• No results found

A double stranded DNA fragment shows a significant decrease in double-helix stability after binding of monofunctional platinum amine compounds

N/A
N/A
Protected

Academic year: 2021

Share "A double stranded DNA fragment shows a significant decrease in double-helix stability after binding of monofunctional platinum amine compounds"

Copied!
3
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

4123 (N CjH£)' 101 (N‘H)* 2mtorr (N»CjH5) 101 (N+Hl* 73 JJL

J. Am. Chem. Soc. 1989, ¡11, 4123-4125

3

Scheme 1, Figure 1, and below, the reaction islimitedto those molecules (1,2,6) that containa 3-hydroxy functionalityinthe

A ring.

Acknowledgment. This work was supportedby the National

ScienceFoundation(CHE-8721768, RGC;CHE8717380,

HIK).

Professor J. Cassadyisacknowledged forsamples of 1-6.

Figure1. The productdistributionsobtainedfortwo protonated, isomeric

diterpenoiddilactones upon collisionswith ethyl vinylether in the center quadrupoleofatriple quadrupole mass spectrometer. The basepeak

(101+) arises from ethylation of ethyl vinyl ether byprotonated ethyl vinyl ether(73+).5c·7

A

Double-Stranded

DNA

Fragment Showsa

Significant

Decrease in

Double-Helix Stability After Binding

of

Monofunctional Platinum

Amine Compounds

terium at a nonacidic site, as evidenced by the fact that this

deuteriumcannotbeexchanged toahydrogen atom upon collisions withethylvinyl ether. The large difference in the heat of for-mation of simple neutral alkyl vinylethersandalcohols (A(AHf)

= -22kcal/mol forethylvinylether and ethanol)isthe mostlikely

drivingforceforthisentropicallydisfavored reaction. Weestimate thereactionto beat least 4kcal/molexothermic for protonated

4-hydroxy-2-butanoneand ethyl vinylether.10 Note thatthe

proton affinitiesof,8-hydroxycarbonyl compoundsare comparable to the proton affinities of alkyl vinyl ethers.10 This precludes

efficientcompetition by thereactionthatusually dominatesthe

ion chemistry of alkyl vinyl ethers, i.e., deprotonation of the

reactant ions.

Themost intriguingresultofthis studyisthediscovery that

“vinylation” oforganicionsbyalkylvinylethersishighlyselective

towarddifferentoxygen-containingfunctionalitiesandthat this

behaviorisnotlimitedto simple modelionsbutapplies to complex

polyfunctional ions as well. Under the same conditions, only

dissociation and deprotonation reactions were observed for a

number of protonatedalcohols, ethers, aldehydes, ketones, esters, lactones, and epoxides, including mono- and polyfunctional,

saturatedand unsaturated, cyclicand acylicaswell asaromatic

molecules. Totesttheselectivity ofthe“vinylation”reactionmore

rigorously,we decided toexamine thereactivityofpolyfunctional molecules that onlydifferby the positionofthe hydroxy group

expected tobe necessaryforthe reaction. Theisomeric diterpenoid

dilactones2and3(Figure 1)presentachallengingtestsincethese

protonated moleculesare

difficult

to distinguishon thebasisof

theirdissociation product distributions. However,due tosteric

constraints in the isomer3,only2 isexpected toexchangeaproton

to avinyl groupuponcollisionswithethylvinylether. We found

that protonated 2does indeed undergo the reactionofinterest,

giving a production with arelative abundanceofupto 10%of

thebasepeak (101+),while3onlygivesa traceatthemass value

of interest (<1% of the base peak; Figure 1). Moreover, the

reactionseems to be independentofthestructure oftherest of the molecule. Forthesixditerpenoid dilactones(1-6)shown in

(10)AH, ofprotonated4-hydroxy-2-butanonewas estimatedto be>62.9

kcal/mol byassuming that theprotonaffinity of4-hydroxy-2-butanoneis

equal toor less that ofacetylacetone (i.e., <207.8± 5kcal/mol111),and estimating AH,for neutral 4-hydroxy-2-butanone (estimated to be-95.4 kcal/mol by the methodofBenson12and usingAH, of2-butanone: -57.5

kcal/mol11);AH, of -deprotonated 4-hydroxy-4-methylpyranwas estimated

to be+80.9 kcal/mol by the methodof Benson12andusingAH, = +129 kcal/molfor -deprotonatedpyran;11 AH, ofethyl vinyl etheris-34 kcal/ mol;11 AH, ofethanolis-56.1 kcal/mol.11

(11) Lias,S.G.; Bartmess,J.E.;Liebman,J, F.;Holmes,J.L.; Levin,R.

