P ∩ Qi) is p-nilpotent for all i and Cx1x2...xn = C.

Since Cx1x2...xn = C P = Rx1x2...xn, we getC R = Qx. Weobtain thatC Q as x ∈ NG(C). This contradiction shows that C is weakly closed inP and the theorem followsbyProposition3.4. 2

(9)

Proof of Theorem1.10. WriteN = NG(K),andletX beasetofrepresentativesforthe (N,P ) doublecosets inG, which containsthe identity e.Note that NG(P )≤ N as K is aweaklyclosed subgroupof P .AssumethatN doesnotcontrolp-transfer inG.By Lemma2.3(b),we haveapretransfermap W : P → P ∩ Nx suchthatW (u)∈ P ∩ M/ x for eachu∈ P \ M where e = x ∈ X andM isas in Lemma2.3(a). SetR = P ∩ Nx and Q= P ∩ Mx.

Now choose u ∈ P \ M and u ∈ N \ M such that both u and u are of minimal possible order. Wefirstarguethat|u|=|u|. Clearlywe have|u|≤ |u| asu∈ N \ M.

Note that (u)q ∈ M if q is a prime dividing the order u by the choice of u. The previous argumentshows thatp= q as|N : M|= p,and so u isap-element.Thus, a conjugateof u viaanelementofN liesinP\ M. Itfollowsthat|u|≤ |u|, whichgive us thedesiredequality.

Let S bearight transversalset forR in P usedforconstructing W sothatwe have W (u) = 

s∈Ssu(s.u)−1. Let S0 be a set of orbit representatives of the action of u on S. Then we have W (u)=

s∈S0sunss−1 by transfer evaluation lemma. Note that sunss−1 ∈ R ≤ Nx, andhence xsunss−1x−1 ∈ N. Ifns> 1 then |xsunss−1x−1|<|u|, and so xsunss−1x−1 ∈ M by theprevious paragraph.Thus we get sunss−1 ∈ Q. As a consequence,weobserve that

W (u)≡ 

s∈S

sus−1 mod Q

where S={s∈ S | s.u= s}.

WeclaimthatK isnotcontainedinR.Sinceotherwise:bothK andKxarecontained in Nx, and so Kx−1 and K arecontained in N . Since K is aweakly closed subgroup of P , there exists y ∈ N such that Kx−1 = Ky (see problem 5C.6(c) in [1]). As a result yx ∈ N, and so x ∈ N. Thus, we get N xP = N eP which is a contradiction as x = e. Since R < P by Lemma 2.3(c), CoreP(R) is also proper in P . So we see that Z(P/CoreP(R)) = 1. Since K is notcontained inCoreP(R) and K isnormal in P , we can pick k ∈ K such that kCoreP(R) ∈ Z(P/CoreP(R)) is of order p. Now consider the actionof k on S. Then each k -orbithas length p andlet s1,s2. . . ,sn be representatives of all distinct orbits of k on S. Note that we mayreplace S with {sikj | i∈ {1,2,...,n}andj∈ {0,1,...,p− 1}}.Wealsonotethat

s.(uk) = (s.(ku)).[u, k] = s.(ku) for all s∈ S.

Thelastequalityholdsas[u,k]∈ CoreP(R).ItfollowsthatSisk -invariant.Note that k normalizes u as k ∈ Z(P ), and so uk−1 = un where n is a natural number whichiscoprimetop.Clearlyn isoddwhenp= 2.Ontheotherhand,ifp is oddthen it iswellknownthatn= 1+ pr forsomer∈ N ask−1 induces ap-automorphismona cyclic p-group.Thus,weobtainn≡ 1mod p inbothcase.

(10)

Nowwecomputethecontributionofasinglek -orbitto W (u).Fixs∈ S.

(sus−1)(skuk−1s−1)(sk2uk−2s−1)...(skp−1uk−p+1s−1) = suunun2...unp−1s−1= suzs−1 wherez = 1+ n+ n2+ ...+ np−1.Notethatz≡ 0modp,sus−1∈ R and |R : Q|= p by Lemma2.3(c),andhencesuzs−1= (sus−1)z∈ Q.Sincethechosenk -orbitisarbitrary, weobtainW (u)∈ Q.This contradictioncompletestheproof. 2

Nowwearereadyto givetheproof ofTheorem1.8.

