• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle

http://hdl.handle.net/1887/79194

holds various files of this Leiden University

dissertation.

Author: Bosman, A.D.

(2)

Uncovering the ingredients

for planet formation

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties te verdedigen op woensdag 8 oktober 2019

klokke 16:15 uur door

Arthur Daniel Bosman

(3)

Promotiecommissie

Promotores: Prof. dr. E. F. van Dishoeck Prof. dr. A. G. G. M. Tielens

Overige leden: Prof. dr. H. J. A. Röttgering Prof. dr. B. R. Brandl

Prof. dr. E. A. Bergin University of Michigan

Dr. J. R. Najita National Optical Astronomy Observatory Dr. K. M. Pontoppidan Space Telescope Science Institute

ISBN: 978-94-028-1688-4 Front cover:

(4)

Contents

1 Introduction 1

1.1 Star and planet formation . . . 1

1.1.1 The initial stages of star formation . . . 3

1.1.2 Disk formation and evolution . . . 4

1.1.3 Disk structure . . . 5

1.1.4 Dust evolution . . . 8

1.1.5 Planet formation . . . 10

1.2 Astrochemistry . . . 11

1.2.1 Gas-phase chemistry . . . 11

1.2.2 Grain surface chemistry . . . 12

1.2.3 Chemistry in disks . . . 12

1.3 Infrared spectroscopy . . . 13

1.3.1 Energy levels and transitions . . . 14

1.3.2 Line formation . . . 14

1.3.3 Observational challenges . . . 17

1.4 Disk modelling . . . 19

1.5 This thesis . . . 19

1.5.1 Future outlook . . . 21

2 CO destruction in protoplanetary disk midplanes: inside versus out-side the CO snow surface 23 2.1 Introduction . . . 25 2.2 Methods . . . 27 2.2.1 Parameter space . . . 27 2.2.2 Chemical network . . . 28 2.2.3 CO destruction routes . . . 31 2.3 Results . . . 34

2.3.1 Physical parameter space . . . 34

2.3.2 Chemical parameter space . . . 40

2.4 Discussion . . . 42

2.4.1 When, where and how is CO destroyed within 3 Myr . . . 43

2.4.2 Implications for observations . . . 45

2.4.3 Observing chemical destruction of CO . . . 46

2.4.4 Interactions with disk dynamics . . . 47

2.5 Conclusions . . . 47

Appendix . . . 49

2.A Dali protoplanetary disk models . . . 49

(5)

ii CONTENTS

2.B.1 Initial abundances . . . 52

2.B.2 H2 formation rate . . . 53

2.B.3 Calculation of grain-surface rates . . . 53

2.B.4 Implications of modelling assumptions . . . 54

3 CO2 infrared emission as a diagnostic of planet-forming regions of disks 57 3.1 Introduction . . . 59

3.2 Modelling CO2 emission . . . 62

3.2.1 Vibrational states . . . 62

3.2.2 Rotational ladders . . . 62

3.2.3 Transitions between states . . . 64

3.2.4 CO2 spectra . . . 65

3.2.5 Dependence on kinetic temperature, density and radiation field 68 3.3 CO2 emission from a protoplanetary disk . . . 68

3.3.1 Model setup . . . 70

3.3.2 Model results . . . 71

3.3.3 Line-to-continuum ratio . . . 83

3.3.4 CO2 from the ground . . . 84

3.3.5 CO2 model uncertainties . . . 86

3.4 Discussion . . . 87

3.4.1 Observed 15 µm profiles and inferred abundances . . . 87

3.4.2 Tracing the CO2 iceline . . . 91

3.4.3 Comparison of CO2 with other inner disk molecules . . . 94

3.5 Conclusion . . . 94

Appendix . . . 95

3.A Collisional rate coefficients . . . 95

3.B Fast line ray tracer . . . 97

3.C Model temperature and radiation structure . . . 97

3.D Model fluxes g/ddust . . . 98

3.E LTE vs non-LTE . . . 98

3.F Line blending by H2O and OH . . . 102

3.G Spitzer -IRS spectra . . . 104

4 Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the case of CO2 107 4.1 Introduction . . . 109