D.; Mallard,W.G,J. Phys. Chem.Ref. Data,Suppl.1 1988, 17. (12)Benson,S.W. Thermochemical Kinetics', Wiley: NewYork, 1976.

Carla J. van Garderen, Hansvan den Elst,

Jacques H.van Boom,and Jan Reedijk*

Department

of

Chemistry, GorlaeusLaboratories

Leiden University, P.O. Box 9502, 2300 RA Leiden

TheNetherlands

Leo P.A. van Houte

Department

of

Biophysics, PhysicsLaboratory

Free University, DeBoelelaan 1081

1081 HV Amsterdam, TheNetherlands

ReceivedJanuary 17, 1989

Theantitumor drug ci's-diamminedichloroplatinum(II)(cDDP1)

preferentiallybinds to two neighboringguaninebasesofDNA.23"4 Ithasbeen suggestedthatthis chelation inducesaseriousdistortion

oftheDNA,resultinginadenaturationup to severalbase pairs.5·6

Recently, NMR studies and molecular mechanics of

oligo-nucleotides containing eightor more basepairsshowedthatthe

distortion issmall; all base pairs, even those ofthe platinated

guanines,are observed.7·8 Nevertheless, themelting temperature

(Tm) appeared to be loweredby 10-20 °C. These phenomena have been attributed to a “kinked” cDDP-DNA structure.9,10

For a detailed understanding ofthe working mechanism of

cDDPnot onlytheultimate structuralchangebut alsothe

dis-tortion resulting from the first binding step is important.

(1) Abbreviations: cDDP,ci.-PtCl2(NH3)2;tDDP,ircms-PtCl2(NH3)2·,

dien,diethylenetriamine; dsNONA,d(TCTCGTCTC)-d(GAGACGAGA); Pt(dien)-dsNONA, Pt(dien)[d(Tt :TCGTCTC)-N7(5)]-d(GAGACGAGA); Pt(NH3)3-dsNONA, Pt(NH3)3[o'TCTCGTCTC)-N7(5)]-d(GAGACGA-GA);7"m, melting temperature.

(2) Fichtinger-Schepman, A. M. L;van der Veer,J. L.;denHartog,J.H.

J.;Lohman,P. . M.; Reedijk,J.biochemistry 1985, 24,707-713. (3) Inagaki, K.; Kidani, Y. ¡norg. Chim. Acta 1985, 106, 187-191. (4) Pinto, A. L.; Lippard, S. J. Biochim. Biophys. Acta 1985, 780,

167-180.

(5) Munchausen, L. L.; Rahn,R. O.Biochim. Biophys. Acta 1975,414,

242-252.

(6) Macquet, J.-P.; Butour, J.-L. Biochimie 1978, 60,901-914. (7) denHartog,J.H.J.;Altona,C.;van Boom,J.H.;van derMarel,G.

A.;Haasnoot, C.A.G.;Reedijk,J.J.Am.Chem. Soc.1984,106, 1528-1530. (8)van Hemelryck,B.;Guittet,E.;Chottard,G.;Girault,J.-P.; Huynh-Dinh, T.; Lallemand, J.-Y.; Igolen,J.; Chottard, J.-C.J.Am. Chem. Soc. 1984, 106,3037-3039.

(9)denHartog,J.H.J.;Altona,C.;van Boom,J.H.;van derMarel,G.

A.; Haasnoot, C. A. G.; Reedijk, J. J. Biomol. Struct. Dyn. 1985, 2, 1137-1185.

(10) Kozelka,J.;Archer,S.; Petsko, G.A.; Lippard,S.J.;Quigley,G.J. Biopolymers 1987, 26, 1245-1271.

