• No results found

Modeling preferences, strategic reasoning and collaboration in agent-mediated electronic markets

N/A
N/A
Protected

Academic year: 2021

Share "Modeling preferences, strategic reasoning and collaboration in agent-mediated electronic markets"

Copied!
300
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Modeling preferences, strategic reasoning and collaboration in

agent-mediated electronic markets

Citation for published version (APA):

Robu, V. (2009). Modeling preferences, strategic reasoning and collaboration in agent-mediated electronic

markets. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR642817

DOI:

10.6100/IR642817

Document status and date:

Published: 01/01/2009

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners

and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

• You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please

follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)
(3)

Graduationcommittee:

Prof.dr.A.G.L.Romme(chair)

Prof.dr.HanLaPoutr´e(promotor)

Corereadingcommittee:

Prof.dr.NicholasR.Jennings(Univ.ofSouthampton,UK)

Prof.dr.DavidC.Parkes(HarvardUniversity,US)

Prof.dr.TonG.deKok(TechnischeUniversiteitEindhoven)

Prof.dr.EmileH.L.Aarts(TUEindhoven&PhilipsResearch)

Additionalmembers:

Prof.dr.CatholijnJonker(TechnicalUniversityofDelft,NL)

Prof.dr.CeesWitteveen(TechnicalUniversityofDelft,NL)

SIKSDissertationSeriesNo.2009-19

TheresearchreportedinthisthesishasbeencarriedoutatCentrumvoorWiskundeen

Informatica(CWI),AmsterdamundertheauspicesofSIKS,theDutchResearchSchoolfor

InformationandKnowledgeSystems.

ISBN:978-90-386-1816-6

AcataloguerecordisavailablefromtheEindhovenUniversityofTechnologyLibrary

PublishedbyTechnischeUniversiteitEindhoven,2009

PrintedondemandthroughLulu.com

Copyright c 2009byValentinRobu.Allrightsreserved.

Coverillustrations:

Front:“Afractalmodelofthebrain”-courtesyofSvenGeier.

(4)

Agent-Mediated Electronic Markets

PROEFSCHRIFT

terverkrijgingvandegraadvandoctoraande

TechnischeUniversiteitEindhoven,opgezagvande

rectormagnicus,prof.dr.ir.C.J.vanDuijn,voor

eencommissieaangewezendoorhetCollegevoor

Promotiesinhetopenbaarteverdedigen

opdonderdag2juli2009om16.00uur

door

ValentinRobu

(5)
(6)

Firstandforemost,I'mdeeplygratefultomyadvisor,HanLaPoutr´eforhavingmeashis

PhDstudentandforhispatientguidancealltheseyears. Ourdiscussionsprovidedmewith

lotsofinsightsandmotivation(attimeswhenitwaslacking),andhadadeningcontribution

inshapingmyresearchinterestsandcareer. IhadagreatdealtolearnfromHan,notonly

aboutwhatitmeanstogetsolidresearchresults,butalsoaboutacademiclifeingeneral.

Also,aspecial“thankyou”toCatholijnJonker,who,asmy Masterthesissupervisor

attheFreeUniversityAmsterdamintroducedmetotheworldofmulti-agentsystems,and

toautomatednegotiationinparticular.Herenthusiasmanddedicatedguidancewerehighly

motivatingindeterminingmetopursueaPhDaftergraduation.

Iamalso gratefultoNickJenningsandDavid Parkes,my externalthesiscommitteee

membersforthecarefulreadingofmydissertationandtheirsuggestions,whichmadethe

presentation ofthisthesis much stronger. Furthermore, Iwouldliketothank professors

Ton de Kok, Emile Aarts andCees Witteveenforreading my thesis andtheirinsightful

comments. I alsoacknowledgeprofessorIoanAlfredLetia(TUCluj-Napoca, Romania),

whorstrecommendedmetopursueamasterdegreeintheNetherlands.

ThisthesiswouldnotbewhatitiswithouttheexcellentcollaboratorsandcolleaguesI

hadovertheyears.Iwillbeginbymyco-authors(and,attimes,co-advisers)atCWI:Koye

Somefun,PieterJan'tHoen,SanderBohte,HanNoot,PeterBosmanandEnricoGerding

(whomIhadthepleasureofmeetingagaininSouthampton).Thebreadthoftheirresearch

interestsandtheideasweexchanged(someofwhichmaterializedinpublications)werean

assettomyresearchcareer.

Also,manythankstoprof.CeesWitteveenandthegroupfromDelft:MathijsdeWeerdt,

TomasKlos(whowasalsomyroom-mateatCWIforayear),RenzeSteenhuizen,Yingqian

Zhang,SiccoVerwerandTamasMahr.Theinvitationtolecturethere(part-time)forayear

wasagreatlearningexperienceforme,sinceIgottoseersthandthechallengesinvolved

inteachingsideofacademiclife. AlsoKoenHindriksandDmytroTykhonovfromDelft

providedmanyinterestingdiscussions.

AnotherdeningmomentinmyPhDresearchwasattendanceoftheSantaFeComplex

SystemsSummerSchool.Iamindebttoallteachersandfellowparticipants,butin

partic-ulartoHarryHalpin(EdinburghandMIT)andHanaShepherd(Princeton). Theexcellent

collaborationforgedwiththemledtoaveryinterestingandsuccesfulllineofresearchon

collaborativetagging,whichresultedinachapterofthisthesis.Furthermore,Ihadthe

(7)

andhisenthusiasmandinsightsmotivatedmetolearnalotaboutwebscience.

Iwouldalsoliketothank TakayukiIto(Nagoya University andMIT),Minjie Zhang

(WallongongUniversity,Australia),ShaheenFatima(Liverpool),TokuroMatsuo(Nagoya)

andHiromitsuHattori(KyotoUniv.-whoalsovisitedusatCWI).Ihadthepleasureof

co-organisingwiththemasuccesfulworkshoponcomplexautomatednegotiations(thisyear,

forthethirdyearrunning),aswellascoordinatingonanAAMASconferencetutorial.

IamalsogratefultothepeoplefromAlmendeBV,Rotterdam,whoofferedmea

year-longinternshipduringmymasterthesisdays, ofwhichImentionhere: PeetvanTooren,

HansAbbink,TamasMahr,JPLarsenandStefanKroon. Besidesimprovingconsiderably

my programmingskills, thisinternshipgavemeagreatperspectiveonthe challenges

in-volvedindeployingagentsystemsinpractice,whichIwouldnevergetfromapurely

aca-demiccareer. ThelivelyargumentswithPeetalsotaughtmealotabouttheimportanceof

keepinganopenmindanddefendingthepracticalrelevanceofone'swork. Also,Iwould

liketothankWillem-JanvanSchijndel,fromourprojectpartnerVosLogistics,forhistime

inworkingwithustogetaconcreteapplicationfromourworkonauction-basedallocation.

DuringmytimeatCWI,Ihavebeenpriviligedtosupervisetwoexcellentmaster

stu-dents: Sandervander Putten(TechnologyManagement, Eindhoven)andLonnekeMous

(Econometrics, Univ. Rotterdam). Both hadexcellentresults(includingcumlaude

grad-uationsandprizesforbestthesisintheeldsintheNetherlands). Sanderhelpedusclose

the conceptualgapbetweenthe way AIresearchersandlogistic managerssee theworld.

TheworkwithLonnekeonusingpricedoptionstosolvetheexposureprobleminsequential

auctionsdenitelyledtooneofthemostinterestingdirectionsofworktoemergefromthis

thesis,onethatIdenitelyintendtopursefurtherinmyresearchwork.Moreover,Lonneke

isagreatpersontoworkwith,andIrememberfondlythetravelsthroughthenarrow(and

sunny)streetsofLisbonwithLonnekeandAnke.

WhichbringsmetooneofthemostimportantgroupsofpeopleImetduringmyPhD.

I'mrefering,ofcourse,totheothermembersofthe“gangoffour”PhDstudentsofHan:

AnkeHutzenschreuter,IvanVermeulenandMengxiaoWu(ofwhich,inthatorder,therst

twowerekindenough tobemy paranimfem,while the lasttwowere myroom-matesat

CWIforthepast3years).Ourdiscussionscoveredeverythingfrombargainingmodelsand

distributedpatientschedulinginhospitalstofoodrecipesandthevirtuesofwheatbeer.Also,

ourculinaryexplorationsofthedelightsofAmsterdamwillbeveryfondlyremembered.

Also,I'dliketothankallmyfriendsinAmsterdam,startingwithmyRomanianfriends:

Tudor,Radu,Ghita,VladandLiviu,whohavebeenagreathelpandsupportwhenmoving

tothe Netherlands, andwerealwaysthereto shareabeerinCafe Uilenstede(andmove

furniture,anotherconstantinthelifeofaPhDstudent). Also,manythanks tomy many

otherDutchfriends:Benno,Abel,Richard,Leopold,Jan,Onno,RuggieroandJoost. You

showedme thatdoingaPhDinAmsterdamcanhaveitsfairshareofexcitement,besides

fromtheprofessionalexcitementofbrowsingthelatestAAMASconferenceproceedings.

