• No results found

Why do proteases mess up with antigen presentation by re-shuffling antigen sequences?

N/A
N/A
Protected

Academic year: 2021

Share "Why do proteases mess up with antigen presentation by re-shuffling antigen sequences?"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Why do proteases mess up with antigen presentation by re-shuffling antigen sequences?

Juliane Liepe

1

, Huib Ovaa

2

and Michele Mishto

3

ThesequenceofalargenumberofMHC-presentedepitopesis notpresentassuchintheoriginalantigenbecauseithasbeen re-shuffledbytheproteasomeorotherproteases.Whydo proteasesthrowaspannerintheworksofourmodelofantigen taggingandimmunerecognition?Wedescribeinthisreview whatweknowabouttheimmunologicalrelevanceofpost- translationallysplicedepitopesandwhyproteasesseemto haveasecond(dark)personality,whichiskeentocreatenew peptidebonds.

Addresses

1Max-Planck-InstituteforBiophysicalChemistry,37077Go¨ttingen, Germany

2DepartmentofChemicalImmunology,LeidenUniversityMedical Center,NL-2333ZALeiden,TheNetherlands

3CentreforInflammationBiologyandCancerImmunology(CIBCI)&

PeterGorerDepartmentofImmunobiology,King’sCollegeLondon, SE11ULLondon,UnitedKingdom

Correspondingauthor:Mishto,Michele(michele.mishto@kcl.ac.uk)

CurrentOpinioninImmunology2018,52:81–86

ThisreviewcomesfromathemedissueonAntigenprocessing EditedbyGennaroDeLibero

ForacompleteoverviewseetheIssueandtheEditorial https://doi.org/10.1016/j.coi.2018.04.016

0952-7915/ã2018TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creative- commons.org/licenses/by-nc-nd/4.0/).

Introduction

Epitopes can have their sequence re-shuffled by pro- teases, post-translationally modified, trimmed and bended onto MHC class I (MHC-I) molecules. Trans- formationscanbesodisguisingthatantigensmighthave trouble evenrecognizing themselves due to these non- canonical peptides. Nonetheless, the immune system seemstobeabletoselectivelyidentifythemnon-canoni- calepitopesandusethemforpatrollingthestatusofthe cell[1,2].

A growing number of studies about non-canonical epi- topes has in part whipped out what we learned from textbooks about antigen presentation. For instance, intrinsiccharacteristics of non-canonical epitopes,espe- cially of those derived from peptide splicing,force the boundariesofourconceptualizationoftheimmunological self [3]. For example, a pre-requisite for streamlined

CD8+Tcellspatrollingbyrecognizingantigenicspliced peptides is that their generation is tightly regulated.

Indeed, ifanarbitrarypeptidefragment wereligatedto another fragment we would likely have dramatic pro- blems during thymocyte selection in the thymus due to animmensevarietyof splicedpeptidespresentedby corticalandmedullarythymicepithelialcells(cTECsand mTECs, respectively) and othermedullary professional antigenpresentingcells(APCs).Accordingtothethymic selectionmodels[4],onlyahandfulofthymocyteswould survive the negative selection with such an immense antigenic peptides’ variety presented by professional APCs. In agreement with the pre-requisite for stream- linedpatrollingbyCD8+Tcells,thereisagrowingbody of evidence that peptide splicing—and in particular proteasome-catalyzed peptide splicing (PCPS)—is not arandomprocess,andonlyaminorportionofthetheo- retical splicedpeptide isgenerated and presentedto T cells.Whatthesedrivingforcesare,andimplicationsthey can have on the immune response is still to be fully understood.

The MHC-I antigen presentation pathway is on the contrary welldescribed (Figure1).CD8+Tcellactivity is strongly regulated by which epitopes are presented onto MHC-I complexes, that is, the MHC-I immuno- peptidome.AlterationsoftheMHC-Iimmunopeptidome affectthecytotoxicCD8+Tcellresponseagainstviruses andtheefficacyofanti-cancerimmunotherapies[5,6,7].

The immunopeptidome isinfluencedbyseveral factors (seeFigure1)includingantigenavailabilityand charac- teristics [8,9], proteasome processing [1], transport into theendoplasmicreticulum(ER)andloadingtothepep- tide loading complex (PLC) [10], trimming by ER amino peptidases (ERAPs) [7,11], as well as affinity to differentMHC-Iallotypes’clefts[12].