Proof of Theorem1.8. Firstnoticethatifp isoddthentheresultfollowsbyTheorem1.3 duetothefactthatZ(P )≤ Z2(P )≤ Zp−1(P ).Thus,itissufficienttoprovethetheorem forp= 2.LetG beaminimalcounterexampletothetheorem.Wederiveacontradiction overaseries ofsteps.WriteZ = Z(P ) andN = NG(P ).

(1) EachcharacteristicsubgroupC ofP thatcontainsZ isweaklyclosedinP .More- over,Z isanormalsubgroupofG.

Byusing thesamestrategyused intheproof ofTheorem 1.3,we canshow thatany characteristic subgroupC of P thatcontains Z isweaklyclosed inP .In particular,Z isweaklyclosed inP .

SupposethatNG(Z) < G.Clearly NG(Z) satisfiesthe hypothesisand N ≤ NG(Z).

Thus, N controlsp-transfer with respect to the groupNG(Z) by theminimality of G.

Ontheotherhand,NG(Z) controlsp-transferinG byTheorem1.10.Asaconsequence, G∩ P = (NG(Z))∩ P = N∩ P .Thiscontradiction showsthatZ G.

(2) N/Z controls p-transferinG/Z.

Write G = G/Z. Clearly N = NG(P ). If Y is acharacteristic subgroup of P then Y isacharacteristic subgroup of P thatcontains Z. Then Y isweaklyclosed inP by (1).It followsthatY isweaklyclosed inP . ThenwegetN controls p-transferinG by Proposition3.4.

(3)|P : R|= 2.

ByLemma3.2, there exists u∈ Z \ M such thatW (u)∈ P ∩ Nx\ P ∩ Mx where W,M andx areas inLemma2.3.SetR = P ∩ Nx andQ= P ∩ Mx. LetS bearight transversal set for R in P usedfor constructing W . Since u ∈ Z ≤ CoreP(R), we get W (u)=

s∈Ssu(s.u)−1 =

s∈Ssus−1.

Since R < P by Lemma 2.3(c), CoreP(R) is also proper in P . So we see that Z(P/CoreP(R)) = 1. Now choose n ∈ P such that nCoreP(R) ∈ Z(P/CoreP(R)) isoforderp(= 2) andconsidertheactionofn onS.Withoutlossofgenerality,wemay takeS ={sinj | i ∈ {1,2,...,k}andj ∈ {0,1}} wheres1,s2. . . ,sk arerepresentatives ofalldistinctorbitsofn onS.Fixs∈ S. Wehave

(sus−1)(snun−1s−1) = su2[u, n−1]s−1= su2s−1[u, n−1].

(11)

Thelastequalityholdsasu∈ Z = Z(P )≤ Z2(P ).Weseethatsu2s−1 ∈ Q assus−1 Z ≤ R and |R : Q|= 2.Thus thecontributionof asingleorbitiscongruentto [u,n−1] modQ byLemma2.3(c).Asaconsequence,weobtainthatW (u)≡ [u,n−1]|S|/2modQ.

Supposethat|S|/2 isanevennumber.Weget[u,n−1]|S|/2∈ Q as[u,n−1]∈ Z ≤ R.This contradictsthefactthatW (u)∈ Q,/ andso|S|/2 isodd.Itfollowsthat|P : R|=|S|= 2 as required.

(4) R = Z.

Suppose thatZ < R. Note thatR = P ∩ Nx = P ∩ NG(P )x, and so R = P ∩ Px. Since |P : R| = 2 by (3), |Px : R| is also equalto 2. As aresult, R is normal inboth P and Px,thatis,R isatame intersection.Thus, weseethatNG(R) is p-nilpotentby our hypothesis.Pickx0 ∈ NG(R) suchthatPx= Px0.Then x0x−1∈ N whichimplies x0= tx forsomet∈ N.WeobservethatN x0P = N txP = N xP ,andsowemayreplace thedouble cosetrepresentative x withx0.

We observe that NG(R) is p-nilpotent and x ∈ NG(R) in the previous paragraph.