Finally,my familywhohavehelped methroughthisallalong, especiallymymother

(8)

1 Introduction 1

1.1 Agentsandelectronicmarkets . . . 1

1.2 Negotiation(bargaining)vs.auctionprotocols . . . 2

1.3 Designingforstrategicbehaviour:marketmechanismsvs. individualagent strategies . . . 3

1.4 Modelingpreferencesandutilitiesinagent-mediatedmarketsettings . . . . 5

1.5 Emergenceofcollaborationandstructureinmulti-agentsystems . . . 6

1.6 Positioningofthecontributionsofthisthesis. . . 7

1.7 Modelingofcombinatorialpreferences(multi-issueormulti-item)in bilat-eralnegotiations. . . 8

1.7.1 Pareto-optimaloutcomesinmulti-issuenegotiation . . . 9

1.7.2 Modelingmulti-attributenegotiationwithincompletepreference in-formation . . . 11

1.7.3 Non-linearandcombinatorialpreferencesinnegotiation . . . 11

1.7.4 Modeling multi-itemnegotiationsoverk-additiveutilityfunctions usingutilitygraphs . . . 13

1.7.5 Individualpreferencesandsocialinuence . . . 14

1.7.6 Learningthe structureofutilitygraphsusedinmulti-item negotia-tionthroughcollaborativeltering . . . 15

1.8 Preferencesunderuncertaintyandbiddinginsequentialauctions . . . 16

1.8.1 Sequentialauctionsandtheexposureproblem. . . 16

1.8.2 Designingsequentialauctionstrategiesforrisk-aversebidders . . . 17

1.8.3 Optionsmechanismsinsequentialoptions . . . 18

1.8.4 Usingpricedoptionstosolvetheexposureproblem . . . 19

1.9 Applicationstotransportationlogistics . . . 20

1.9.1 Auction-basedallocationoftransportationloadsinmulti-party trans-portationlogistics. . . 20

1.10 Preferencesinsocialwebcommunitiesandonlinemarkets . . . 21

1.10.1 Thecomplexdynamicsofcollaborativetaggingsystems . . . 22

1.10.2 Anempiricalanalysisofsponsoredsearchmarkets . . . 23

1.11 Structureofthethesis . . . 23

1.12 Publicationsrelatedtoeachchapter . . . 26

(9)

I Modelingcombinatorialpreferencesinbilateralnegotiation

(bar-gaining) 31

2 AnAgent ArchitectureforCooperativeMulti-Attribute NegotiationWith

In-completePreferenceInformation 33

2.1 Introduction . . . 33

2.2 Themulti-attributenegotiationmodel . . . 34

2.2.1 BidUtilityDeterminationandPlanningComponent . . . 35

2.2.2 TheAttributePlanningComponent . . . 36

2.2.3 TheTargetEvaluationPlanningComponent . . . 37

2.2.4 EstimationofOpponent'sParametersComponent. . . 39

2.2.5 GuessCoefcientsComponent. . . 40

2.3 Implementation&Experimentalvalidation . . . 41

2.3.1 Experimentalset-up . . . 41

2.3.2 Anexamplenegotiationtrace . . . 42

2.3.3 Comparingtracesfromthesametestset . . . 45

2.3.4 Comparingresultsfromalltestsets . . . 48

2.3.5 Human-computerexperiments . . . 49

2.4 Discussion. . . 50

2.5 Conclusions . . . 51

3 ModelingComplexMulti-IssueNegotiationsUsingUtilityGraphs 53 3.1 Introduction . . . 53

3.2 Thenegotiationsetting . . . 57

3.2.1 NetUtilityfunctionsofBuyerandSeller . . . 57

3.2.2 Usinggainsfromtradeasefciencycriteria . . . 58

3.2.3 Outlineofthenegotiationsettingandprotocol. . . 58

3.2.4 Assumptionsaboutbuyerknowledge . . . 60

3.2.5 Top-levelnegotiationalgorithmusedbytheseller . . . 60

3.3 Decomposableutilityfunctionsandtheirgraphicalrepresentation . . . 61

3.3.1 Thek-additiveutilityform . . . 62

3.3.2 Usinggraphstomodelcomplexutilityfunctions . . . 63

3.4 Negotiationheuristicsbasedonutilitygraphs . . . 64

3.4.1 Selectingthebestcounteroffer. . . 65

3.4.2 UpdatingSub-utilityFunctions. . . 69

3.5 Constructingthestructureofutilitygraphsusingaggregatenegotiationdata 72 3.5.1 Collaborativeltering:briefintroduction . . . 72

3.5.2 Overviewofourlteringandnegotiationapproach . . . 73

3.5.3 Minimalsuper-graphforaclassofbuyers . . . 74

3.5.4 Extractinginformationfromconcludednegotiationdata . . . 75

3.5.5 Computingthesimilaritymatrices . . . 76

3.5.6 Buildingthesuper-graphofbuyerutilities . . . 77

3.5.7 MinimizationofexpectedlossinGainsfromTradeascut-offcriteria 78 3.6 ExperimentalAnalysis . . . 79

(10)

3.6.3 Set-upandresultsfordifferentgraphstructures . . . 83

3.6.4 Experimentalset-upandanalysisofthecollaborativelteringmodel 87 3.6.5 Resultsfromretrievalexperimentsusingcosine-basedvs. correla-tionbasedsimilarity . . . 89

3.6.6 Experimentalresultsforselectinggraphcut-offnumberofedgesin themaximalgraph . . . 91

3.7 Discussion. . . 94

3.7.1 Comparisontootherautomatednegotiation(bargaining)approaches 94 3.7.2 Relationtographicalutilitymodelsandpreferenceelicitation . . . 97

3.8 Conclusionsandfuturework . . . 98

II Preferencesunderuncertaintyandstrategicreasoningin sequen-tialauctions 103 4 Designingbiddingstrategiesinsequentialauctionsforriskaverseagents 105 4.1 Introduction . . . 105

4.1.1 Goalsandorganisationofthischapter . . . 107

4.2 ModelingUtilityFunctionsUnderRisk . . . 107

4.2.1 Theimportanceofriskaversionindecisionmaking:anexample . . 110

4.3 Biddinginsequentialauctionswithcomplementarities . . . 111

4.3.1 Optimalbiddingpolicyforsequential2ndprice(Vickrey)auctions. 113 4.3.2 Optimalbiddingpolicyforsequential1stpriceauctions: numerical solutions . . . 115

4.3.3 Biddingstrategyformultiplecopyauctionsequences . . . 117

4.4 Experimentalanalysis. . . 118

4.4.1 Experimentalhypotheses . . . 119

4.4.2 Experimentalsetup . . . 119

4.4.3 Experimentalresultsforone-typeitemauctions . . . 120

4.4.4 Resultsforoneitemanddifferentauctionlengths . . . 121

4.4.5 Settingwithdifferentitemtypesandmorecomplexpreferences . . 123

4.4.6 Multipleitemsetting:hypotheses . . . 125

4.4.7 Resultsfortwo-itemcase. . . 127

4.5 Conclusionsandfurtherwork. . . 127

5 UsingPricedOptionstoSolvetheExposureProbleminSequentialAuctions 129 5.1 Introduction . . . 129

5.1.1 Options:basicdenition . . . 130

5.1.2 Relatedwork . . . 131

5.1.3 Outlineandcontributionofourapproach . . . 132

5.2 Expectedprotforasequenceofnauctionsand1synergybuyer . . . 133

5.2.1 Protwithnuniquegoodswithoutoptions . . . 133

5.2.2 Protwithnuniquegoodswithoptions . . . 135

(11)

5.3.1 Whenagentsarebetteroffwithoptions . . . 137

5.3.2 Synergybuyer'sprot-maximizingbid . . . 145

5.4 Simulationofamarketwithasinglesynergybuyer . . . 151

5.4.1 Synergybuyer'sbidstrategy . . . 152

5.4.2 Experimentalresults:marketentryeffectforonesynergybuyer . . 155

5.5 Settingswithlongersequencesofauctionsandeffectofauctionorder . . . 158

5.6 Multiplesynergybuyers . . . 160

5.6.1 Twosynergybuyersinteractingindirectlythroughtheexerciseprice level. . . 161

5.6.2 Directsynergybuyercompetitioninthesamemarket . . . 162

5.6.3 Largersimulationwithrandomsynergybuyers'marketentry. . . . 163

5.7 Discussionandfurtherwork . . . 164

III Emergenceofcollaborationandsocialpreferences inweb com-munitiesandonlinemarkets 167 6 EmergenceofConsensusandSharedVocabulariesinCollaborativeTagging 169 6.1 Introduction . . . 169

6.1.1 TaggingversusTaxonomiesontheWeb . . . 170

6.1.2 OverviewofRelatedWork . . . 172

6.1.3 TheTripartiteStructureofTagging . . . 175

6.1.4 Organizationofthechapter. . . 177

6.2 DetectingPowerLawsinTags . . . 177

6.2.1 PowerLawDistributions:Denition. . . 177

6.2.2 EmpiricalResultsforPowerLawRegressionforIndividualSites. . 178

6.2.3 EmpiricalResults forPowerLaw Regression UsingRelative Fre-quencies. . . 180

6.3 TheDynamicsofTagDistributions. . . 181

6.3.1 Kullback-LeiblerDivergence:Denition . . . 181

6.3.2 ApplicationtoTagDynamics . . . 182

6.3.3 EmpiricalResultsforTagDynamics . . . 182

6.3.4 Examiningthedynamicsoftheentiretagdistribution . . . 184

6.4 ConstructingTagCorrelationGraphs . . . 185

6.4.1 Methodology . . . 185

6.4.2 Constructingthetagcorrelation(folksonomy)graphs . . . 186

6.5 Identifyingtagvocabulariesinfolksonomiesusingcommunitydetection al-gorithms . . . 189

6.5.1 Usingcommunitydetectionalgorithmstopartitiontaggraphs . . . 190

6.5.2 Edgelteringstep . . . 191

6.5.3 Normalizedvs.non-normalizededgeweights . . . 191

6.5.4 Thegraphpartitioningalgorithm. . . 192

6.5.5 Graphpartitioning:experimentalresults . . . 194

(12)

fromsearchenginequerydata . . . 196

6.6.1 Datasetandmethodologyemployed. . . 198

6.6.2 Discussionoftheresultsfromthequerylogdataandcomparison . 198 6.7 ConclusionsandFutureWork. . . 200

6.8 Acknowledgments . . . 201

7 TheComplexDynamicsofSponsoredSearchMarkets:AnEmpiricalStudy 203 7.1 Introduction . . . 203

7.1.1 Thedataset . . . 204

7.2 Complexsystemsanalysisappliedtothewebandeconomics . . . 204

7.2.1 Powerlaws:denition . . . 205

7.3 Inuenceofdisplayrankonclickingbehaviour . . . 206

7.3.1 Resultsondisplaypositionbiasandinterpretation . . . 207

7.4 Marketstructureattheadvertiserlevel . . . 209

7.4.1 Distributionofimpressionsvs. distributionofclicksforthetop ad-vertisers . . . 209

7.4.2 Distributionofmarketshareperdisplayrankposition. . . 210

7.5 Usingclickdatatoderivesearchtermrecommendations . . . 211

7.5.1 Derivingdistancesfromco-occurrenceinsponsoredclicklogs . . . 212

7.5.2 Constructingkeywordcorrelationgraphs . . . 212

7.5.3 Graphcorrelationgraphs:results. . . 213

7.5.4 Automaticidenticationofsetsofkeywords . . . 214

7.5.5 Discussionofgraphpartitioningresults . . . 215

7.6 Discussion. . . 216

7.6.1 Contributionofthechapter&relatedwork . . . 216

7.6.2 Futurework. . . 217

7.6.3 Acknowledgements. . . 217

IV Conclusions 219 8 Conclusionsandfurtherwork 221 8.1 Overviewoftheresearchcontributionsperchapter . . . 221

