• No results found

Cover Page The following handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The following handle"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The following handle holds various files of this Leiden University dissertation:

http://hdl.handle.net/1887/61006

Author: Miotello, A.

Title: The puzzle of protoplanetary disk masses

Issue Date: 2018-03-07

(2)

The puzzle

of protoplanetary disk masses

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden op gezag van de Rector Magnificus prof. mr. C. J. J. M. Stolker,

volgens besluit van het College voor Promoties te verdedigen op woensdag 7 maart 2018

klokke 11:15 uur

door

Anna Miotello

geboren te Gallarate, Italie in 1988

(3)

Promotiecommissie

Promotor Prof. dr. E. F. van Dishoeck

Co-promotor Dr. L. Testi ESO/INAF

Overige leden Prof. dr. E. A. Bergin University of Michigan Prof. dr. I. Kamp Rijksuniversiteit Groningen Prof. dr. I. Pascucci University of Arizona Prof. dr. H. J. A. R ¨ottgering

Prof. dr. A. G. G. M. Tielens

ISBN: 978-94-028-0940-4

Cover design by Laura Somaglino.

(4)

To my gang Carlo, Caterina, Ambrogio and Monica

(5)
(6)

C ONTENTS

Chapter 1: Introduction 1

1.1 Star formation and protoplanetary disks . . . 2

1.2 The Atacama Large Millimeter/submillimeter Array . . . 7

1.3 Disk dust mass determination . . . 9

1.4 Disk gas mass determination . . . 11

1.4.1 H2, the main gaseous component . . . 12

1.4.2 Gas masses from HD observations . . . 12

1.4.3 CO as gas mass tracer . . . 14

1.5 Physical-chemical modeling . . . 17

1.5.1 DALI . . . 17

1.6 This thesis and future outlook . . . 19

Chapter 2: Protoplanetary disk masses from CO isotopologues line emission 23 2.1 Introduction . . . 25

2.2 Model . . . 27

2.2.1 Isotope-selective processes . . . 28

2.2.2 Chemical network . . . 30

2.2.3 Parameters of the disk model . . . 31

2.2.4 Grid of models . . . 32

2.3 Results . . . 33

2.3.1 Abundances . . . 33

2.3.2 Line fluxes . . . 40

2.3.3 Line optical depth . . . 43

2.4 Discussion . . . 44

2.4.1 Beam convolutions . . . 44

2.4.2 Mass estimates . . . 47

2.4.3 TW Hya . . . 48

2.5 Summary and conclusions . . . 52

(7)

Chapter 3: Determining protoplanetary disk gas masses from CO isotopo-

logues line observations 55

3.1 Introduction . . . 57

3.2 Model . . . 58

3.2.1 Physical structure . . . 59

3.2.2 Chemical network . . . 60

3.2.3 Grid of models . . . 61

3.3 Results . . . 65

3.3.1 Abundances . . . 65

3.3.2 Line intensities . . . 66

3.4 Discussion . . . 75

3.4.1 Comparison with parametric models . . . 75

3.4.2 Analysis of CO isotopologues observations . . . 79

3.4.3 Complementary tracers: [OI], [CI], and [CII] . . . 79

3.4.4 Effects of lower carbon abundance . . . 80

3.5 Summary and Conclusion . . . 81

Appendices 3.A Additional tables and figures . . . 84

3.B Effects of carbon depletion on CO isotopologue line intensities . . . 93

Chapter 4: Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion? 99 4.1 Introduction . . . 101

4.2 ALMA observations . . . 103

4.3 Model . . . 103

4.4 Results . . . 104

4.4.1 Dust masses revisited . . . 104

4.4.2 Gas masses . . . 108

4.5 Discussion . . . 112

4.5.1 Gas-to-dust ratio . . . 112

4.5.2 Carbon depletion vs low gas masses . . . 113

4.5.3 Correlation between disk gas mass and stellar mass . . . 116

4.6 Summary and conclusion . . . 119

Chapter 5: Probing protoplanetary disk gas surface density distribution with 13CO emission 123 5.1 Introduction . . . 125

5.2 Modeling . . . 127

5.2.1 DALI . . . 127

5.2.2 Grid of models . . . 127

(8)

5.3 Results . . . 131

5.3.1 Simple power-law . . . 131

5.3.2 Self-similar disk models . . . 135

5.3.3 Inner disk surface density profile from C17O line intensity ra- dial profiles . . . 136

5.3.4 The “slope-pivot-region” . . . 137

5.4 Discussion . . . 139

5.5 Summary and conclusion . . . 140

Appendices 5.A Additional figures . . . 143

Chapter 6: HD far infrared emission as a measure of protoplanetary disk mass147 6.1 Introduction . . . 149

6.2 Model . . . 151

6.2.1 Density structure . . . 152

6.2.2 Dust settling . . . 152

6.2.3 Chemical network . . . 153

6.2.4 Grid of models . . . 154

6.3 Results . . . 156

6.3.1 HD flux vs. disk gas mass . . . 156

6.3.2 HD emitting layers . . . 157

6.3.3 Influence of the vertical structure . . . 159

6.3.4 Influence of the large grains . . . 160

6.3.5 Influence of the gas-to-dust ratio . . . 161

6.3.6 Line-to-Continuum ratios . . . 164

6.3.7 Sensitivities of future FIR missions . . . 166

6.4 Discussion . . . 167

6.4.1 Determining the disk gas mass . . . 167

6.4.2 HD 1-0 and HD 2-1 line fluxes . . . 169

6.4.3 Comparing models to observations . . . 170

6.4.4 Case study: TW Hya . . . 171

6.5 Conclusions . . . 174

Appendices 6.A Abundance and temperature maps of TW Hya . . . 176

6.B Abundance and emission maps of grid models . . . 179

6.C Effects of including hydrostatic equilibrium . . . 181

6.C.1 The hydrostatic solver . . . 181

6.C.2 Comparing with parametrized vertical structure . . . 182

6.D Deuterium chemistry . . . 183

(9)

6.E Line fluxes of the TW Hya model . . . 184

Referenties

GERELATEERDE DOCUMENTEN

10 indicates that for observed disks with low vibrational ratios, the line pro- files can be well reproduced by models that have a small cavity radius except that these models have

5 Probing planet formation and disk substructures in the inner disk of Herbig Ae stars with CO rovibrational emission 153 5.1

Observations of rare CO isotopologues are typically used to determine disk gas masses; however, if the line emission is optically thick this will result in an underestimated disk

The placement of the nitrile functional group on the phenyl ring of the benzonitrile inhibitors also affects MAO-A inhibition potency with meta placement of the nitrile

Furthermore, no distinct seasonal trend was observed for anthropogenic VOCs, which was surprising, since it was expected that these species would peak in winter due to the trapping

The radial profiles show that the DCO + emission is highly sen- sitive to changes in the disk structure, whereas C 18 O is less af- fected. The feature at ∼200 AU reveals that there

We apply “Keplerian masking” to enhance the signal- to-noise ratios of our 12 CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks

Panel (a) – 13 CO line intensity radial profiles (solid lines) obtained with three representative disk models with input surface density distribution Σ gas (dashed lines) given by