• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/66669 holds various files of this Leiden University

dissertation.

Author: Ruiter, J.M. de

Title: Explorations of water oxidation catalysis in explicit solvent

Issue Date: 2018-10-30

(2)

Explorations of

Water Oxidation Catalysis

in Explicit Solvent

Jessica M. de Ruiter

(3)
(4)

Explorations of Water Oxidation Catalysis

in Explicit Solvent

PROEFSCHRIFT

ter verkrijging van

de Graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C. J. J. M. Stolker,

volgens besluit van het College voor Promoties te verdedigen op dinsdag 30 oktober 2018

klokke 13.45 uur

door

Jessica M. de Ruiter

geboren te Nelson, Nieuw-Zeeland in 1989

(5)

Promotiecommissie

Promoter: Prof. dr. Huub J. M. de Groot Co-promoter: Dr. Francesco Buda

Overige leden: Prof. dr. Marc. T. M. Koper Prof. dr. Hermen S. Overkleeft Prof. dr. Shirin Faraji

(University of Groningen, The Netherlands) Prof. dr. Leif Hammarström

(Uppsala University, Sweden)

Jessica M. de Ruiter

Explorations of Water Oxidation Catalysis in Explicit Solvent Ph.D. thesis, Leiden University

ISBN: 978-94-6332-412-0

Cover and bookmark designed by Nico de Ruiter This thesis was printed on 100% recycled paper.

This research was financed by Leiden University, and co-financed by the Dutch Ministry of Economic Affairs as part of the BioSolar Cells research project C1.9.

The use of supercomputer facilities was sponsored by NWO Exact and Natural Sciences, with financial support from the Netherlands Organization for Scientific Research (NWO).

(6)

i

Table of Contents

List of Abbreviations... v

General Introduction & Computational Tools ... 1

1.1. The search for sustainable energy solutions ... 3

1.2. Computational Tools ...7

1.2.1. Density Functional Theory ...7

1.2.2. Time Dependent Density Functional Theory ... 9

1.2.3. Car-Parrinello Molecular Dynamics ... 11

1.2.4. Calculating changes in Relative Free Energies ... 12

1.3. Main Results ... 13

1.4. References ... 14

The Fundamentals: A Combined Experimental & Theoretical Study 17 2.1. Introduction ... 19

2.2. Experimental Methods ... 20

2.2.1. Computational method and details ... 22

2.3. Results and Discussion ... 23

2.3.1. Characterisation of the catalytic intermediates of Ru-bpc ... 23

2.3.2. Derivative catalysts ... 30

2.4. Conclusions ... 35

2.5. References ... 36

2.A. Appendix ... 38

2.A.1. Calculated multiplicity proposed intermediates ... 38

2.A.2. Validation of the TDDFT methodology ... 39

2.A.3. Raman frequency calculations ... 40

2.A.4. Time-dependent UV-Vis absorption of CeIV ... 41

2.A.5. Calculated absorption spectra entire cycle Ru-bpy ... 41

2.A.6. Calculated spin density localisation proposed intermediates .... 42

2.A.7. Orbital comparison of [RuIV=O]2+ intermediates ... 43

2.A.8. UV-Vis absorption data for [RuII-OH2]2+ complexes ... 44

(7)

ii | Table of Contents

2.A.9. Elucidation [RuIII-OH]2+ ... 44

2.A.10. Initial investigation of two proposed dimeric intermediates ... 49

Introducing a Closed System Approach ... 51

3.1. The call for the Closed System Approach – Mechanistic Considerations ... 53

3.2. Computational method and details ... 55

3.3. Results and Discussion ... 57

3.3.1. Static Thermodynamics of the Catalytic Cycles ... 57

3.3.2. Ab-Initio Constrained Molecular Dynamics of System 1 ... 60

3.3.3. Closed System Analysis of the [CuII(O)(O)] intermediate ... 61

3.3.4. Closed System Analysis of the [CuIII(OH)(O)] intermediate ... 62

3.3.5. Implication of Ion Inclusion ... 67

3.4. Conclusions ... 67

3.5. References ... 68

3.A. Appendix ... 70

3.A.1. Geometrical Investigation ... 70

3.A.2. Example of convergence of <λ> ... 75

Energetic Effects of a Closed System Approach ... 77

4.1. The Call for the Closed System Approach – Energetics ... 79

4.2. Computational Method and Details ... 82

4.3. Results and Discussion ... 84

4.3.1. Energetic analysis of the PCET step [RuII-OH2]2+ → [RuIII-OH]2+ . ... 85

4.3.2. Proton Diffusion [RuIII-OH2]3+ → [RuIII-OH]2+ ... 86

4.3.3. Energetic analysis of the PCET step [RuIII-OH]2+ → [RuIV=O]2+ 87 4.3.4. Experimental Comparison and Evaluation ... 91