0002-7863/89/1511-4123$01.50/0 &copy; 1989American Chemical Society

Downloaded via LEIDEN UNIV on March 9, 2021 at 13:41:07 (UTC).

(2)

4124 J. Am. Chem. Soc., Vol.

Ill,

No. 11, 1989 Communicationsto theEditor

Table I. Melting Temperatures of Three Oligonucleotides Modified with cDDPandOneNonanucleotide Platinated with [Pt(dien)]2+or [Pt(NH3)3]2+7

oligonucleotide duplex addedsalt

Tm(-Pt)

(°C)

rm(+Pt)

(°C) (°C) ref

d(GATCCGGC)-d(GCCGGATCGC) (Pt-)A“ 1 M NaCl 55 28 27 8

d(GCCGGATCGC)-d(GCGATCCGGC) (Pt-)B6 1 M NaCl 58 49 9 21

d(TCTCGGTCTC)-d(GAGACCGAGA) (Pt-)Ca none 29 14 15 7

d(TCTCGGTCTC)-d(GAGACCGAGA) (Pt-ic4 0.1 M Mg2+ 52 30 22 22

d(TCTCGTCTC)-d(GAGACGAGA) e 0.5 M NaCl 42 26 16 this work

“A, 23

µ ;

Pt-A,8

µ .

b1

µ .

c5

µ .

46.4

µ .

£4-5µ . ^The platinatedsequencesare underlined.

Figure1. Melting profiles ofdsNONA

(---),

Pt(dien)-dsNONA (—). Pt(NH3)3-dsNONA

(--)

at 260nm, 4-5

µ

nonamer strand, 0.5 M

NaCl,pH7.temperatureprogression 1 °C/mm,%H = %hyperchroism.

Therefore, we have investigated thedouble-stranded nonamer

d(TCTCGTCTC)-d(GAGACGAGA) modified withthe

mono-dentatecomplexes [PtCl(dien)]Cl and [PtCl(NH3)3]Cl, which

are bound to thecentral guanine base.

Incontrast with the resultsofothers,1112our experiments show

thatthe Tmofthestudiednonamer issignificantlydecreased upon

monofunctional platinum binding. This is indicative fora

de-stabilization ofthe doublehelix.

Thenonamers d(TCTCGTCTC) andd(GAGACGAGA) were synthesized via an improved phosphotriester method.13

Pt-(dien)[d(TCTCGTCTC)-N7(5)]

and

Pt(NH3)3[d-(TCTCGTCTC)-N7(5)]

were obtainedafteran equimolar

re-actionoftheplatinumcompoundwith thenonamer. The reaction

productswere identified by NMR. Afteraddition ofthe

com-plementary strandaduplexis formed; 1H NMR shows that all

imino protonsare present,even theproton oftheplatinated G-C

base pair (data not shown).

The melting behaviorofthe two Pt-containing fragmentsand

theunmodifiedcompoundwere studied. The experimentalsetup

has been described previously.14

Underlowsalt conditions,above2 °C,themelting profiles of the Pt nonamers couldnot beobservedcompletely. Therefore, NaClwas addedto stabilize the duplexes. Figure 1 shows the

melting profiles oftheoligonucleotides under comparable

con-ditions. The Tmoftheunmodified nonamer is42°C. Platination

ofthefragment w'ith [Pt(dien)]2+or [Pt(NH3)3]2+ reduces the

melting temperatureto 26 °C.15

Althoughseveralauthors predictedadestabilizationofthe DNA

duplexdue to fixationofmonodentateplatinum,16 suchadrastic

(11) Brabec, V.;Vrána,O.;Kleinwáchter, V.;Kiss,F.Stud.Biophys. 1984, 101. 135-139.

(12) Butour.J. L.; Macquet, J. P. Biochim. Biophys. Acta 1981, 653.

305-315.

(13)van der Marel,G.A.;van Boeckel, C.A. A.; Wille,G.;van Boom,

J. H.Nucleic AcidsRes. 1982, 10. 2337-2351.

(14)van Houte, L. P. A.; Westra, J. G.; Retel, J.; van Grondelle, R.

Carcinogenesis 1988, 9, 1017-1027.