8.2 Furtherwork . . . 224

(13)

V Anindustrialapplicationcase 229

A APlatformforAuction-BasedAllocationofLoadsinTransportationLogistics 231

A.1 Introduction . . . 231

A.1.1 Themulti-partylogisticsdomain . . . 232

A.1.2 Companyprole . . . 232

A.1.3 Automatingmulti-partylogisticsusingagents . . . 233

A.1.4 Goalsofthiswork . . . 233

A.2 Overviewofthebusinesscaseandourplatform . . . 235

A.2.1 Generatingtransportationorders . . . 235

A.2.2 Computingpricesandcosts . . . 237

A.3 Auctionprotocolanddesignoftheauctioneeragent . . . 237

A.3.1 Auctionset-up . . . 238

A.3.2 Auctionsforloadswithashortleadtime . . . 238

A.3.3 Auctionsfororderswithalongertimehorizon . . . 239

A.3.4 Totalcapacityofloadstobegeneratedperday . . . 239

A.3.5 Auctioneeruserinterface . . . 240

A.4 Automatedbidders:descriptionanduserinterface . . . 241

A.5 Thecarrieragents:descriptionanduserinterfaces . . . 242

A.5.1 Transportationmodelandcarriercosts. . . 243

A.5.2 Penaltyforlatedeliveries. . . 244

A.5.3 Informationsuppliedaboutothercarriersduringthecompetition . . 244

A.5.4 Planningandbiddingdecisionsupportinterface. . . 245

A.6 Outlineofpreliminaryhumanbiddingresults . . . 246

A.7 Discussion. . . 247

(14)

Introduction

1.1 Agentsand electronicmarkets

Multi-agentsystemsare oneofthemost promisingnewtechnologiestoemergeinrecent

decades, atthecrossroadsbetweenseveraleldssuchas articialintelligence,distributed

systems,economicsandevensociology. Someauthors[16,231]haveoutlinedavision,in

whichmanyofthetasksperformedtodaybyhumansaredelegatedtointelligent,autonomous

andproactiveprograms,genericallycalledsoftwareagents. Asystemcomposedofseveral

suchagentsiscalledamulti-agentsystem(MAS).

Electronicmarketsrepresentkeycoordinationmechanismsinmulti-agentsystems.They

allowpartiestoefcientlyallocateresources,tasksandcapabilitiesinlargedistributed

sys-tems,composedofself-interestedagents. Therapidriseinelectroniccommerceand

mar-keting,logistics,distributednetworks(amongmanyothers)havemadethedevelopmentof

agenttechnologiescapableofautomatingsuchprocessesincreasinglyimportant.For

exam-ple,electroniccommercehaswitnessedanexponentialincreaseinthevalueofthegoodsand

servicessoldonlinejustinthepastfewyears. Itisnotjustthesaleofphysicalgoodsthat

hasgreatlyincreased,butalsothesaleof“virtual”services,suchasscreenattentionspace

fordisplayingadvertisingine-commerce,orkeywordhitsbysurfersusingsearchengines.

Suchsalesrequirefrequent,repeatedinteractions,whicharethetypeofprocessesthatare

likelytobenetmostfromautomationusingsoftwareagents.

Therearemanychallengesthat designersofagents actinginelectronicmarketsmust

face. Perhapsthemosteasilyrecognizedchallengeindesigningandusingsuchasystem,

isthelackofcentralizedcontrol. Agentsareautonomousactors,thattaketheirown

deci-sions,ratherthansimplyexecutingoperationsassignedtothembyanoutsideprocess(such

asobjectsorwebservicesdo).Furthermore,perhapsmoreimportantly,theyareoften

self-interestedactors,whosegoalsandobjectivesmaynotmatch. Forexample,inoptimizing

(15)

alloca-tionofloadsfromtheperspectiveofeachcompanymaybeverydifferentthantheoptimal

allocationfortheentiresystem. Inotherapplicationscenarios,suchasonlineadvertising,

agentsrepresentingdifferentcompaniesactivelycompeteforvirtualcommodities,suchas

consumerattentionspace.

AnimportantchallengeinMASisthepresenceofuncertainty,i.e. incompleteor

im-perfectinformation,bothregardingthemarketenvironment,thepreferences,strategiesand

behaviourofthe otheragents and,sometimes, evenuncertaintyinspecifyingtheagent's

own preferences. Furthermore, unlikeassumptions commonlymadein gametheory, the

agentsareboundedrationalactorsandoftenhavetomakedecisionsinlimitedtime,under

riskaversionorbasedonotherconstraintsimposedbytheirownersorthemarket

environ-ment.Moreover,theopposingagentsparticipatinginthesamemarketmayalsobebounded

rationalandevenact `irrationally”, whichmakes modelingtheagent'sown “optimal”or

“rational”behaviourinsuchasettingevenharder.

Anotherimportantapproachinthestudyofagent-mediatedelectronicmarketsare the

so-calledcomplexsystemstechniques.Theaimofsuchapproachesistoexaminehoworder

and structurecanemerge ina large systemcomposed ofmanyautonomousentities(i.e.

agents),actingindependently,withoutanycentralcontrollertoprovidecoordination. The

recentsurgeofinterestinsystemssuchaswebcommunitiesandonlineelectronicmarkets,

wherestructureemergesoutofindividualagentdecisions,makessuchquestionsincreasingly

important.

1.2 Negotiation(bargaining)vs. auctionprotocols

Negotiation,verybroadlydened,isthe“processbywhichagroupofagentscommunicate

withoneanothertotrytoreachagreementonsomematterofcommoninterest”c.f.[111,

189].Automatednegotiationhasbeenattheforefrontofresearchinterestsinthemulti-agent

researchcommunityeversincethebeginningoftheeld[129,189].

Oneofthemaindistinctionlinesbeingdrawninexistingliteratureisbetweenautomated

negotiation(bargaining)protocolsandauctionprotocols[111,147]. Bargainingisalways

adecentralizedprocessandistypically(thoughnotnecessarily)based onan“alternating

offers”-typeofprotocol. Someauthors[111,115,175](amongothers)arguethat

bargain-ingdoeshavesomeadvantagesoverauctions,especiallyinmultipleissuecases, inwhich

thereisincompleteinformationabouttheopponentpreferences(orevenuncertaintyabout

the agent'sownpreferences)andthespace ofpossibledealstobeexploredisverylarge.

Bargainingalsoallowsmoreexibilityinhowthenegotiationismodeled,aswellasa

de-greeofself-interestonthepartoftheagents. Somesources[87,115,175,179]evenargue

that,inelectroniccommerce,multi-issuenegotiationshouldbemodeled,atleastpartially,

asacooperativeprocess,becausesellershaveaninterestinmaintainingagoodrelationship

andthelong-termsatisfactionoftheirbuyers.

Auctions,ontheotherhand,followprotocolswithxedrules,thattypicallyrelyona

(16)

managementscience[190],butalsoarticialintelligenceandtheoreticalcomputerscience

[27,55,58,59,81,142,174,194].Theyhavebeenthemethodofchoiceforautomating

elec-tronicmarketplaces.

Inourwork,wehavelookedatbothmechanisms,fordifferentsettings.Ourinitialwork

inthetopicstartedondesigningefcientbilateralnegotiationmechanisms,rstforlinear

utilityfunctions(Chapter2ofthisthesis),thenforcomplex,interdependentutilityfunctions

(Chapter3). Wehavealso lookedatdesigningbiddingstrategiesforsequentialauctions,

insettingsnotpreviouslyconsideredinexistingliterature,suchasthecasewhensomeof

theagents areriskaverse(Chapter4), orwhenoptionsareauctionedinstead oftheitems

themselves(Chapter5).

Thisthesistakesanengineeringapproach,meaningthatweaimtoidentifyopen

prob-lems,andthenengineerandvalidatesolutionsforthem. Wedostudytowhatdegreethese

problemscanbeaddressedusingananalytical,mathematicalapproachinsofaraspossible.

However,manynegotiationandauctioningprocessesaretoocomplextobesolvedusinga

purelyanalyticalapproach,asisnormallythecaseforreal-worldproblems. Insuchcases,

experimentalvalidationisapromisingalternative,whichwasusedextensivelyinthisthesis.

Acommonthreadrunningthroughthe researchpresentedinthisthesisisthatwetake

theheuristicapproachtothedesignofbiddingagents. Thatis,we focusourattentionon

designingthestrategiesthatbiddingagentsusetobidornegotiateinagivenmarket

envi-ronment(usuallyonewidelyencounteredinpractice),notthemarketprotocolitself.Thisis

animportantdistinction,asexplainedinthenextsection.