Part of theMHC-I immunopeptidome canderive from non-canonical reading frames [13], polymorphic or mutated sequences [2,14,15], non-coding sequences andDRiPs [16,17],orpost-translationallymodified pep- tides [18,19]. The predominant non-canonical peptide populationseemstobe,however,representedbyspliced peptides. Indeed,in theMHC-Iimmunopeptidomesof humanEBV-immortalizedBcellsandprimaryfibroblasts around20–30%ofpeptidesareproducedbyPCPS[20].

Although the average number of molecules of spliced peptidesboundtoMHC-Icomplexesissmallerthanthat of non-spliced peptides [20], spliced epitopes can be presented onto MHC-I complexes in the amount

(2)

comparable to non-spliced epitopes [21]. For example, MHC-I-bound spliced epitopes have been found to prime a specific CD8+ T cell response during Listeria monocytogenesinfection[22].Furthermore,aspecificacti- vationof CD8+ Tcellstoward splicedepitopesderived from tumor-associated antigens is detectable in mela- noma patients [21] and has led to a regression of the tumormassinamelanomapatientandaleukemiamurine model [23,24]. As a consequence, spliced peptides are interestingnovelcandidatesfor anti-viralvaccinedevel- opment[25]andanti-cancerimmunotherapies[1,26].

Themolecular baseofthe doublelife of proteasome (andother proteases?) in permanentbalancebetween cleavagesand ligations

How does it come, however, that the proteasome and possiblyotherproteasesinhumancellsseemtobreakand buildagainpeptidessoefficiently?Wealreadyknowthat PCPSefficiencyispreservedalongevolution[27]andthat therearefactorsthatpromotePCPS.Forinstance,invitro assayssuggestthattheproteasome favorstheligationof somepeptidemotifs [27,28],and wheretheproteasome

preferstocleave,itdoesnotoftensplice[27].However,to understandwhytheproteasomecatalyzessooftenPCPS, weneed someinformationabout itsstructure. The pro- teasome core particle is a barrel-shaped multi-subunit complex. In its internalcavity, it can accumulateup to 200–300smallpeptides[29],or2–3proteins[30,31].Ithas three pairs of catalytic subunits (b1, b2, and b5). The activesite’s threoninenucleophilesfacetheproteasome internalchannel andare surrounded bythe non-primed andprimedsubstrate-bindingsites(Figure2a).Thesub- strate degradation rate is driven by the proteolytic-site activity as well as by the peptide transport along the internalchannel[29].The catalyticsubunit substitution, whichisthehallmarkdifferentiatingproteasomeisoforms, affects—atleast at aquantitative level—cleavage-site preferencesandthesubstratedegradationrate[29,32,33].

ItalsoimpactsPCPS,although,likely,onlyinasubstrate- specificmanner[21,27,34].In cells,PCPScan occur via eithertranspeptidationorcondensation[21,35],although the frequency of the latter mechanismstill needsto be assessed.Ininvitroassays,PCPScanefficientlyoccurby splicingfragmentsderivedfromthesamemolecule—cis PCPS—andfromdifferentmolecules—transPCPS—

Figure1

preferentially from which antigens?

proteasome

antigen fragments:

spliced and non-spliced

amino peptidases

TAP MHC-I- calreticulin

Tapasin ERp57

ERAP

PLC

Golgi

cytosol

antigen

preferentially from:

long, polar, acidic, disordered, short half-line, DRiPs antigens

CD8+ T cells

extracellular space secretory

vesicles

ER lumen

Current Opinion in Immunology

AntigenprocessingandpresentationbyMHC-IcomplexestoCD8+Tcells.Inthispathway,themajorityoftheantigensareprocessedby proteasome,whichproducessplicedandnon-splicedpeptidesinthecytosol.Peptidesarefurtherdegradedbyamino-peptidases,thereby regeneratingthecellularaminoacidpool.Fewpeptides,however,aretransportedintotheendoplasmicreticulum(ER)throughthetransporters associatedwithantigenprocessing(TAPs),whichispartofthepeptide-loadingcomplex(PLC).There,peptidescanbetrimmedbyER-resident aminopeptidases(ERAPs).MHC-I-peptidecomplexesundergomodifications,andaretransportedthroughtheGolgitothecellsurface.There,they canberecognizedbytheTcellreceptor(TCR),andinduceCD8+Tcellspriming/activation.