(15) Inatemperaturedependencestudyoftheiminoprotons thedifference in melting temperature between theplatinated and the unbound nonamer appearsto bethesame as observedintheUV melting profiles.

decrease in Tm has not yet been reported. Hermann et al.l6a

explained the stabilization of the poly(l)-poly(C) duplex after

[Pt(dien)]2+ binding with a triple-sandwich structure, i.c., the

hypoxanthine-N7atoms above and below theone to which

Pt-(dien) is bound form hydrogen bonds with protons ofthe two

amino groupsofthe Pt(dien) moiety. Theformation ofsucha

triple-sandwichstructure isneighbordependent andisnot likely tooccur inour nonamer sequence. Theseauthorsalsoinvestigated

themonofunctional interactionofí/"a/zí-PtCl2(NH3)2(tDDP)with poly(l)-poly(C).17,18 In agreement w-ithour results, a

destabi-lizationoftheduplexwas found;18the7mwas loweredsignificantly

aftertDDP binding. The observation that [PtCl(dien)]Cl

faci-litatestheB— Z transition in

poly(dG-dC)-poly(dG-dC)19,20is

anotherindication thatthe DNA structure can besignificantly

affected by monodentate platination.

Foroligonucleotides (8-10basepairs) modified with cDDPa

reduction in the melting temperatureof9-27 °C has been

re-ported7,8,21,22(Table 1). Nevertheless,alliminoprotonsofthese duplexes are observedwith 1H NMR.

The melting temperature appears to be dependent on the

numberofbasepairs involved induplexformationandthe location

ofthe platinationsite(compareTmand ATmof duplex A and B,

Table I). Thebasesequenceofthe fragmentisalso important.

Thisisdemonstrated byduplexBand C, whicharc both decanters

withtheplatinationsite inthemiddle ofthe sequence. However,

thereductionofthe Tmofthesedecantersisvery different, namely 9 and 15 °C, respectively.

In comparison to duplex Cour nonamer lacksa

guanine-cy-tosine base pair in thecenter. For this fragment we measured a Tmlow-cringof 16 °Cduetomonofunctional platinum binding,

which compares quite well to a reduction of 15-22 °C due to

bifunctional platination oftherelated C duplex.

Although the resultscollectedinTable1 were obtained under

different conditionsitisobvious thatthereductionofthe Tmdue

to both bifunctionaland monofunctional platinum bindingis in

the same order of magnitude. This result is unexpected in the

light of earlierobservations.23-25 Binding of [PtCl(dicn)]Clto

randomsequenceDNA hardlyinfluences theCD spectrum, and

the changeoftheCD induced by bifunctionalbinding of cDDP ismainlydueto thechelationstep.23,24 Moreover, [PtCl(dien)]+

does not disrupt the duplex ofcalfthymus DNA incontrast to

the effects ofcDDP and tDDP.25

In conclusion,binding ofamonofunctional platinumcompound

distortsthe DNA structure significantly. Thedecrease in melting

(16) (a) Hermann.D.;Fazakerley.G.V.; Guschlbauer, W. Biopolymers

1984, 23. 973-983. (b) Johnson, N. P.; Macquet, J.-P.; Wiebcrs.J L;

Monsarrat, B.Nucleic AcidsRes. 1982, 10,5255-5271.

(17) Fazakerley.G. V.; Hermann,D.;Guschlbauer. W.; Hawkes.G. E. Biopolymers 1984, 23,961-972.

(18) Hermann. D.; Fazakerley, G. V.; Houssier, C.; Guschlbauer, W. Biopolymers1984, 23.945-960.

(19) Malfov. B.; Hartmann, B.; Leng, M.Nucleic Acids Res. 1981, 9. 5659-5669.

(20) Ushav. . M.; Santella, R. M.: Caradonna, J. P.:Grunberger. D.;

Lippard,S.J.Nucleic AcidsRes. 1982, 10.3573-3588,

(21) van Hemelryck,B.;Guittet,E.;Chottard,G.;Girault,J.-P.;Hermann, F.; Huynh-Dinh,T.: Lallemand. J.-Y.; Igolen,J.:Chottard, J.-C. Biochem. Biophys. Res.Commun. 1986, ¡38. 758-763.

(22) Marzilli. L.G. 1988. personalcommunication.