1.3 Designingforstrategicbehaviour: marketmechanisms

vs. individual agent strategies

With the growth of interest in electronic markets, several research lines have emerged,

proposingdifferentapproachestomodelingstrategic,self-interestedbehaviourwhen

allo-catingresourcesortasksamongasetofagents.Oneofthemostpromisingsuchapproaches

iscomputationalmechanismdesign-ortobemoreprecise,thatpartofmechanismdesign

theorythatconcernsdesignofelectronicmarkets.

Mechanismdesigninitiallydevelopedasabranchofalgorithmicgametheory[168].

Ba-sicallydened,mechanismdesignisconcernedwithdeningthe“rulesofthegame”(i.e.the

marketmechanism),suchthattheoutcome(i.e. nalallocationoftheitems,togetherwith

the correspondingpayments)guaranteescertaindesiderata (i.e. properties).

Commonly-citeddesideratainclude,forexample:Pareto-optimality,efciency,budgetbalanceor

indi-vidualrationality[58].

Besidesfromthesegame-theoreticdesiderata,computationalrequirements(i.e.the

com-putationtimeormemoryneededtondsuchamechanism)oftenplayanimportantrole.The

(17)

biddingagents,asthestructureofthemarketprovidesbidderswithanequilibriumbidding

strategy.Differentequilibriumconceptexist,varyingintheirstrength,e.g.dominant

strate-gies,ex-postefcient,Bayesian.Themostdesirablemarketmechanismsarestrategy-proof

mechanisms,i.e.thosemechanismsinwhichtruthfulbiddingisthedominantstrategy.

Themechanismdesignapproachhasproventobeverysuccessfulinmanyapplications.

However,thereexistsawiderangeofpracticalsettingsforwhichitisunrealistictoassume

thatonecandesignacompletelynewmarketmechanismfromscratch. Furthermore,many

mechanismsproposedbythislineofresearchofteninvolveallocationandbiddingrulesthat

carefullydesignedandmathematicallysound,butmaybecounter-intuitiveforhumanusers

ofthesystem.

Moreover,inmanyreal-lifeallocationproblems,thereismorethanonemarketanagent

can/shouldparticipatein,andthestrategicbehaviouracross“marketborders”becomesthe

crucialissue.Evenifanagenthasanoptimal(e.g.dominant)biddingstrategyineachofthe

marketsheparticipatesin,whencoordinatingthebiddingindifferentmarkets,hisoptimal

strategymaybeverydifferentfromthedominantstrategyforeachmarkettakeninisolation.

One suchexampleis bidding ina sequenceof secondprice(i.e. Vickrey)auctions, for

agents whichhavecomplementaryutilities overtheitems beingoffered[27,89,187,217]

1

. Althoughtheagents insuchasequentialauctionhaveadominantbidding strategyin

eachindividualVickreyauctiontakeninisolation,biddingoptimallyinasequenceofsuch

auctionsisacomplexdecisionproblem,andthebidsplacedintheoptimalsequentialbidding

policymaydifferconsiderablythanthedominantbidsintheindividualauctions

2 .

Similarly,arelateddecisionproblemisfacedbyagentsbiddinginasetofsimultaneously

ascendingascendingEnglishauctions,whenagentshavecomplementaryutilityfunctions[1,

184].Whereasasimple,dominantbiddingstrategyexistsforeachEnglishauctiontakenin

isolation,determiningtheoptimalbiddingstrategyfortheentiresetisachallengingproblem,

forwhichnodominantstrategyresultsareknown. Intuitivelyexplained,itisdifcultfor

abiddingagenttodistributethe additionalcomplementarityvalueacross asequenceora

setofsimultaneousauctions, becausean agentcanonlyknowifhe canbenetfrom the

complementarityonceallitemsinthedesiredbundlehavebeenacquired(i.e. onceallthe

auctionsclose).

Whilethecomputationalmechanismdesigncommunityhasbegantoaddresssomeof

thesechallenges,throughsuchtechniquesasonlinemechanismdesignoradaptive

mecha-nismdesign[33,74,92],theseapproachesstillimposeseveralrestrictionsonthestructureof

theproblem,andformanymarketsettingwidelyusedinpractice,nodominantequilibrium

strategiesare[yet]knowntoexist.

Theresearchperformedforthisthesismostlyfollowstheothermaindirectionofresearch

1

Whilethesenotionswillbeformallydenedlater,intuitively,acomplementaryvaluationimpliesthatanagent assignsacombinationofitemsasuper-additiveutility(i.e.autilityhigherthanthesumoftheitemstaken individ-ually),whilesubstitutabilityimpliesasub-additiveutility(seeChapter3)

2

Inasequenceofauctions,thisistruewhenevereithercomplementarityorsubstitutabilityeffectsexistbetween items,orthereareotherpreferenceconstraintstoaccountfor,suchasbudgetconstraintsoraversiontorisk(c.f. [27,89,187]andChapters4and5.

(18)

designtheoptimalagentstrategiesforbiddinginsuchmarkets?

Workondesigning biddingagents' strategiesalso hasarelativelylonghistoryin the

MAS community[1,27,81,83,89,184,188,223](amongmayothers). Severalplatforms

havebeenproposedtoenablecomparisonofdifferentauctiontradingstrategies(aswellas

learningandadaptationheuristics).Themostwell-knownistheTradingAgentCompetition

(TAC)platform,withits differentversions: TACclassic, TACsupply-chainmanagement

etc.[96,192,227,230]. ThemarketstructurefortheTACcompetitionsisbuilttoresemble

tradingscenariosthatwouldbeencounteredinpractice. Reasoningrequiredforthe

trad-ingagentsintheseplatformscombineselementsofbothefcientbiddinginsequentialand

simultaneousauctions,aswellaslearning,anticipationoffutureorders,inventory

manage-mentetc. Anotherdirectionofwork(mentionedhereforcompleteness)examinesbidding

heuristicsfordoubleauctionsettings[226],whichischaracteristictonancialmarkets[124].

Asalreadydiscussed,inthisthesiswealsotaketheheuristicapproach,andwearemostly

concernedaboutthedesignofagentstrategies,ratherthanthethemarketmechanismitself.

Inparticular,weareconcernedwithoneaspectoftheproblem,whichishowtomodeland

efcientlyusepreferenceinformationoftheagentstakingpartinsuchmarkets.

1.4 Modeling preferences and utilities in agent-mediated

marketsettings

Inbuildingefcient electronicmarkets, the methodofmodelingandreasoningabout the

preferences ofparticipatingagents is akeymodelingchoice. Some sourcescall

model-ingpreferencesofbuyersandprovidersremainsthe“Achilles'heel”intheapplicationof

multi-agentresourceallocationtoindustrialprocurementsettings[46].Thereare,however,

considerabledifferencesastotheirmeaningoftheterms“preference”and“utility”in

dif-ferentsources intheeconomicsandmulti-agentsystemliterature. Inthe broadestsense,

preferencesexpressthe“relativeorabsolutesatisfactionofanindividualwhenfacedwitha

choicebetweendifferentalternatives”[46]. Inthisthesis,webroadlydistinguishbetween

twobroadclassesofconceptsofpreferenceorutility:preferencesincombinatorialsettings

(i.e. toreasonregardingmultiplecriteria ormultipleitems)andpreferencesunder

uncer-tainty.

Mostexistingliteratureonmulti-agentresourceallocationandmarketmechanisms

con-siderscombinatorialpreferencesandutilities. Combinatorialpreferencesareeither

multi-item(i.e.involveexpressingpreferencesovercombinationsofitems)ormulti-issueor

multi-attribute(e.g. involvecombinationsofattributesforthesameitem, e.g. colour,priceand

mileageforausedcar,totaketheexampleusedinChapter2). Moreover,inmany(ifnot

most)realisticapplications,itisreasonabletoexpectthattherearecomplexdependencies

betweenattributesoritems,andthechoiceinonemayaffectthechoicemadeforasubsetof

(19)

non-linear,combinatorialpreferencesinmarketsituationsisacomplexproblem,whichwe

discussinSect.1.7below.

Anotherperspectiveondeningpreferencesconsidersthecomplexdecisionsanagent

faces,notsomuchwithrespecttospecifyingdesiredcombinationsovermultipleitemsor

issues,butwithrespecttouncertaintyaboutthefuture.Thisappearstobeastandard

under-standingof“preference”insomeelds,suchaseconometrics.Forinstance,ina2006MIT

textbookoneconometricanalysisofauctiondata[171],thechapterregardingpreferences

dealsexclusivelywithpreferencestowardsrisk. Inthisthesis,we considerboth

perspec-tivesonpreference,andbothtypesofmarket-basedinteractiondiscussedabove: bilateral

negotiationandauctions,althoughfordifferentproblems.

1.5 Emergenceofcollaborationandstructureinmulti-agent

systems

Asnoted inSection1.1,another importantproblemarisinginmulti-agentsystems is the

lackofcentralizedcontrol.Nevertheless,manysystemsoccurringinreal-lifethatonewould

intuitively recognizeas “multi-agent”, exhibit aremarkabledegreeofstructure, although

theylackanyrecognizablecentralauthorityor“controller”.Instead,orderseemstoemerge

fromthedecentralizedactionsofmanyautonomousagents,actingindependentlytosatisfy

theirowninterest.Examplesofsuchsystemsinclude:theformationofequilibriaandpricing

structureinmarkets(aphenomenarstreferredtobyAdam'sSmithasthe“guidinghand”),

emergenceofstablevocabulariesinhumanlanguages(butalsointaggingsystems)[40,93,

206],formationofstablegroupsinonlinesocialnetworks[131]etc.Thisraisesquestionsnot

onlyregardingtheexistenceandpropertiesofsuchstablestructures,butalsothedynamicsof

theprocess,i.e.howdotheyform,especiallyinanenvironmentwithnocentralinformation

sourceand/orself-interestedparties.