(3)

(Figure2b)[27,28,36].Accordingtothetranspeptidation model[35],theproteasome’scatalyticN-terminalthreo- ninenucleophilebreaksthepeptidebondoftheresidue (PSP-P1) of the protein—thereby forming an acyl- enzymeintermediatewiththeN-terminalsplice-reactant, coupledtothereleaseoftheinterveningsequence—and, instead ofcatalyzingthe canonicalpeptide hydrolysis,it catalyzestheligationbetweenthePSP-P1residueofthe N-terminalsplice-reactantwiththeresiduePSP-P10ofthe C-terminalsplice-reactant(Figure2b).Proteasome-medi- ated transpeptidation can alsoresult in isopeptide bond formation when a lysine side chain reacts with an acyl enzyme intermediate. Although it has also been shown thatsuchpeptidescaninduceanimmuneresponse,this processhowever remainstobeobservedinvivo[37].

Proteasome-generated sliced epitopes are however not the only examples of spliced epitopes.Indeed, Delong andcolleagues[38]identifiedsomehybridinsulinpep- tides(HIPs), derivedfromtheligation of afragmentof proinsulinwithpeptidesoriginatingfromotherantigens present inthegranules ofthepancreaticb cells.These trans spliced epitopes are presented by MHC-II com- plexes,therebytriggeringaspecificresponseinCD4+T cells in type 1 diabetic patients [38,39]. In general, extracellular antigenscan beinternalized, processed by proteolysis in the lysosome, bind the MHC class II molecules,andthencirculatetothecellsurfaceandback

to the lysosome [40].Although thelysosomal proteases also rely on(thio)ester intermediates, theenzyme cata- lyzing theproductionof theHIPs isstillunknown.

Whydoproteases(frequently)behaveasligases,too?In principle, any proteasethatusesa nucleophiletopro- motehydrolysisthroughanesterintermediatecancat- alyzetranspeptidation.Henceanyproteasecouldplaya roleintheformationofsplicedpeptides.Althoughitis notunderstoodwhytheproteasomeinparticularseems tocatalyzethisprocesssoefficiently,wecanspeculate on the reasons. Transpeptidation efficiency depends highly on three factors: firstly, high concentration of theaminenucleophilemustbepresentinordertofavor theformation ofanovelpeptide-bondoverhydrolysis;

secondly,theesterneedstohaveasufficientlifetimein ordertoallowthereactionandpeptidebondformation over hydrolysis; thirdly, the active site in which this esterintermediateisformedmustbesufficientlyacces- sible for nucleophilesto react.The proteasome struc- turecanfavorallthesethreeconditions,asit’saclosed barrel that could have a high local concentration of peptide products, and use substrate-binding sites in proximitytotheproteasome’scatalyticN-terminalthre- oninenucleophile.Anotherresultofpeptides confine- ment in the proteasome barrel could be the fact that transPCPSseemstooccurlessfrequentlythancisPCPS [27,28,36].

16nm gates

10nm

N

N N

N

C C

C C

antechamber (59nm3)

antechamber (59nm3) chamber

(84nm3)

PSP-P1

PSP-P1

cleavages by Thr1

spliced peptides

trans PCPS

PSP-P1 PSP-P1′

PSP-P1′

PSP-P1′

normal cis PCPS reverse cis PCPS

intervening sequences

(a) (b)

Current Opinion in Immunology

Molecularbasefortheunexpectedhighfrequencyofpeptidesplicing.(a)Thehuman20Scoreparticleoftheproteasomeisshownbasedonthe structuregeneratedby[45].ThechainsB,C,H,I,J,Q,R,S,YandZarehiddenfromthestructureinordertoseetheinnerproteasomecavities withthecentralchamberanditstwoantechambers.Theaandbsubunitsarecoloredingreyandblue,respectively.Asanexampleofacatalytic subunit,heb2subunitisshowninpinkwithitsactivesitethreonineinred.(b)Proteasome-generatedsplicedpeptidescanbeformedby:firstly, cisPCPS,whenthetwosplice-reactantsderivefromthesamepolypeptidemolecule;theligationcanoccurinnormalorder,thatis,followingthe orientationfromN-terminustoC-terminusoftheparentalprotein(normalcisPCPS),orinthereverseorder(reversecisPCPS);secondly,trans PCPS,whenthetwosplice-reactantsoriginatefromtwodistinctproteinmoleculesortwodistinctproteins.