Thus,wecanwritex= c1c2forsomec1∈ P andc2∈ CG(R).AsW (u)∈ Q/ = P∩Mx,we see thatxW (u)x−1 = c1c2W (u)c−12 c−11 = c1W (u)c−11 ∈ M./ Hence,W (u)∈ M/ c1 = M . Recall that|P : M ∩ P |= p= 2,andsoP≤ M.Hence,weobtainthat

W (u) =

s∈S

sus−1=

s∈S

[s−1, u−1]u≡

s∈S

u = u2≡ 1 mod M ∩ P.

It followsW (u)∈ M,whichisnotthecase.ThiscontradictionshowsthatZ = R.

(5) Final contradiction.

We observe that |P : Z| = |P : Z(P )| = 2 by (4). If P is ahomomorphic image of P ,wecanconcludethat|P : Z(P )|≤ 2.SinceN doesnotcontrolp-transferinG,P has ahomomorphic image whichis isomorphicto Z2 Z2∼= D8 byYoshida’s theorem.

However,|D8: Z(D8)|=|D8: Z(D8)|= 4.Thiscontradictioncompletestheproof. 2 4. Applications

Theorem 4.1. Assumethat for any twodistinct Sylow p-subgroups P and Q of G, |P ∩ Q|≤ pp−1.ThenNG(P ) controlsp-transferinG.

Proof. We maysuppose that cl(P )≥ p. Notice that the inequality |Zp−1(P )| ≥ pp−1 holds inthiscase.Then theresultfollowsbyCorollary 1.5. 2

Themain theorem of[3] states thatifNG(P ) isp-nilpotentandforany twodistinct Sylow p-subgroups P and Q of G, |P ∩ Q| ≤ pp−1 then G is p-nilpotent. The above theorem isageneralizationofthis fact.

Theorem4.2. LetP ∈ Sylp(G).Supposethat P isofclassesp andNG(P ) isp-nilpotent.

If NG(P ) is amaximal subgroupof G then G isap-solvablegroupof p-length1.

(12)

Proof. We maysuppose thatG is notp-nilpotent. Then there exists U ≤ G such that Zp−1 < U < P andNG(U ) isnotp-nilpotentbyCorollary1.6.SinceZp−1 < U ,U P . It follows thatU  NG(P ) asNG(P ) is p-nilpotent. Note thatNG(P ) = NG(U ) since NG(U ) is not p-nilpotent.Thus we get thatNG(P ) < NG(U ), and henceU  G since NG(P ) isamaximal subgroup ofG. Onthe other hand,G/U is p-nilpotentas P/U is anabelianSylowsubgroupofG/U whereNG(P )/U = NG/U(P/U ) isp-nilpotent.Then theresultfollows. 2

Thompson provedthatifG possesanilpotent maximal subgroupof oddorder then G issolvable.LaterJankoextendedthisresultin[5] asfollows;

Theorem 4.3 (Janko). Let G be a group having a nilpotent maximal subgroup M . If a Sylow2-subgroup ofM is of classatmost2 thenG is solvable.

The above theorem can be deduced by the means of Theorem 4.2. We extend the resultofJankobyusingCorollary 1.9withthefollowingtheorem.

Theorem 4.4. Let G be a group with a nilpotent maximal subgroup M . If a Sylow 2-subgroupof M is ofnormlengthatmost 2 thenG issolvable.

Proof. We proceed by induction on the order of G. Suppose Op(G) = 1 for a prime p dividing the order of M . If Op(G) ≤ M then G/Op(G) satisfies thehypothesis and henceG/Op(G) issolvable byinduction.If Op(G)  M then G= M Op(G) due to the maximalityofM . Thus,G/Op(G) issolvable as M isnilpotent.Then wesee thatG is solvableinboth cases.Thus,wemaysuppose thatOp(G)= 1 foranyprimep dividing theorderofM .