Oneoftherecentlyemergingeldsthataimstostudysuchphenomenaiscomplex

sys-temstheory[11,160,228]. TheseminalworkofRobertAxelroodontheevolutionof

co-operation[7]markedaturningpoint,sinceitshowed,throughcomputersimulations,how

cooperationcanemergeinamulti-agentsystem,evenintheabsenceofacentralauthority.

Arelated discipline that aims to examinecomplex-systems typephenomena through

large-scalesimulationsisagent-basedcomputationaleconomics[218].Therehasbeenmuch

workrecentlyinthisarea.Forexample,researchershavesimulatedthedynamicsofarticial

agentsocieties[7],stockmarkets[6],andevenentireeconomies[37,68].Thedevelopment

ofthewebhasgivenanewstimulustothiswork,andresearchershavebuiltcomplex

sim-ulationsoftheemergenceofsocialnetworks[131],onlinemarketsystems[54]orarticial

languagesandsemioticdynamics[42,210].

But,perhapsmoreimportant,theemergenceofthe“socialweb”provides,fortherst

time,theopportunitytotestthesehypothesesempirically,onreal-worlddata.Infact,while

(20)

re-datasetsgeneratedbytheactionsofverymany(thousands,orinsomecasesevenmillions)

ofwebusers.

Interestingly,manyofthe effects foundresembled closely what was hypothesised in

complexsystemstheoryfromthebeginning. Inparticular,itappearsthatthereare

impor-tant“networkeffects”whenmanyuserscollaborateonlineandmakedecisionsinan

on-linecommunityormarketplace. Whatthismeans,basically,isthattheactionsandchoices

madebyprevioususersmayconsiderablyinuencethechoicesmadebyfutureusers.This

typeofself-reinforcingfeedbackloopoftengivesrisetotheso-called“powerlaw”

distri-butions[11,41],whicharecharacteristicoflarge-scalesystemsthatcanbecharacterisedas

“complex”.

Thisthesismakestwoimportantcontributionstounderstandingtheemergenceofsocial

structureinsuchlarge-scale,decentralizedsystems. Oneiscollaborativetagging(results

presentedinChapter6)andsponsoredsearchmarkets(Chapter7).

1.6 Positioningof thecontributions ofthis thesis

The previousdiscussion identiedsomeimportantopenchallenges inunderstandingand

designingmulti-agentsystems:

 Complexityofrepresenting(andreasoningwith)complexpreferences.Theseinclude

bothcombinatorialpreferencesandpreferencestowardsriskanduncertainty.

 Strategicreasoningofagentsbasedonthesecomplexpreferences,especiallyforcases

whenagentsareself-interested.

 Lackofcentralcontrol,andespecially,theemergenceofcooperationintheabsence

ofacentralauthority.

Inthisthesis,weaimtomakeseveralcontributionstothestateoftheartinunderstanding,

modelingandsolvingthesechallenges,asfollows.

PartIofthethesisismostlyconcernedwiththeissueofmodelingcombinatorial

prefer-ences(multi-issueormulti-item)inbilateralnegotiations. Chapter2considershow

prefer-enceinformationcanbeefcientlyusedinanegotiationmodelinwhichuserspreferences

areexpressedoverseveraldiscreteattributesandonecontinuousattribute(price).Chapter3

considershowcomplex,multi-issuenegotiationsovermanybinaryitemsorbundlesofitems

canbemodeledusingutilitygraphs. PartIalsodealswithsomeissuesrelatedtostrategic

reasoning,since,althoughbilateralnegotiationisoftenapartiallycooperativeprocess,there

isanimportantdegreeofself-interestinvolvedonthepartofthebargainingagents.

PartIIofthe thesiscanbeseenas mostlydealingwithpreferencesinuncertain

envi-ronmentsandstrategicreasoning,inparticularthestrategicreasoningofagentswith

(21)

pricedoptionsmechanismcanhelpsolvetheexposureproblembiddersfaceina

sequen-tial auctionssetting(andimplicitly, thestrategicreasoningitinvolvesduringthe bidding

process). Buttheissueofpreferenceisalsoimportantinthispartaswell,althoughinthe

formofagentpreferencestowardsrisk,whenfacedwithanuncertainfuture.Inthiscontext,

Chapter4examineshowanagent'spreferencestowardsriskaffectshis/heroptimalbidding

policyandresultingmarketallocation.

Finally,PartIIIofthethesisstudiestheissueoflackofcentralisedcontrol,more

particu-lartheemergenceofcollaborationandstructureinalargemulti-agentsystem,intheabsence

ofacentralcontroller.Forthispart,weuselargescale,empiricaldatafromtwoimportant

“socialweb”applications:collaborativetaggingandsponsoredsearchmarkets.Whileinin

collaborativetagging,forinstance,theissueofstrategic/game-theoreticreasoningdoesnot

playadirectrole(sincethereisnocompetingallocationofsomescarceresource),stillthe

issueofhowagentstakedecisionsisacrucialonetomodel. Arguably,thereisalsoa

con-nectiontotheissueofpreference,sincethroughtheirchoiceoftagsandlinkstoclickagents

expressanimplicitopinion(whichmayormaynotbeinuencedbythatofotherusers).

Therestofthisintroductorychapterisorganisedasfollows. Inthefollowingsections

(Sect.1.7-1.10),wegivemoredetaileddescriptionsoftheproblemsinthisspacewhichwe

aimtoaddressinthisthesis,aswellasbriefabstractsofourresultsforeach.InSection1.11

wegivetheoverviewofthestructureof[therestof]thethesis.Section1.11alsosummarizes

thestructureofthethesisthroughadiagram,suchastomoreintuitivelyhighlightandexplain

therelationsthatexistbetweenthedifferentchapters.Theintroductionconcludeswithalist

ofresultingrefereedpublicationsrelatedtoeachchapter.

1.7 Modeling of combinatorial preferences (multi-issue or

multi-item)inbilateralnegotiations

Therearemanywaystoexpressachoicebetweenmultipleoutcomesdenedinmulti-agent,

economicsandAIliterature. Ataxonomyofpreferencesusedinthemulti-agentliterature

wouldinclude:

 Qualitativepreferences: Nonumericalutilityvaluesareassignedtooutcomes,only

valuelabelssuchas“good”,“verygood”,“unsatisfactory”etc.

 Quantitativepreferences: Preferenceoveroutcomesare expressedinthe formofa

utilityfunction(tobedenedbelow).Notethatsometimesqualitativeandquantitative

preferencestakentogetherarecalled“cardinal”preferences.

 Ordinalpreferences:onlyanordercanbespeciedbetweenranking(i.e. throughan

asymmetricandtransitivepreferencerelationbetweenalternatives).

(22)

ausercanassignanumericalvalue(eitherutilityormonetaryvalue)topossibleoutcomes

(orcombinationofitems),andthediscussioninthefollowingsectionsofthisintroduction

referstothequantitativecase.

However,notethat,ifonedenespreferenceasanychoicebetweenseveraloutcomesor

alternatives,theconceptofpreferencecanbeconstructedasbroader. Forexample,actions

suchas choosingatag that otherusershavealso selectedinthe past(see Chapter6), or

clickingonthelinkatthetopofalist,inordertosavereadingtime(seeChapter7)may

beseenasexpressinganimplicitpreference. WereturntothisideainSection1.10,when

describingthe chaptersinPartIII ofthethesis -the discussion inthefollowingsections

referringtothecaseofquantitative,economicpreferences.

Thebasisofquantitativepreferencemodelingisutilitytheory. Followingtheworkof

KenneyandRaiffa[179],manymulti-issuenegotiationandresourceallocationmodelsuse

autilityfunction,whichmapstheoutcomespaceoverasetofissues(attributes,criteria)to

autilityvalue,whichisfrequently-thoughnotnecessarily-scaledbetween0and1. The

crucialthingtonoteisthatRaiffa'smodelsandmuchoftheinitialresearchonmulti-issue

negotiationconsiderslinearlyadditiveutilityfunctions,i.e.eachissue/attributeunder

nego-tiationisassignedaweight,andtheutilityofeachpossibleoutcome/contractiscomputedas

aweightedsumovertheissuesundernegotiation.

Aspecialsubclassofquantitativepreferencefunctions,whichisimplicitlyusedinmost

ofexistingauctionliterature, are the so-called“quasi-linear” preferences. Thisbasically

meansthattheutilityoftheagentsisexpressedinmonetaryterms(asanamountofmoney),

as opposedtoutils(i.e. conventionalunits,usuallyscaledbetween0and1). Thiscanbe

viewedasarestrictionforsomesettings,asrealutilityfunctionsovermonetaryendowments

areknowntobeconcave,i.e. humansareknowntohaveadecreasingmarginalutilityfor

money(see,e.g.[171]).

1.7.1 Pareto-optimaloutcomesinmulti-issuenegotiation

As shown in[179],multi-issueandmulti-attribute negotiation models arefundamentally

differentfromsingle-issuenegotiation (suchas bargainingoveraprice). Multi-issue

ne-gotiationsrepresent non-zerosumgames, inthesense thatitis possibletond mutually

benecialtrade-offsbetweentheissuesundernegotiationsuchas toincreasethegainsfor

bothparties. Raiffaalsoshowsthatthemoreasymmetricpreferencesbetweenthe

negotia-torsare,thehigherthepotentialformutuallybenecialtrade-offsbetweentheissues.