(4)

TheoreticalimpactofPCPSinrecognizingthe immunological self

One majorfeatureof peptidesplicing isthe theoretical increaseofthenumberofsequencesthatcanbederived fromtheantigenpoolandbeallocatedintheMHC-Iand MHC-II clefts. This enlargement could have implica- tionsin therecognitionof theimmunological selfbyT cells.Indeed,itcouldincreasetheriskofmimicry,which isthephenomenonwherebytwoepitopeshavesequence similaritiesandarerecognizedbythesameTcellclone [1].Inparticular,wenameas‘zwitterpeptide’apeptide thatcanbederivedfromthehumanself-proteomeaswell as fromapathogenproteome (Figure 3).In2012,Calis et al. [41] investigated the sequence overlap between humanself-peptidesandalargesetofnon-self-peptides derivedfromvirusesandbacteriainthecontextofCD8+ Tcellrecognition. Theyfound thatless than 1%of all theoretical possible 9-mernon-spliced peptidesderived frompathogenshaveasequenceidenticaltothetheoret- icalhumannon-splicedpeptides,thatis,arezwitterpep- tides. If the zwitter antigenic peptides were presented similarlybymTECsandotherprofessionalAPCsinthe medullary thymus and by dendritic cells (DCs) in the periphery,wewouldexpecttheabsence,attheperiphery, ofCD8+T-cellclonesrecognizing,withhighaffinity,the zwitter peptides presented by DCs, because they have beeneliminatedduringthethymicnegativeselection[4].

Thisphenomenoncouldinpartexplaintheoccurrenceof holesintheTcellrepertoireandintheirabilitytotackle

viralinfections [41].Onthecontrary,if thezwitteranti- genic peptides were efficiently presented by DCs and otherAPCsintheperipherybutnotbymTECsandother professional APCs in the thymic medulla, we would expectattheperipherythepresenceofpotentiallyauto- reactiveCD8+T-cellclones,whichcouldbeprimedand activatedbyDCsandotherAPCsinlymphnodesduring thepathogeninfectionandafterwardsattackhumancells andparticipateto inanautoimmuneresponse.

Inmultiplesclerosis,forinstance,myelin-reactiveCD8+ T cell are theorized to mediate the cytotoxic activity againsttheoligodendrocytesleadingtothecharacteristic de-myelinationandplaqueformation.Furthermore,asso- ciationsbetweenmultiplesclerosis,someMHC-Ivariants (e.g.HLA-B*07)andEpstein-Barrvirus(EBV)infection havebeenreported,andithasbeenhypothesizedthatan EBVinfection couldtriggertheprimingofautoreactive CD8+Tcellclonesthroughmimicry[42].Usingasimilar approachasCalisetal.[41],wecancomparetheoverlapof theoretical9merpeptides(eithersplicedornon-spliced) derived from 24 human myelin proteins (MBP, MAG, MOG,PLPandisoforms)andfrom9EBVantigens(i.e.

LMP1, LMP2, BMLF1, BMRF1, BZLF1, BRLF1, BNRF1,BLLF1,EBNA3).All27peptidestheoretically common to myelin and EBVantigens are spliced pep- tides, since there are no identical non-spliced peptide sequencesbetweenthesetwosetsofantigens.Amongthe 27theoreticalzwitterpeptides,13peptidesarepredicted

Figure3

Pathogen: EBV Host: Human

EBV latent membrane protein 1 (LMP1) Myelin oligodendrocyte glycoprotein (MOG)

zwitter spliced peptide

IC50 (HLA-B*07:02) = 58 nM

Current Opinion in Immunology

ExampleofzwitterpeptidepotentiallygeneratedfrombothEBVandmyelinantigens.Thetheoreticalzwitterpeptide[GPR][LLLLLL]canbe generatedfromboth,theEBVantigenLMP1andthehumanmyelinproteinMOG,throughcispeptidesplicing.Thiszwitterpeptideispredictedto bindtheHLA-B*07:02variantwithanIC50of58nM,anditisoneofthe13peptidesthatarepredictedtostronglybindtothemostcommon MHC-Imolecules.InthisanalysisthebindingaffinityispredictedapplyingtheSMMpredictionmethod[46],filteredforpeptideswithrank1.The 13theoreticalzwitterpeptidesarepredictedtobindoneofthefollowingvariants:HLA-A*01:01,HLA-A*02:01,HLA-B*07:02,HLA-B*08:01,orHLA- B*40:01(datanotshown).