NowletP ∈ Sylp(M ).SinceM isnilpotent,wegetM≤ NG(P ).Ontheotherhand, NG(P )< G as Op(G)= 1. Then wehaveNG(P ) = M by themaximalityof M . Thus P is also a Sylow p-subgroup of G, that is, M is a Hall subgroup of G. Let X be a characteristic subgroup of P . Then NG(X) = M with a similar argument, and hence NG(X) isp-nilpotent.ItfollowsthatG isp-nilpotentbyThompsonp-nilpotencytheorem whenp isodd.

Nowassumethatp= 2. LetZ(P )≤ U ≤ P = Z2(P ).SinceP/Z(P ) isaDedekind group, U/Z(P ) P/Z(P ). It follows that U  P , and hence U  M. Then we get NG(U )= M whichisp-nilpotent.Thus,weobtainthatG isp-nilpotentbyCorollary1.9.

AsaresultG isp-nilpotentforeachprimep dividingtheorderofM .ThenM hasa normalcomplementN inG.NoticethatM actsonN coprimely,andsowemaychoose an M -invariant Sylow q-subgroup Q of N fora prime q dividing the order of N . The maximality of M forces thatM Q = G, thatis, N = Q. Since N is aq-group, we see thatG issolvable. 2

Remark4.5.Weshouldnotethattherearegroupsofclass3,whichhavenormlength2.

Forexample,onecanconsider thequaterniongroupQ16.Wealso notethatthebound

(13)

intermsof normlengthis thebestpossible.Forexample, D16 isof normlength3 and it is isomorphicto a Sylow 2-subgroupP of P SL(2,17) andP is amaximal subgroup of G.

Definition 4.6.A groupG iscalled pi-centralof heightk if everyelement oforder pi of G iscontainedinZk(G).

Theorem 4.7. Let G be a group and P be a Sylow p-subgroup of G where p is an odd prime. Assumethat eitherP isp-centralofheightp− 2 or p2-centralof heightofp− 1.

Then NG(P ) controlsp-transferin G.

Remark4.8. LetG beagroupand P ∈ Sylp(G).AssumethatP is p-centralof height p− 2 for an odd prime p. By ([6], Theorem E), NG(P ) controls G-fusion in P if G is ap-solvable group. In this case, NG(P ) also controls p-transfer in G. On the other hand,Theorem4.7guaranteesthatNG(P ) controlsp-transferinG foranarbitraryfinite group G.

WeneedthefollowingresultintheproofofTheorem4.7.

Theorem 4.9.[6, Theorem B] Let G be a group. If G is p-central of height p− 2 or p2-centralof heightofp− 1, thensoisG/Ω(G).

Proof of Theorem4.7. WeproceedbyinductionontheorderG.SetZ = Ω(P ).Clearly, Z isweaklyclosedinP .SinceΩ(P )≤ Zp−1(P ),NG(Z) controlsp-transferinG by ([4], Theorem 14.4.2).

IfNG(Z)< G thenNG(Z) clearlysatisfiesthehypothesis,andhenceNG(P ) controls p-transfer inNG(Z) bytheinductiveargument.ItfollowsthatP∩ G= P ∩ NG(Z) = P ∩ NG(P ),andhenceNG(P ) controlsp-transferinG.

Now assume thatZ G. Clearly, P/Z is a Sylow p-subgroup of G/Z. We see that P/Z is p-central ofheight p− 2 or p2-centralof height ofp− 1 by Theorem4.9.Thus, NG(P )/Z = NG/Z(P/Z) controlsp-transfer inG/Z by induction.Since Z ≤ Zp−1(P ), theresultfollowsbyLemma3.1(a). 2

4.1. Conclusion

“Control p-transfer theorems” supplymany nonsimplicitytheorems bytheir nature.

Let N be a subgroup of a group G such that |G : N| is coprime to p. If N controls p-transfer inG andOp(N )< N thenG isnotsimpleofcourse.

It is an easy exerciseto observe that ifK is a normal p-subgroup of G, and write G = G/K, then N controls p-transfer in G if and only if N controls p-transfer in G.

However,thisneedsnotbetrueifK isap-group.Thus,Lemma3.1suppliesanimportant criterion for that purpose and it enables the usage of the induction in the proofs of

(14)

“controlp-transfertheorems”.ItalsoseemsthatLemma3.1canbe improvedfurtherby bettercommutatortricksormorecarefulanalysisofthetransfermap.