Themaincriteriatomeasurehowefcientanagreement(orcontract)isthe socalled

Paretoefciency. AnoutcomeissaidtobeParetooptimalifitisnotstrictlydominatedby

anyotheroutcomeinthepreferencesofboth(orall)sides(agents)inanegotiation. That

means,therearenotrade-offspossiblethatwouldincreasetheutilityofoneagent,without

making anotheragentworse off. The setofall Pareto-optimalpointsform theso called

(23)

thatoutcome/contractis.

Animportantconceptindesigningmulti-issuenegotiationmodelsistheuncertainty

re-gardingopponentpreferences,denedhereastheamountofinformationregardingthe

op-ponentpreferencesavailablewhenmakingnegotiationoffers.

Directvs.indirectrevelationmechanisms

Theliteratureonagent-mediatedelectronicmarketsidentiestwomainapproachesbywhich

agentscansharetheirprivatepreferenceinformation:

 Directrevelationmechanisms.Directrevelationmechanismsarebasedonthe

revela-tionprinciple[58]. Basicallyexplained,therevelationprinciplestatesthatany

allo-cationmechanismwithacertainequilibriumcanbetransformedintoanother

mecha-nism,inwhichatrustedcenteraskstheagentstotruthfullyrevealtheirpreferencesand

implementstheoriginalequilibrium(andallocation)ontheirbehalf.Thismeansthat

typically(thoughnot exclusively),directrevelationleadstoacentralizedallocation

mechanism,suchasacombinatorialauction.

 Indirectrevelationmechanisms:Inthistypeofmechanism,theagentsarenotassumed

todirectlyrevealtheirpreferencestotheotheragents,butcommunicatetheir

prefer-encesthroughouttheircounter-offers(ortheirbids,foranauction). Forinstance,in

abilateral,multi-issuenegotiationoverthe saleofacar(see [115,116]and

Chap-ter2ofthisthesis), theagents donotdirectlyreveal toeachotherhowmuchthey

arewillingtopaytogettheirfavouritecolourortheirfavouriteaccessories(e.g. CD

player,airconditioning)installed,butinpractice,thiscanbededucedindirectlyfrom

theoffers/counter-offerstheymake. Similarly,anagentrepresentingacustomerona

largeelectroniccommercewebsite(see[185,186,220]andChapter3)doesnothave

torevealallhispreferencestothemerchant,butthemerchant(whomayormaynot

alsoactastheauctioneer)canlearnpartoftheirpreferencesfromprevious

counter-offers.

Basically,inthisthesiswetaketheindirectrevelationapproach,aswearguethisismore

realisticinmanyreal-lifeapplications,inwhichonlyalimiteddegreeoftrustexistsbetween

partiesinsharinginformationandnofullytrustedthirdpartycanbeestablished. The

rea-sonsforthismaybeendogenoustothenegotiationmechanism(e.g. thereisno“optimal”

incentivecompatiblemechanismandtheopponentmayuseanyinformationsuppliedtoget

abetterdealforhimself)orexogenous(e.g.itmaybeundesirabletohavetospecify

prefer-encesoverthewholesetofalternatives,duetoprivacyconcernsorfuturebusinessinterests).

Furthermore,forcomplexnon-linearpreferences,therearealsopreferenceformulation

andcommunicationcosts. Aswe showinChapter3, becauseofboundedrationalityand

communicationability,itisoftendifcultforanagentherselftoformulateandcommunicate

(24)

searchintomodelingpreferencesinagent-mediatedmarkets,followedbybriefdescriptions

ofthecontributionsmadeinthisthesistoopenproblemsintheeld. Therefore,some

sec-tionsoftheintroductionpresentimportantconceptsfromageneralpointofview,whileother

sectionsdescribehowthesegeneralconceptswereextendedbyourownresearch,described

inthechaptersofthisthesis. Thegoalistoallowthereadertogetabetterunderstandthe

positioningandcontributionofourworkwithrespecttothestateoftheartintheeld.

1.7.2 Modelingmulti-attributenegotiationwithincompletepreference

information

Animportantdirectionofworkintheliteratureonmulti-issuenegotiationishowtodesign

efcientbargainingstrategiesinsettingswhenagentsdonothaveanyinformationaboutthe

opponent's(i.e. negotiation partner's)preferences. Theymayhave, however,someprior

knowledgeaboutthedomaintheyarenegotiatingabout. Thispriordomainknowledgecan

be, forexample,fuzzylogicdistancesbetweenattributes,suchas theperceptualdistance

betweendifferentcolours(suchasin[71,163]),oranorderingbetweenasetofqualitative

attributelabels(suchas”good”,”standard”,”meager”etc),inourresearch(seeChapter2).

TheworkpresentedinChapter2and[115,116]considerssuchanincomplete

informa-tionnegotiationmodel.Theaimofthismodelistoinvestigatetherolethatpartiallyrevealing

preferenceinformationcanimprovetheoutcomeofamulti-attributenegotiation.Asa

prac-ticaldomaincase,we consideredabilateralnegotiationbetweenabuyer(customer)anda

seller(cardealer)overthesaleofacar.Thenegotiationisnotexclusivelyonprice,butalso

on thequalityoftheaccessories whichthe dealerhastoinstallinthecar togetthe deal

done(suchasaCDplayer,extraspeakers,airconditioningandtowhedge). Inthissetting,

weshowthatitispossibleforbothpartiestoreachclosetoPareto-efcientagreements,by

revealingonlypartial(i.e.incomplete)informationabouttheirpreferencesofthenegotiation

partner. Furthermore,weproposedanovelguessingheuristic,bywhichanagentusesthe

historyofopponent'sbidstopredicthis/herpreferencesinordertoproposebetterdeals.

1.7.3 Non-linearandcombinatorialpreferencesinnegotiation

Acrucialprobleminapplyingmulti-issueormulti-itemnegotiationmodelsinmanyrealistic

settingsisthefactthattheremaybecomplexinter-dependenciesbetweendifferentissues,

leadingtonon-linearpreferencesorutilityfunctions[108,126,138,186].Theproblem

ap-pearsbothwhenconsideringintegrative, multi-issuenegotiations,as wellas negotiations

overbundlesofitems [46,186]. Inboththesecases, it isimportanttoallowforconcise

representationsoftheutilitiesoverpossibleoutcomes

3 .

3

Theproblemisinfact,two-fold.Firstthereisthecomplexityrelatedtopreferenceformulationofcombinatorial preferences,aswellasoneofpreferencecommunicationcomplexity.

(25)

Theeasiestwaytorepresentpreferencesistoenumerateallpossibleoutcomes(or

com-binationsofgoods),togetherwiththeirutilityvalueforthosegoods(monetaryorotherwise).

Thisiscalledtheexplicitformofpreferencerepresentation(or“bundleform”).Theexplicit

formisfullyexpressive, inthesense thatanyutilityfunctionmaybedescribedbylisting

allpossiblecombinationsandtheirvalues. Itis,however,impracticalformostnon-trivial

settings,asthenumberofdescriptionswouldbeexponentialinthenumberofresources(e.g.

foronly50binaryissuesoritems,2

50 >10

15

valueswouldneedtobeassigned-see

Chap-ter3).Thishaspromptedanotherimportantdirectionofresearchinelectronicmarkets,that

ofdesigningmoreconciseutilityrepresentation(orpreference)languages.Thereareseveral

classesofsuchpreferencelanguages:

 Biddinglanguages,whicharetypicallyusedincombinatorialauctionstoallowagents

toformulatetheirbids(and,implicitly,communicatetheirpreferencestothe

auction-eer).Somespecicbiddinglanguagesinclude:

 – The ORlanguage: The agentcan specify an array ofvaluations over

differ-entsubsetsofitems inagivenbundleofitems. Thevalueofanycombination

canthenbecomputedasthemaximalvaluethatcanbeobtainedasasumover

disjointsubsets specied[46]. Forexample,inthebid: < fI

1 g;3 > OR < fI 2 g;3> OR <fI 3 g;3 > OR < fI 1 ;I 2

g;8 >expressesthatthebidderis

willingtopay3foreitherI 1

;I 2

;I 3

or11forall3items(inthiscase,itisbetter

totakethevalueofthesubset<fI 1

;I 2

g;8>thanthevaluesofeachindividual

itemseparately).BecausetheORdependencyisnotexclusive,theORlanguage

cannotexpresssubstitutabilitydependencies,i.e. itcannotexpressthefactthat

gettingacombinationofitemshaslesserutilitythanthesumofindividualitems.

Intheaboveexample,itisnotpossiblefortheagenttoexpressthatheisonly

willing topay4ifhegetsbothI

1 ;I 2 . Ifthebid< fI 1 ;I 2 g;4 >wereadded

tothesetofbidsplaced,thentheauctioneerwouldsimplymatchthebidsover

the individualitems < fI 1

g;3 >and< fI 2

g;3 >(as anyterms ofthe OR

dependencymaybechosen).

– “ExclusiveOR”(i.e. XOR)biddinglanguage[194]-isanalternativetoOR,in

whichallcombinationbidsareassumedtobemutuallyexclusive.Forexample,

intheaboveexample,abidsuchas:<fI 1 g;3>XOR<fI 2 g;3>XOR< fI 3 g;3>XOR < fI 1 ;I 2

g;4>meansthattheagent(bidder)caneitheruse

onlyoneitemfromI

1 ;I

2 ;I

3

withautilityof3,orthecombinationoffI

1 ;I

2 g

witha utilityof4, butnoother combination(so, e.g. gettingbothI

1

andI

3

wouldstillonlyhavetheutilityof3).XORisfullyexpressive,inthesensethat

itcanrepresentanymonotonicutilityfunction.However,XORmayhaveahigh

communication/elicitationcost,evenforsimplesettings.Anexampleisthe

util-ityfunctionthat,foranysetRofitemsI 1

;:::I n

2R ,simplycountsthenumber

ofitemstheagentowns-i.e. u(R ) = jR j. Suchafunctionwouldrequirean

exponentialnumberofbidsintheXORlanguage,butonlyalinearnumberin

ORlanguage.Thisisbecause,usingXOR,allcombinationsspeciedare

(26)

consideredmorenaturalwaytorepresentpreferences,thereexistsalineofwork

thataimstoextenditsexpressiveness,withoutrequiringanexhaustivelistingof

XORbids[169].

