• No results found

Resonant inelastic x-ray scattering studies of elementary excitations Ament, L.J.P.

N/A
N/A
Protected

Academic year: 2021

Share "Resonant inelastic x-ray scattering studies of elementary excitations Ament, L.J.P."

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Resonant inelastic x-ray scattering studies of elementary excitations

Ament, L.J.P.

Citation

Ament, L. J. P. (2010, November 11). Resonant inelastic x-ray scattering studies of elementary excitations. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/16138

Version: Not Applicable (or Unknown)

License: Leiden University Non-exclusive license Downloaded

from: https://hdl.handle.net/1887/16138

Note: To cite this publication please use the final published version (if applicable).

(2)

Referenties

GERELATEERDE DOCUMENTEN

In indirect resonant inelastic X-ray scattering (RIXS) an interme- diate state is created with a core hole that has an ultra-short lifetime.. The core hole potential therefore acts as

Resonant inelastic x-ray scattering studies of elementary excitations..

Direct RIXS is the simplest of the two: a core electron is excited into the valence band, and then an electron from another valence state fills the core hole, emitting an outgoing

The physical picture that arises for direct RIXS is that an incoming photon promotes a core electron to an empty valence states and subsequently an electron from a different state

For spinless fermions with a local core hole potential the scattering cross section thus turns out to be the density response function –a two-particle correlation function– with

In order to prove that at the Cu L edge RIXS can probe dispersion of collec- tive magnetic excitations, we will first determine the local spin flip cross section for a copper d 9 ion

Both experiments show a peak at the same energy, while the local model theory predicts the Raman spectra (with its double crystal field excitations) to peak at approximately double

When spin-orbit coupling dominates, Sr 2 IrO 4 ’s excitation spectrum of the f doublet is quite remarkable: the J eff = 1/2 levels interact via superexchange and the low