(5)

accountsfor onlythetheoretical presenceor absenceof apeptidein theimmunopeptidomeof APCs.To better estimatetherealprevalenceofzwitterantigenicpeptides andtheirrecognitionbyCD8+Tcells,weshouldconsider the TCR degeneracy, theaffinity/avidity of TCRs and MHC-I-peptides,andthedynamicsofthedifferentsteps of theMHC-Iantigenpresentation(Figure1)including the,onlypartiallydescribed,drivingforcesofPCPS.This preliminaryinsilicoresult,however,confirmsthatPCPS could play a particularly relevant role in the central tolerance, the occurrence of large holes in the T cell repertoire, and the autoimmune response mediated by CD8+Tcells.

Concludingremarks

Thesurprisingevidencesreportedinthelastyears,which suggestthatMHC-I(andinpartMHC-II)immunopep- tidomes are populated by spliced peptides, need to be confirmedbyapplyingdifferentapproachesbeforeunder- standing the magnitude of their immunological rele- vance. However, the implications of peptide splicing couldexceedtheedgesof antigenpresentation.Ifpep- tidesplicingwereacommonreactionforotherproteases rather than proteasome, we could speculate that post- translationally spliced peptides (and why not spliced proteins?) could be involved in other aspects of the immune response and cell metabolism, as it has been proved for proteasome-processed non-spliced peptides and proteins [43,44]. If this hypothesis were correct, peptide splicing could be a further regulatory layer in thelifeofacellandanorganism.

Conflictof intereststatement Nothing declared.

Acknowledgements

WethankDarijaMuharemagicforproofreadingthemanuscript.Workin theOvaalabissupportedbytheInstituteforChemicalImmunology,a gravitationprogrammefinancedtheNetherlandsFoundationforScientific Research(N.W.O.).

References and recommendedreading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest

ofoutstandinginterest

1. MishtoM,LiepeJ:Post-translationalpeptidesplicingandTcell responses.TrendsImmunol2017,38:904-915.

2. GranadosDP,LaumontCM,ThibaultP,PerreaultC:Thenatureof selfforTcells-asystems-levelperspective.CurrOpinImmunol 2015,34:1-8.

3. GrignolioA,MishtoM,FariaAM,GaragnaniP,FranceschiC, TieriP:Towardsaliquidself:howtime,geography,andlife experiencesreshapethebiologicalidentity.FrontImmunol 2014,5:153.

5. TranE,RobbinsPF,LuYC,PrickettTD,GartnerJJ,JiaL, PasettoA,ZhengZ,RayS,GrohEMetal.:T-celltransfertherapy targetingmutantKRASincancer.NEnglJMed2016, 375:2255-2262.

Here,theauthorsshowthatthetreatmentofmetastaticcolorectalcancer byadoptiveTcelltherapytargetingtherecurrentdrivermutationKRAS G12Dleadstothemetastasiseradication.

6. TenzerS,WeeE,BurgevinA,Stewart-JonesG,FriisL, LamberthK,ChangCH,HarndahlM,WeimershausM,GerstoftJ etal.:AntigenprocessinginfluencesHIV-specificcytotoxicT lymphocyteimmunodominance.NatImmunol2009,

10:636-646.

7. TextorA,SchmidtK,KloetzelPM,WeissbrichB,PerezC,CharoJ, AndersK,SidneyJ,SetteA,SchumacherTNetal.:Preventing tumorescapebytargetingapost-proteasomaltrimming independentepitope.JExpMed2016,213:2333-2348.

8. PearsonH,DaoudaT,GranadosDP,DuretteC,BonneilE, CourcellesM,RodenbrockA,LaverdureJP,CoteC,MaderSetal.:

MHCclassI-associatedpeptidesderivefromselective regionsofthehumangenome.JClinInvest2016, 126:4690-4701.