4.2 Physical model . . . 111

4.2.1 Gas dynamics . . . 111

4.2.2 Dust growth and dynamics . . . 112

4.2.3 Model parameters . . . 115

4.2.4 Boundary conditions . . . 116

4.3 Chemical processes . . . 116

4.3.1 Freeze-out and sublimation . . . 116

4.3.2 Midplane formation and destruction processes . . . 118

4.3.3 Simulating spectra . . . 123

4.4 Results . . . 123

4.4.1 Pure viscous evolution . . . 123

(6)

CONTENTS iii

4.4.3 Viscous evolution and CO2destruction . . . 127

4.4.4 Viscous evolution, grain growth and CO2 destruction . . . 129

4.4.5 Model spectra . . . 129

4.5 Discussion . . . 134

4.5.1 Chemical processes . . . 134

4.5.2 Physical processes . . . 136

4.6 Summary and conclusions . . . 142

Appendix . . . 144

4.A UV dust cross sections . . . 144

4.B Chemical modelling . . . 144

4.B.1 Gas-phase only models . . . 144

4.B.2 Grain surface chemistry between the H2O and CO2 icelines . . 146

4.C Viscous evolution and grain growth . . . 147

5 Probing planet formation and disk substructures in the inner disk of Herbig Ae stars with CO rovibrational emission 153 5.1 Introduction . . . 155

5.2 Data overview . . . 159

5.3 Slab modelling of the vibrational ratio . . . 160

5.3.1 Analytical line ratios . . . 161

5.3.2 RADEX models . . . 164

5.3.3 LTE vs non-LTE . . . 165

5.3.4 Absolute fluxes . . . 165

5.3.5 Physical conditions in the CO emitting region . . . 169

5.4 DALI modelling . . . 169

5.4.1 Model setup . . . 169

5.4.2 Model results . . . 173

5.4.3 Disk surface emission . . . 176

5.4.4 Tgas≈ Tdust . . . 179

5.5 Discussion . . . 180

5.5.1 Implications for sources with low v2/v1 at small radii . . . 184

5.5.2 Implications for high v2/v1 at large radii . . . 188

5.5.3 Comparison to T-Tauri disks: distribution of UV flux matters . 189 5.5.4 Predictions for future observations . . . 191

5.6 Conclusions . . . 192

Appendix . . . 193

5.A CO molecule model . . . 193

5.A.1 Rovibrational . . . 193

5.A.2 Electronic . . . 193

5.B Excitation tests . . . 194

5.C Line profiles . . . 196

5.D Near-infrared excess . . . 196

5.D.1 CO as tracer of the inner disk radius . . . 196

5.E Lowering the flux of the outer disk . . . 201

(7)

iv CONTENTS

6 The dry and carbon poor inner disk of TW Hya: evidence for a

gigantic icy dust trap 205

6.1 Introduction . . . 207

6.2 Methods . . . 208

6.3 Results . . . 209

6.4 Discussion . . . 212

6.4.1 Constraining the inner disk chemical structure . . . 212

6.4.2 Hiding C and O carriers? . . . 212

6.4.3 Implications of uniform depletion . . . 213

Appendix . . . 214

6.A DALI model . . . 214

Bibliography 214

Nederlandse samenvatting 231

List of Publications 237

Curriculum Vitae 239

Referenties

GERELATEERDE DOCUMENTEN

Panel (a) – 13 CO line intensity radial profiles (solid lines) obtained with three representative disk models with input surface density distribution Σ gas (dashed lines) given by

Because of the lower host mass used in this simulation (compared to the present-day mass of the Milky Way), the velocities are typically lower compared to the data (as can be seen

In earlier studies, a parametric approach was used to determine the disk geometry and density structure in the inner and outer disks that would lead to the observed shadowing

The similarities in structure (e.g. scale height of the gas disk, radial exponential tail, surface den- sity power-law index) and dust composition (small and large grains

We aim to reproduce the DCO + emission in the disk around HD163296 using a simple 2D chemical model for the formation of DCO + through the cold deuteration channel and a

Assuming an uniform distribution of sources in the bulge for the Gaia detections and for the BAaDE targets, one could calculate the number of sources that randomly will match given

Chapter 5: Probing protoplanetary disk gas surface density distribution with 13 CO emission 123 5.1

4.3. Deriving the surface density and temperature distribution The di fferent temperatures and column densities of each CO iso- topolog and the di fference on line widths between the