 Weightedpropositionalformulasandstraightlineprogramsareotheralternativesto

representingcomplexpreferences,whichmakeuseoflogicalformalisms. For

exam-ple,weightedpropositionalformulasarederivedfromaqualitativeformofpreference

representation,inwhichthepreferencesoftheagentareexpressedasgoals. Inthe

weightedcase(unlikeinpurelyformallogicapproaches),goalscanbeassigneda

util-ityweightifsatised. Wedonotdealwiththiskindofpreferencelanguagesinthis

paper,butthereadercanconsult[139]forthefulldetailsofthisapproach.

 Thek-additiveform[46,55,186](alsocalledthepolynomialform[133])isanother

naturalandconcisemethodtorepresentcombinatorialpreferences. K-additive

func-tionscanencodesynergy(complementarityorsubstitutability)effectsbetweensubsets

ofuptokitems. Forinstance,ifwedenotebyx

1 ;:::x

n

theinstantiationofthesetof

nitems,theexpressionfora3-additiveutilityform(i.e.takingamaximumk=s)is:

U(x 1 ;:::;x n )= X 1in i x i + X 1i;jn i;j x i x j + X 1i;j;k n i;j;k x i x j x k (1.1) Wherex 1 ;::;x n

representsavectorof1and0,denotingwhetheranitemis(orisnot)

consideredinthecombinationbeingevaluated,thereals

1 :::

n;n;n;n

arethe

param-etersofthefunction,whilek(samekasin”k-additivity”)isthemaximumrankofthe

polynomial,i.e. allthepolynomialtermshavingarankabovek

max

havethe

coef-cients = 0. Linearlyadditivefunctionsformasubclassofthek-additiveclass,as

denedabove,fork

max

=1. Thek-additiveformisfullyexpressive,forunbounded

k.Thismeansthat,ifkissufcientlylarge,itcanbeusedtoexpressanyutility

func-tionovera given,nite, binarysetofitems. Inpractice,although(as discussedin

Chapter3thisthesis),inorderforthisrepresentationtobecomputationallyuseful,the

maximumrankofthepolynomialkisgenerallyassumedtobeboundedtoalimited

value(e.g.2-4,asdiscussedinChapter3).

1.7.4 Modelingmulti-itemnegotiationsoverk-additiveutilityfunctions

usingutilitygraphs

InChapter3ofthethesis,weconsiderthecaseofmodelingcomplexbilateralnegotiations

overasetofmultiple,binaryissues(whichcanalsorepresentabundleofitems). Fromthe

conciserepresentationformsdiscussedinthetaxonomyfromSect. 1.7.3,theoneweused,

as wefounditmostnaturalinthe contextofthemulti-issuenegotiation,isthek-additive

form.Thisrepresentationisanaturalextensionoflinearutilitymodelsalreadyusedinmuch

(27)

nonlinearityinpreferencemakesthebargainingproblemconsiderablyharder.Forexample,

inEq.1.1above,thecaseofk

max

=2isalreadymuchharderthank

max

=1.

Multi-issuenegotiationwithnon-linearutilityfunctionsisknowntobeacomplex

prob-lem, even forthe caseof binaryissues[108,126,207]. The state ofthe art inthiseld

proposescomplexsolutionsthatinvolveamediator,aswellastechniquessuchassimulated

annealing[126]oreconometricmethods[207]thatareeithercomputationallyexpensiveor

do notscalewellforsettingswithmanyissues. In[186](correspondingtothe rstpart

inChapter3)weintroduceanovelutilitygraphformalismformodelingnonlinear(i.e.

k-additive)preferences,andweshowhowsuchgraphscanbeusedtomodelandlearn

oppo-nentpreferencesincomplex,multi-issuenegotiations.Utilitygraphsareoriginallyinspired

fromprobabilisticgraphicalmodels,buttheyencodeutilities,ratherthanprobabilities.The

mainideabehindourapproachistousethestructureofthegraphstorestricttheopponent

modelingandsearchtothemostpromisingregionoftheutilityspace. Aselleragentcan

startanegotiationwithanapproximationoftheutilityfunctionofatypicalrandombuyerin

theformofamaximalutilitygraph,andthenrenethismodelbasedonthecounter-offers

he observesduringthe negotiation. Inourcase,the initialutilitygraph reectsthe prior

informationthatthesellerhasabouthowtheutilityfunctionofarandombuyerisstructured,

inordertohelpinthesearch.

Animportantquestionis,ofcourse,howdoestheselleracquirethisinitialbuyerutility

graph approximation. Onesolution istoassume somepriordomain knowledge, suchas

plausibleconstraintsonthe shapeautilityfunctioncouldtake(whichmaybereasonable

forsomesettings). Fore-commercedomains,wehaveproposedanotheralternative:using

collaborativelteringonprevioussalesdata,thatwillbepresentedafterthediscussionin

thenextsubsection.

1.7.5 Individualpreferencesandsocialinuence

In the previousdiscussion oncombinatorial preferences, preferences are dened from a

single-agentperspective,meaningthattheutilityofanyagentisassumedtobeprivateand

independentofwhatotheragentsmaydesire. Otherwiseput,ifasellerencountersabuyer

andnegotiateswithhim thecongurationofaproductorthecompositionofabundleof

items,hewillassumethatthepreferredcombinationsofthisparticularbuyerarecompletely

independentofwhatotherbuyersencounteredwantedinthepast.Thisis,infact,astandard

assumptioninmuchofnegotiationandauctiontheory.

However,existingpracticeinelectroniccommercesuggested,fortheChapter3ofthis

thesis,analternativeapproach.Thesuccessofsocialsearchinprovidingonlinebuying

rec-ommendationsprovidesconsiderableevidencethatpreferencesarenotstrictlyindependent,

butareinsomewayclustered. Considerforexample,the caseofAmazon.com,whohas

severalmillionbooktitlesinitscollection. Eliciting,foreachindividualcustomer,his/her

preferencesoverthesebookstoproposeacceptablebundlesforthebuyerswouldbeanearly

impossibletask.However,Amazonimplicitlyassumesthatifalargenumbersofcustomers

(28)

aswell. Forinstance,ifacustomerbuysabookontravellingtoPortugal,theAmazon

en-gineassumeshemayalsobeinterestedinabookontraveltoSpain,sincemanycustomers

encounteredinthepastshowedinterestedinboth.Thereforeproposingadeal(e.g.postage

reduction,orasmalldiscount)maybeagoodwaytoincentivisethecustomertobuyboth

booksfromthesite.

Notethatthisdoesnotalwayshavetobeacorrectprediction: infact manycustomers

maynotbeinterestedintheexactcombinationproposed.However,itdoesprovideagood

approximationinsearchingthespaceofacustomer'spreferences,evenifthecustomerwas

neverencounteredbefore.

Traditionally,researchinmulti-issuenegotiationdoesnot explicitlymodelthissocial

dimensionofcustomerpreferences,orconsidertherolethatsocialinuenceplaysonthe

structureofutilityfunctions.Weshowthathavinganexplicitrepresentationthatrelatesthe

twoelds(inourcaseintheformofutilitygraphs)allowsustoconsiderablyimprovesearch

inanonlinenegotiationsetting. Furthermore,theinteractionbetweentheseeldsdoesnot

have tobe one-way: negotiation also hasa lotto addto web-based recommendationin

electroniccommerce. Throughaniterativenegotiationprocess,theinitialproposals(based

onanonymous,aggregatepreferences)canbecustomizedtothepreferencesofaparticular

customer,basedontheindirectrevelationmadethroughhis/hercounter-offersinnegotiation.

1.7.6 Learningthestructure ofutilitygraphsusedinmulti-item

nego-tiationthroughcollaborativeltering

Ourapproachtomodelingopponentpreferencesinnegotiationmakesuseoftheabove

in-tuition. Chapter3ofthisthesisproposesanovelcollaborativelteringmethodbywhich

previouslyconcludednegotiationdatacanbeusedtoconstructtheinitialapproximationof

theutilitygraphofarandombuyerthatthesellercanuseinlaternegotiations. Theseller

willthenadjust(learn)thevaluesinthegraph,foreachspecicnegotiation,basedonthe

counter-offersthebuyermakes,untilanagreementisreachedoverthebundlecombination.

Therefore,wetakewhatcanbedescribedasatwo-stepcustomizationapproach: initially,

anapproximationofthemaximalstructureofautilitygraphforarandombuyerisobtained

usingcollaborativelteringonallconcludednegotiation data(whichdoesnothavetobe

buyer-specic).Then,thisdealisrenedthroughoffersandcounteroffersduringthe

nego-tiationwithaspeciccustomer.

Weshowthat thecombined approachcanenablebuyersandsellers toreachefcient

agreementsevenincomplexnon-linearsettings,involvingonlyindirectrevelation(although

therearesomeassumptionsregardingthemaximalcomplexityoftheutilitygraphsthata

buyercanhave).Oneofthecontributionsofthisapproachtothestateoftheartinautomated

negotiationisthatitprovidesalinkbetweenthecustomizationtechniquesusedinmulti-issue

ormulti-itemnegotiationandthoseusedincollaborativelteringandsocialcomputing.In

(29)

andshorternegotiationsforcomplex,non-linearutilitysettingsthanwasreportedinother

research[126].