9. HoofI,vanBaarleD,HildebrandWH,KesmirC:Proteome samplingbytheHLAclassIantigenprocessingpathway.PLoS ComputBiol2012,8:e1002517.

10. BleesA,JanulieneD,HofmannT,KollerN,SchmidtC, TrowitzschS,MoellerA,TampeR:Structureofthehuman MHC-Ipeptide-loadingcomplex.Nature2017.

Here,theauthorsdeterminethestructureofthehumannativeMHC-I peptide-loadingcomplexbyelectroncryo-microscopy,therebyproviding insightsinthedynamicsoftheMHC-I-peptideassembly.

11. ChenH,LiL,WeimershausM,EvnouchidouI,vanEndertP, BouvierM:ERAP1-ERAP2dimerstrimMHCI-boundprecursor peptides;implicationsforunderstandingpeptideediting.Sci Rep2016,6:28902.

12. VaughanK,XuX,CaronE,PetersB,SetteA:Decipheringthe MHC-associatedpeptidome:areviewofnaturallyprocessed liganddata.ExpertRevProteomics2017,14:729-736.

13. LaumontCM,DaoudaT,LaverdureJP,BonneilE,Caron- LizotteO,HardyMP,GranadosDP,DuretteC,LemieuxS, ThibaultPetal.:GlobalproteogenomicanalysisofhumanMHC classI-associatedpeptidesderivedfromnon-canonical readingframes.NatCommun2016,7:10238.

14. Bassani-SternbergM,Pletscher-FrankildS,JensenLJ,MannM:

MassspectrometryofhumanleukocyteantigenclassI peptidomesrevealsstrongeffectsofproteinabundanceand turnoveronantigenpresentation.MolCellProteomics2015, 14:658-673.

15. Bassani-SternbergM,BraunleinE,KlarR,EngleitnerT,SinitcynP, AudehmS,StraubM,WeberJ,Slotta-HuspeninaJ,SpechtK etal.:Directidentificationofclinicallyrelevantneoepitopes presentedonnativehumanmelanomatissuebymass spectrometry.NatCommun2016,7:13404.

16. ApcherS,MillotG,DaskalogianniC,ScherlA,ManouryB, FahraeusR:Translationofpre-splicedRNAsinthenuclear compartmentgeneratespeptidesfortheMHCclassI pathway.ProcNatlAcadSciUSA2013,110:17951-17956.

17. KrachtMJ,vanLummelM,NikolicT,JoostenAM,LabanS,van derSlikAR,vanVeelenPA,CarlottiF,deKoningEJ,HoebenRC etal.:Autoimmunityagainstadefectiveribosomalinsulingene productintype1diabetes.NatMed2017,23:501-507.

18. AlpizarA,MarinoF,Ramos-FernandezA,LombardiaM,JekoA, PazosF,ParadelaA,SantiagoC,HeckAJ,MarcillaM:A molecularbasisforthepresentationofphosphorylated peptidesbyHLA-Bantigens.MolCellProteomics2017, 16:181-193.

19. HarbigeJ,EichmannM,PeakmanM:Newinsightsintonon- conventionalepitopesasTcelltargets:themissinglinkfor

(6)

breakingimmunetoleranceinautoimmunedisease? J Autoimmun2017,84:12-20.

20. LiepeJ,MarinoF,SidneyJ,JekoA,BuntingDE,SetteA, KloetzelPM,StumpfMP,HeckAJ,MishtoM:Alargefractionof HLAclassIligandsareproteasome-generatedspliced peptides.Science2016,354:354-358.

Inthisstudy,theauthorsidentifyforthefirsttimethelargepopulationof splicedpeptidesintheMHC-Iimmunopeptidomeofnon-tumoralcells.In thosecells,splicedpeptidesrepresentaround30%ofthepeptidevariety, onefourthoftheiramountandexclusivelypresentaroundonethirdofthe antigens.

21. EbsteinF,Textoris-TaubeK,KellerC,GolnikR,VigneronN,Van denEyndeBJ,Schuler-ThurnerB,SchadendorfD,LorenzFK, UckertWetal.:Proteasomesgeneratesplicedepitopesbytwo differentmechanismsandasefficientlyasnon-spliced epitopes.SciRep2016,6:24032.