4.4. Conclusions ... 92

4.5. References ... 92

4.A. Appendix ... 93

4.A.1. CSA with an electron acceptor in a constrained environment .... 93

4.A.2. Consideration of the first reaction step proceeding via [RuII-OH]+ + H+solv + Mn3+ ... 94

4.A.3. Calculation standard deviation Δ𝐺𝐻+ ... 96

(8)

Table of Contents | iii 4.A.4. Radial Distribution Functions Ru – O during proton diffusion . 96

4.A.5. <λ> for [RuIII-OH]2+ including initial accelerated contraction .. 97

4.A.6. Gaussian fits of KS Energies for Δ𝐸𝑒 ... 98

Increasing Deprotonation Rate: Tuning the Environment ... 99

5.1. Introduction ... 101

5.2. Computational Method and Details ... 102

5.3. Results and Discussion ... 104

5.3.1. Proton Transport... 104

5.3.2. O – O bond formation via nucleophilic attack on [RuIV=O]2+: proton transfer coupled with multiplicity interchange ... 107

5.4. Conclusions ... 112

5.5. References ... 112

Conclusions and Outlook ... 115

6.1. Conclusions ... 117

6.2. Outlook ... 118

6.3. References ... 119

Summary ... 121

Samenvatting ... 123

Curriculum Vitae ... Error! Bookmark not defined. Publications ... 125

(9)
(10)

v

List of Abbreviations

ADF Amsterdam Density Functional AIMD Ab Initio Molecular Dynamics

ALDA Adiabatic Local Density Approximation B3LYP Becke 3 parameter; Lee Yang Parr BJDAMP Becke Johnson DAMPing

BOA Born-Oppenheimer Approximation

CE Counter Electrode

CFF Consistent Force Field

CHARMM Chemistry at HARvard Macromolecular Mechanics COSMO Conductor Like Screening Model

CPMD Car-Parrinello Molecular Dynamics

CSA Closed System Approach

CV Cyclic Voltammetry

d(X→Y) Distance constraint/constrained distance between X and Y DCACP Dispersion-Corrected Atom-Centred Potential

DFT Density Functional Theory

EQCN Electrochemical Quartz Crystal Nanobalance

GC Glassy Carbon

GGA Generalised Gradient Approximation GTH Goedecker Teter Hutter

HF Hartree-Fock

KS Kohn-Sham

LanL2DZ Los Alamos National Laboratory 2 Double Zeta LMCT Ligand-to-Metal Charge Transfer

MD Molecular Dynamics

MLCT Metal-to-Ligand Charge Transfer

NHE Normal Hydrogen Electrode

OPBE OPTX Perdew Burke Ernzerhof

OPTX Handy’s OPTimised eXchange functional OLEMS Online Electrochemical Mass Spectrometry PBEc Perdew Burke Ernzerhof Correlation functional PCET Proton-Coupled Electron Transfer

PCM Polarisable Continuum Model PS II PhotoSystem II

QM/MM Quantum Mechanics/Molecular Mechanics

(11)

vi | List of Abbreviations

RHE Reversible Hydrogen Electrode SCE Saturated Calomel Electrode

SERS Surface Enhanced Raman Spectroscopy TDDFT Time Dependent Density Functional Theory TZP Triple Zeta Polarised

VMD Visual Molecular Dynamics visualisation program

WE Working Electrode

WOC Water Oxidation Catalyst

Referenties

GERELATEERDE DOCUMENTEN

Figure S1, extracted ion chromatogram of phospholipids in negative mode; Figure S2, chromatogram of creatinine(-D3); Figure S3, individual mean natural logarithm of metabolite

Varley heeft proeven gedaan met het boren van gietijzeren hij atelt dat het einde van de gebruiksduur bereikt is op het moment, dat de boor gaat

Chapter 4 Fabrication of narrow-bore packed capillary columns 85 for high-efficiency nanoscale LC-MS analysis of

Because mass spectrometry is also a high resolution separation device besides being a highly sensitive detection device, it represents an ideal detector for the analysis of

In this discussion, the term “bottom-up” or “shotgun” LC-MS proteomics will be used to refer at a general experiment based on direct digestion of a protein mixture, separation

Figure 2 Valveless setup for nanoscale LC-MS. 1) Sample is loaded onto the trapping column at μL/min flow rates by opening the vent at the microtee; after loading, the trapping

The purification and characterization of the buffalo liver microsomal transacetylase (TAase) catalyzing the transfer of acetyl groups from a model acetoxy drug:

While proteome coverage, throughput and data analysis are still the biggest issues in comprehensive LC-MS based proteomics, sensitivity is another very important analytical