(3)

J. Am. Chem. Soc. 1989, 111, 4125-4126 4125

temperature appears to bealmost thesame for mono- and

bi-functional Pt compounds. Alreadyin the first platination step

theduplexisdestabilized, whereafter chelationcan takeplace to

forma“kinked”structure, apparently withoutfurthermajor helix

destabilization. The detailsofthehelixdistortion studiedwith

CDand NMR is the subjectof future investigations.

Acknowledgment. We acknowledge EECsupport(GrantNo.

ST2J-0462-C), allowing regular scientificexchangewiththe group

of Prof. Dr J.-C. Chottard, and Johnson and Matthey Ltd.

(Reading,

UK)

for theirloanofK2PtCl4.

Elaboration

of

Fusedgem

-Dimethylcyclopropane

Systems via Cyclopropene

Cycloaddition. A

Stereocomplementary Approach James H. Rigby* and Paul Ch. Kierkus

Department

of

Chemistry, WayneState University

Detroit, Michigan 48202

Received February 10, 1989

A gem-dimethylcyclopropane unit fused to a six-membered

carbocycleis acommonly displayedarchitecturalfeature

char-acteristicofnatural products as structurallydiverseas the

tu-mor-promoting diterpene, phorbol (l),1 and the sesquiterpene,

aristolone (2).2

2

Todate,access intothebicyclo[4.1.0]heptane carbonskeleton

hasmost often employed dihalocarbene insertion-organocopper

substitution technology, which often provides the target in only

modestoverallyields.3,4 Wewish toreportahighlystereoselective,

general protocolbasedon cyclopropenecycloadditionchemistry

as an alternative method for the elaboration offused

gem-di-methylcyclopropanespecies. Anoteworthyaspectofthis

meth-odology is the capability ofassembling systems with

comple-mentarystereoselection byminor reactionsequencemodification.

Whileseveralsubstituted cyclopropenespecieshavedisplayed

dienophilicbehavior in simplesystems,5gem-dimethylcyclopropene

itselfis anotoriouslypoorparticipantintheDiels-Alderreaction.6

We were, however, intrigued with thenotion ofexploiting the

cycloaddition chemistry of the carbonyl-activated

dimethyl-cyclopropeneseries as an attractive entry into theCD ringsof

phorbol (1) and related diterpenes.

(1) For syntheticstudies on the phorbolsystem, see: Wender, P. A.;

Keenan, R.M.;Lee, . Y.J.Am.Chem. Soc.1987,109,4390 and references

cited therein.

(2) Forrecentsyntheticstudiesonaristolone,see: Prasad, C. V. C.;Chan,

T. H.J. Org. Chem. 1987, 52, 120 and referencescited therein. (3) (a) Taylor, M. D.; Minaskanian,G.;Winzenberg, K. N.;Santone, P.;

Smith, A.B. J. Org. Chem. 1982, 47, 3960. (b)Marshall,J.A.; Ruth,J.A.

Ibid. 1974, 39, 1971.

(4) Higher ordercupratescan providesome improvement inthealkylation

step: Harayama, T.; Fukushi, H.;Ogawa,K.;Yoneda, I. Chem.Pharm.Bull. 1985, 33, 3564.

(5) Forexamplesofother gem-disubstitutedcyclopropenesasdienophiles, see: (a) Apeloig, Y.; Arad,D.; Kapon,M.; Wallerstein,M.Tetrahedron Lett.

1987, 28, 5917. (b) Boger,D.L.;Brotherton,C. E. Tetrahedron1986, 42, 2777. For previousstudieson thecycloadditionofcarbonyl activated

gem-dimethylcyclopropenes and pyrazoles, see: (c) Dietrich-Buchecker, C.; Martina,D.;Franck-Neumann, M.J.Chem. Res.(S)1978, 78; J. Chem. Res.

(M) 1978, 1014. (d) Huisgen, R.; Reissig, H.-U. J. Chem. Soc., Chem.

Commun.1979, 568. (e)Huisgen,R.; Reissig,H.-U.Angew. Chem.,Int. Ed.

Engl. 1979, 18, 330.

(6)Closs, G. L.;Closs,L.E.;Boell, W. A.J.Am.Chem. Soc. 1963, 85, 3796.