22. PlatteelACM,LiepeJ,Textoris-TaubeK,KellerC,HenkleinP, SchalkwijkHH,CardosoR,KloetzelPM,MishtoM,SijtsA:Multi- levelstrategyforidentifyingproteasome-catalyzedspliced epitopestargetedbyCD8+Tcellsduringbacterialinfection.

CellRep2017,20:1242-1253.

Here,theauthorsprove,forthefirsttime,thatproteasome-generated spliced epitopes trigger a specificactivation of CD8+ T cellsduring Listeriainfection,therebyaddressingthecytotoxicresponseagainsta bacteriaantigenotherwisenotimmunogenicinthatmousemodel.

23. WarrenEH,VigneronNJ,GavinMA,CouliePG,StroobantV, DaletA,TykodiSS,XuerebSM,MitoJK,RiddellSRetal.:An antigenproducedbysplicingofnoncontiguouspeptidesinthe reverseorder.Science2006,313:1444-1447.

24. DaletA,RobbinsPF,StroobantV,VigneronN,LiYF,El-GamilM, HanadaKI,YangJC,RosenbergSA,VandenEyndeBJ:An antigenicpeptideproducedbyreversesplicinganddouble asparaginedeamidation.ProcNatlAcadSciUSA2011,108:

E323-E331.

25. PlatteelACM,LiepeJ,vanEdenW,MishtoM,SijtsA:An unexpectedmajorroleforproteasome-catalyzedpeptide splicingingenerationofTcellepitopes:isthererelevancefor vaccinedevelopment? FrontImmunol2017,8:1441.

26. MeliefCJM,KesslerJH:NovelinsightsintotheHLAclassI immunopeptidomeandT-cellimmunosurveillance.Genome Med2017,9:44.

27. MishtoM,GoedeA,TaubeKT,KellerC,JanekK,HenkleinP, NiewiendaA,KlossA,GohlkeS,DahlmannBetal.:Drivingforces ofproteasome-catalyzedpeptidesplicinginyeastand humans.MolCellProteomics2012,11:1008-1023.

28. BerkersCR,deJongA,SchuurmanKG,LinnemannC,MeiringHD, JanssenL,NeefjesJJ,SchumacherTN,RodenkoB,OvaaH:

Definitionofproteasomalpeptidesplicingrulesforhigh- efficiencysplicedpeptidepresentationbyMHCclassI molecules.JImmunol2015,195:4085-4095.

29. LiepeJ,HolzhutterHG,BellavistaE,KloetzelPM,StumpfMP, MishtoM:Quantitativetime-resolvedanalysisreveals intricate,differentialregulationofstandard-andimmuno- proteasomes.Elife2015:4.

30. SharonM,WittS,FeldererK,RockelB,BaumeisterW, RobinsonCV:20Sproteasomeshavethepotentialtokeep substratesinstoreforcontinualdegradation.JBiolChem 2006,281:9569-9575.

31. HutschenreiterS,TinazliA,ModelK,TampeR:Two-substrate associationwiththe20Sproteasomeatsingle-moleculelevel.

EmboJ2004,23:2488-2497.

32. MishtoM,LiepeJ,Textoris-TaubeK,KellerC,HenkleinP, WeberrussM,DahlmannB,EnenkelC,VoigtA,KuckelkornU etal.:Proteasomeisoformsexhibitonlyquantitative

differencesincleavageandepitopegeneration.EurJImmunol 2014,44:3508-3521.

33. ArciniegaM,BeckP,LangeOF,GrollM,HuberR:Differential globalstructuralchangesinthecoreparticleofyeastand mouseproteasomeinducedbyligandbinding.ProcNatlAcad SciUSA2014,111:9479-9484.

34. DaletA,StroobantV,VigneronN,VandenEyndeBJ:Differences intheproductionofsplicedantigenicpeptidesbythestandard proteasomeandtheimmunoproteasome.EurJImmunol2011, 41:39-46.

35. VigneronN,StroobantV,ChapiroJ,OomsA,DegiovanniG, MorelS,vanderBruggenP,BoonT,VandenEyndeBJ:An antigenicpeptideproducedbypeptidesplicinginthe proteasome.Science2004,304:587-590.