Proposition 3.4 shows that when some certain characteristic subgroups of a Sylow subgroup P areweakly closedinP , NG(P ) controls p-transfer inG.Onecanask that whethertheconverseofthisstatementistrue.Anothernaturalquestionisthatwhether

“controlfusion”analogues ofLemma3.1andProposition3.4arepossible.Wealsocon- siderthatQuestion 3.6isveryinteresting.

WhenwecombineProposition3.4withAlperin Fusiontheorem,weobtainourmain theorems,whichsimplysaythatNG(P ) tendsto controlp-transferinG iftheintersec- tion of Sylow subgroups is not “too big”. We also sharpen our result when p = 2 via Theorem 1.8 and deduce two new versions of Frobenius normal complement theorem;

namely,Corollary1.6andCorollary1.9.SincewecannotdirectlyappealtoThompson- Glaubermanp-nilpotencytheoremswhenp= 2 (andG isnotS4 free),thecontribution ofCorollary1.9isimportant.Itiswellknownthata“controlfusion”analogueofGrün’s theoremis correct,andso weask whethera“controlfusion”analogueofTheorem1.10 ispossibleor not.

Theorem4.7showsthatNG(P ) controlsp-transferforgroupswhichhaveSylowsub- groupisomorphic to oneofthe two importantclasses ofp-groups, namely, p-central of height p− 2 or p2-central of height of p− 1. We lastly note thatTheorem 4.4 gives a solvability criteriawhich extendsaresultof Janko[5]. Evenifwe supply somelimited applications here, we think that the above theorems have a nice potential of proving nonsimplicitytheorems infinite grouptheory.

Acknowledgments

Iwouldliketo thankProf.GeorgeGlaubermanforhis helpfulcomments.

References

[1]I.M.Isaacs,FiniteGroupTheory,GraduateStudiesinMathematics,vol. 92,AmericanMathematical Society,Providence,RI,2008.

[2]J.Tate,Nilpotentquotientgroups,Topology3 (Suppl. 1)(1964)109–111.

[3]M.Asaad,Ontheexistenceofanormalp-complementinfinitegroups, Ann.Univ.Sci.Budapest.

EötvösSect.Math.24(1981)13–15.

[4]M.Hall,TheTheoryofGroups,AMSChelseaPublishingSeries,AmericanMathematicalSoc.,1976.

[5]Z.Janko,Finitegroupswithanilpotentmaximalsubgroup,J.Aust.Math.Soc.4(1964)449–451.

[6]JonGonzález-Sánchez,ThomasS.Weigel,Finitep-centralgroupsofheightk,IsraelJ.Math.181 (1) (January2011)125–143.

[7]TomoyukiYoshida,Character-theoretictransfer,J.Algebra52 (1)(1978)1–38.

Referenties

GERELATEERDE DOCUMENTEN

tungan itu sesungguhnja telah digunakan untuk membiajai pengeluaran2 tahun berikutnja, karena antara tahun panen jang satu dengan jang lain susul menju- sul, Dalam keadaan

Als een kapitaalbelang als Effecten wordt aangemerkt wanneer wordt deze dan onder de vlottende activa opgenomen?.. Onder welke voorwaarden mag een latente belastingvordering uit

De uitbreiding bevindt zich op het achtererf, buren worden niet beperkt, tussen bouwperceel en belendende percelen wordt een houtwal voorzien waardoor een zekere visuele

• Massief hout wordt eerst gestoomd om het elastisch te maken, waarna een buigmachine het in de gewenste vorm buigt.. Als het afkoelt, verliest het hout zijn plasticiteit en

Jackson [9] showed that if G is a finite group of rank two that does not p  -involve Qd(p) for any odd prime p, then there is a spherical fibration over BG with an effective Euler

Since our replacement theorem is easily applicable to all versions of Thompson subgroups and there is a gap in the literature whether the ZJ-theorem holds for other versions of

Biro Perniagaan mempunyai tugas melaksankan koordinasi pembinaan, penyiapan perizinan, pemantauan kepatuhan terhadap peraturan, pemeriksaan, dan evaluasi pelaksanaan kegiatan di

[r]