Table I. Cycloadditions of Cyclopropaneand Pyrazole Addends with

Dienes

entry diene dienophile pressure(kbar) exo:endo

% yield of cyclo-propane0 1 OMe 3a 10 1:22 92i,c 2 OTMS 3a 10 1:5 8 96,0 3 OMe 3b 10 1:19

1

4

O

3b 10 1:50 92iv 5 OMe 4 10 50:1 81c 6 ks. OTMS 4 10 50:1 £

"All new compoundsreported hereinexhibited satisfactoryspectral

(IR, ‘H NMR, 13C NMR), analytical, and/or high resolution mass

spectralcharacteristics. '’Overall yield for cycloadditionand

quantita-tive photochemical nitrogen extrusion. cYield of

isolated, purified

products.

The requisite addends 3a,b and 4 were readily prepared by

cycloaddition of2-diazopropane to theappropriately functionalized

acetylenesfollowed, inthecase of4,byphotochemicallyinduced

nitrogenextrusion.7 Typically,thermal cycloaddition reactions

(CH2C12,50°C,96 h)ofthesereagentsrequiredmassiveexcesses ofdiene to assure adequate yields ofadducts. However,

per-formingthe additions at highpressure (CH2C12, 8-10kbar, 18

h) provided excellentyieldsofproducts employingessentially 1:1

diene-dienophile stoichiometry. Theresultsofthereactionof3a and 4 with (E)-1 -acetoxy-1,3-butadiene are illustrative.

3a, X.C02Me 3b, x,COMe ß C (1>3a (2) hv(93%) 1 4 (78%) 50 50 4

Exposureofthis diene to cyclopropene 4 (CH2C12, 10kbar, 18

h) provided adducts5(exo) and 6(endo) in 78%yieldwith an

exoiendoratioof50:18,9parallelingthe establishedproclivityfor

exo addition exhibitedbyhinderedcyclopropenes.5a In marked

contrast, pyrazole3a gave,after cycloaddition(CH2Cl2, 10kbar,

18h)andquantitativephotochemical nitrogen extrusion (3500

Á,2.5 h)fromthebicyclic pyrazoline intermediate,a93%overall

yield

of

amixture

of

5and6inwhichthe endodiastereomer6

prevailedina ratio

of

50:1.10 Thus, effective complementary

(7)Padwa,A. 1,3-Dipolar Cycloaddition Chemistry:JohnWiley&Sons:

NewYork, 1987;Vol. 1, pp393-558. The photochemistryof3bwas not well-behaved,andthe corresponding cyclopropenewas notreadily available for cycloaddition studies: Dietrich-Buchecker, C; Franck-Neumann, M. Tetrahedron1977, 33, 751.

(8) The exo/endo designationisrelativetothegem-dimethylcyclopropane

moiety.

(9) The corresponding Z-dienesdo not react to anyappreciable extent

under theseconditions as evidenced bythe totalabsence of reactivity of (Z)-1-acetoxy-1,3-butadiene toward3aand 4.

Referenties

GERELATEERDE DOCUMENTEN

To advice Akzo Nobel Salt Specialties on the business model that should be used on the Indian retail market for the DFS(Fe) and DFS(Se) products, so that this is commercial

Experimental STM images found two parallel lines of water molecules along the step edge, and verified the templating effect, confirming the formation of double- stranded

The plane ends in a line of continuous transitions where the transition is from straight to a configuration with an increasing number of plectonemes resulting in a finite

We consider the case when the normal region has a chaotic classical dynamics on time scales greater than the ergodic time T crg.. In this section, we assume that r erg « Ä/Δ, so

Kolen's ( 1999) study of palaeolithic dwelling structures was in fact triggered by scientific unease with ideological approaches to the earlier palaeolithic record, which

We here present cgDNAweb , which provides browser-based interac- tive visualization of the sequence-dependent ground states of double-stranded DNA molecules, as pre- dicted by

Correspondingly, this transcription has been shown to drive phase separation due to RNA polymerase II activity, RNAs and RNA binding proteins exhibiting the intrinsic potential

Stage temperature influence Although the calibration based on Ge 6 Sb 94 , see Figure 7, yields plausible results, it is still an estimation. From other results it is seen that both