36. DaletA,VigneronN,StroobantV,HanadaK,VandenEyndeBJ:

Splicingofdistantpeptidefragmentsoccursinthe proteasomebytranspeptidationandproducesthespliced antigenicpeptidederivedfromfibroblastgrowthfactor-5.J Immunol2010,184:3016-3024.

37. BerkersCR,deJongA,SchuurmanKG,LinnemannC, GeenevasenJA,SchumacherTN,RodenkoB,OvaaH:Peptide splicingintheproteasomecreatesanoveltypeofantigenwith anisopeptidelinkage.JImmunol2015,195:4075-4084.

38. DelongT,WilesTA,BakerRL,BradleyB,BarbourG,ReisdorphR, ArmstrongM,PowellRL,ReisdorphN,KumarNetal.:Pathogenic CD4Tcellsintype1diabetesrecognizeepitopesformedby peptidefusion.Science2016,351:711-714.

Inthisstudy,theauthorsidentifyforthefirsttimesplicedepitopesthat derivefromthefusionofaportionofinsulinandaportionofotherantigens presentinthepancreaticbcells.Theseso-calledHybridInsulinPeptides trigger the activation of CD4+ T cellsderived from type 1 diabetes patients.

39. BabonJA,DeNicolaME,BlodgettDM,CrevecoeurI,ButtrickTS, MaehrR,BottinoR,NajiA,KaddisJ,ElyamanWetal.:Analysisof self-antigenspecificityofislet-infiltratingTcellsfromhuman donorswithtype1diabetes.NatMed2016,22:1482-1487.

40. RockKL,ReitsE,NeefjesJ:Presentyourself!ByMHCclassI andMHCclassIImolecules.TrendsImmunol2016,37:724-737.

41. CalisJJ,deBoerRJ,KesmirC:DegenerateT-cellrecognitionof peptidesonMHCmoleculescreateslargeholesintheT-cell repertoire.PLoSComputBiol2012,8:e1002412.

42. GeginatJ,ParoniM,PaganiM,GalimbertiD,DeFrancescoR, ScarpiniE,AbrignaniS:Theenigmaticroleofvirusesinmultiple sclerosis:molecularmimicryordisturbedimmune

surveillance? TrendsImmunol2017,38:498-512.

43. DianzaniC,BellavistaE,LiepeJ,VerderioC,MartucciM, SantoroA,ChiocchettiA,GigliottiCL,BoggioE,FerraraBetal.:

Extracellularproteasome-osteopontincircuitregulatescell migrationwithimplicationsinmultiplesclerosis.SciRep2017, 7:43718.

44. Kravtsova-IvantsivY,CiechanoverA:Theubiquitin-proteasome systemandactivationofNF-kappaB:involvementofthe ubiquitinligaseKPC1inp105processingandtumor suppression.MolCellOncol2015,2:e1054552.

45. SchraderJ,HennebergF,MataRA,TittmannK,SchneiderTR, StarkH,BourenkovG,ChariA:Theinhibitionmechanismof human20Sproteasomesenablesnext-generationinhibitor design.Science2016,353:594-598.

46. FleriW,PaulS,DhandaSK,MahajanS,XuX,PetersB,SetteA:

Theimmuneepitopedatabaseandanalysisresourcein epitopediscoveryandsyntheticvaccinedesign.FrontImmunol 2017,8:278.

Referenties

GERELATEERDE DOCUMENTEN

Given that endogenous peptides are present in the cytosol even before exogenous antigens are degraded (2), bea- dosome-derived antigenic peptides would likely be

cytosol or nucleus and quantified the redistribution of fluorescence from the nonbleached compartment in a fluorescence loss in photobleaching protocol, basically using

Since free ubiquitin is present in limiting amounts in cells, changes in the demands for ubiquitin in any of these processes is likely to indirectly affect other

The increased pool of MHC class I molecules after irradiation may be loaded with similar pep- tides as nonirradiated cells, or with a unique set of peptides generated

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of

Chapter 5 Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: Coupling cytosolic peptide stability to antigen presentation. Intercellular peptide transfer

Dinner is served, substrate specificity in the MHC class I antigen processing and presentation pathway The specificity of various molecules involved in peptide gen- eration and

These different molecules that can be transferred via gap junctions allow electric, metabolic and immunological transfer of information and can direct processes like