1.8 Preferences under uncertainty and bidding in

sequen-tialauctions

Inthepreviousdiscussion,wehavemainlydiscussedtheconceptofpreference(orutility)

inthecontextofintegrativenegotiation,inwhichtheallocationsforallitems(orissues)is

agreedatthesametime. Thus,whenanagentspeciesapreferencebyassigninga

mone-taryvaluetoacombinationofitems, heisbiddingforanentirecombination,andthereis

nouncertaintythathewillnotgetsomeofitemsintheagreedconguration,iftheseller

ac-ceptstheoffer.Thisisareasonableassumptionforintegrativenegotiationandcombinatorial

auctions(wheretheallocationforallitemsisnegotiatedsimultaneously).However,itdoes

not holdforotherwidelyusedallocationmechanisms, suchas sequential/simultaneously

ascendingauctions[27,89,184,217]orone-by-oneissuenegotiations[72].

Inthissection(correspondingtoChapters4and5ofthethesis),weconsiderthecase

whenagentshavetobidsequentiallyitemssoldindifferentauctions,withoutknowingwith

certaintythattheywillgettheentirecombinationofitemstheydesire. Insuchcases,

eco-nomictheory identiesanother important class ofpreferences, preferences towards risk.

Riskaversionisaveryimportantpartofeconomictheory-infact,a2006MITtextbookon

theeconometricsofauctiondata[171],thechapteron“preferences”isbasicallyconcerned

withpreferencestowardsrisk.

Thewayeconometrictheorymodels riskaversionisthroughtheso-called

Neumann-Morgensternpreferencefunctions,inwhichthe utilityderivedbyanagentfrom acertain

amountofmoneyisnotalinearfunction,butaconcaveone.Otherwisestated,utility

func-tionsarenotquasi-linear,inthesensethattheutilitythateachagentderivesfromanamount

ofmoneyisnotdirectlyproportionaltotheamountpaid/received.

Inthefollowing,webrieydenetheexposureprobleminsequentialauctions,therole

thatriskaversionplaysinthebiddingdecision,aswellasanoverviewofthecontributions

inChapters4,5andAppendixA.

1.8.1 Sequentialauctionsandtheexposureproblem

AsshowninSect.1.3above,therearetwomaindirectionsofresearchintheapplicationof

agentsystemstoauctionmarkets.Oneconcernsthedesignoftheauctionmechanismitself,

suchthatparticipantagentshaveadominantbiddingstrategy(usually,todeclaretruthfully

theirvalues),aswellascertainproperties,suchasefciency,individualrationalityorbudget

balance. However,formanymarketdesignsthatare necessarilyencounteredinpractice,

(30)

tions.

Asshownin[27,89,187]andChapters4and5ofthisthesis,themainproblemthata

bidderfacesinasequentialauctionistheexposureproblem. Informallydened,the

expo-sureproblemmeansthatanagenthastocommittobuyinganitem,beforehe/shecanbesure

thathewillabletosecureotheritemsinhisusefulsetorbundle(denedasthesetofitems

thatgiveshimapositiveutility). Ifshefailstoacquirethisbundle,thenhemakesaloss.

Hence,wesaythattheagentisexposedtotheriskofaloss.

Mostofthe modelsthatstudybiddingauctionbiddingstartfrom theassumptionthat

agents havequasi-linearutilityfunctions. Basicallydened,quasi-linearityassumeseach

agenthasasetofpayoffsthathe/sheassignstoanycombinationsofitems. Thesepayoffs

are,formanyofthemodelsstudied,private: theyarenotknowntotheotherparties. The

utility thatan agentget from participating inthe auction is assumedproportionalto the

differencebetweenhis/herprivate payoffandtheamount hepaystoacquire theitems in

question,inotherwords,itisdenedstrictlyinmonetaryprot/lossterms.

Thisquasi-linearityofpreferences assumption,whilewidelyusedandvalidformany

business models andsettings, doesnot universallyhold. Inmanyreal-lifesettings,even

assumingitistruethatagentshaveprivatevaluesfordifferentsubsetsofitemsunder

nego-tiation,protandlossarenotjudgedinthesameterms. Makingalossfromaninteraction

(i.e. payingmorethanhis/herprivatepayoffvalue)isnotproportionalasgainingthesame

amountasprot.Inotherwords,agentsarerisk-aversetomakingaloss,evenifthepotential

forgainisconsiderablylarger.

1.8.2 Designingsequentialauctionstrategiesforrisk-aversebidders

Prior to the publicationofour research, there hadbeen quite alot ofpreviouswork on

designingefcientbiddingstrategiesforagentsparticipatinginsequential[27,89,217]and

simultaneouslyascending[1,184]auctions.

Whilethisworkreportedsomepositiveresults,animportantlimitationofexisting

litera-tureweexaminedwasthatitdoesnotexplicitlymodeltherisk-takingattitudeofthebidding

agents. By“explicitlymodel” wemeanbuildingaproleofthe agent'sriskpreferences

towardsuncertain,futureoutcomes(suchasthenalallocationofasequentialauction).In

standardeconomictheory,sincetheseminalworkofK.ArrowandJ.Pratt,preferences

to-wardsriskhavebeenconsideredessentialinunderstandingandmodelingdecisionmaking

underuncertainty[5,88,153,171]. Auctionliteraturefromstandardeconomics[158,171]

considersriskaversionan importantprobleminmodelingrealbidderpreferences.

How-ever,theeconomicliteraturethatweareawareofdoesnotconsidersequentialauctionswith

complementarybiddervaluations,exceptperhapsinthesimplestofsettings(becausesuch

auctionsdonothavewell-denedequilibria). Morespecically,unliketheAIcommunity,

researchersineconomicsarenotconcernedwithdesigningautomatedbiddingheuristicsfor

(31)

ThemaincontributionofChapter4ofthisthesisismakingalinkbetweenrisk-aversion

models,andthestrategiesthatrisk-aversebidderscanuseinsequentialauctions. First,we

introducetheArrow-Prattriskmodelsfrom economicstotheproblemofmodelingagent

biddingstrategies. Wethenstudythewayinwhichtheperceivedoptimalbiddingstrategy

computedbyariskaverseagent,givenherprobabilisticmodelofthefuture,differsfrom

theoptimalstrategyofariskneutralagent.Wendthatagentsmoreaversetoriskbidmore

aggressively,inordertocovertheirsunkcostsfortheinitialitemsinthesequence.However,

ifthefuturesequenceofauctionsisinitiallyperceivedastoorisky(giventheagent'sinitial

estimationoffutureclosingprices),thebeststrategyavailabletoariskaverseagentissimply

nottoparticipateatall.

Ourexperimentalresultsshowthatariskaversebidderhas,asexpected,alowerchance

toendupwithanincompletebundleofgoods,thusmakealoss.However,whenconsidering

long-termandrepeatedinteractions,suchagentsmake,onaverage,alowerexpectedprot,

becausetheyparticipateinless auctions. Forsomemarketsettings, thisalsoaffects,ina

negativeway,theauctioneerrevenuesfromtheauctions.

Inthefollowingsection,welookatadifferentsideoftheproblemofexposuretoriskof

lossinsequentialauctions,namelywhatcanbedonetoreduceit.

1.8.3 Optionsmechanismsinsequentialoptions

Asdiscussedabove,sequentialauctionsdonotguaranteeadominantbiddingstrategyforthe

agents(unlikethecombinatorialcase). However,theproblemremains,asmanyallocation

problemsoccurringinpracticeareinherentlydecentralizedandsequential.Differentsellers

mayprefer,foravarietyofreasons,toselltheiritemsseparately-oreventhroughdifferent

markets,as thenumberofelectronicauctionsites onlineindicates. Furthermore,inmany

applicationsettings,notallresourcesthataretobeallocatedareknowninadvance,butthey

appeardynamicallyovertime. InChapter5ofthisthesis,westudyanalternativetothis

verydifcultproblemthat,althoughitcannotcompletelyeliminatebidder'sexposure,itcan

signicantlyreduceit:theuseofpricedoptions.

Intuitivelydened, anoptionisacontractbetweenthebuyerandthe sellerofaitem,

wherethebuyerhastheright tochooseinthefuturewhetherornothewillpurchase the

itemagainstthepre-agreedexerciseprice. Theselleristhenboundtosellthe itematthe

demandofthebuyer.Sincethebuyergainsaright,hehastopaytheoptionpriceregardless

ofwhetherhewillexercisetheoptionornot.

Optionsreducetheexposureproblemasynergybuyerfaces.Hestillhastopaytheoption

price,butifhefailstocompletehisdesiredbundle,thenhedoesnotpaytheexerciseprice

as well,andthushelimitshisloss. Theriskofnotwinningsubsequentauctionsispartly

transferredtotheseller,whomaymiss outonthe exerciseprice. However,thesellercan

benetindirectlyfrom theparticipationinthismarketofadditionalcomplementary-value

buyers(alsocalled“synergybuyers”),whowouldhaveotherwisestayedout.

Referenties

GERELATEERDE DOCUMENTEN

Groep/namen Doel Inhoud Aanpak/methodiek Organisatie Evaluatie Kinderen met specifieke. pedagogische en/of

Schrijf op: weegt (blauwe hakkaart) 9 Steun maar op de stok.. Schrijf op: steun

Schrijf op: de poes (rode hakkaart) 9 De juf zegt: ‘Hoera!’ Schrijf op: zegt (blauwe hakkaart). Het is feest op

Activities span in several directions: some are specifically targeted at the local population (most events organised by MKCF), some aim to make Fulnek more

Met de projecten werken we toe naar een dienstverlenende organisatie, waarin de klant centraal staat en waarin we continu leren en onszelf verbeteren.. Binnen de projecten zijn

Voor het antwoord dat de cellen dan niet losgemaakt worden, en daardoor niet bruikbaar zijn, wordt geen scorepunt gegeven. 33 CvE: De functie in de vraag had beter een functie

[r]

Begin mei vroegen de Bomenridders per mail aandacht voor het verdwijnen van groen op de bouwkavels Nijverheidsweg.. Diezelfde dag nog reageerde een projectleider en beloofde hier op