• No results found

Recent advances in long wavelength quantum dot lasers and amplifiers

N/A
N/A
Protected

Academic year: 2021

Share "Recent advances in long wavelength quantum dot lasers and amplifiers"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Recent advances in long wavelength quantum dot lasers and

amplifiers

Citation for published version (APA):

Nötzel, R., Bente, E. A. J. M., Smit, M. K., & Dorren, H. J. S. (2009). Recent advances in long wavelength

quantum dot lasers and amplifiers. In Conference on Optical Fiber Communication - incudes post deadline

papers, 2009. OFC 2009, 22-26 March 2009, San Diego, California (pp. OWJ5-1/3). Institute of Electrical and

Electronics Engineers.

Document status and date:

Published: 01/01/2009

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

Recent Advances in Long Wavelength Quantum Dot Lasers

and Amplifiers

R. Nötzel, E. A. J. M. Bente, M. K. Smit, H. J. S. Dorren

COBRA Research Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands e-mail: r.noetzel@tue.nl

Abstract: We demonstrate 1.55-µm InAs/InGaAsP/InP (100) quantum dot (QD) shallow and deep etched Fabry-Pérot and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated lasers, polarization control of gain, and wavelength conversion in QD amplifiers.

OCIS codes: (250.5960) Semiconductor lasers; (250.5980) Semiconductor optical amplifiers; (310.6628) Nanostructures

1. Intoduction

We review our recent advances in long wavelength quantum dot (QD) lasers and amplifiers. Focus is on the InAs/InGaAsP/InP (100) materials system as the materials system of choice for 1.55-µm wavelength telecom devices and their monolithic integration. Topics covered include wavelength tuning of InAs/InGaAsP/InP (100) QDs grown by metal organic vapor phase epitaxy (MOVPE), shallow and deep etched Fabry-Pérot (FP) and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated extended cavity lasers, polarization control of gain of semiconductor optical amplifiers (SOAs), and multi-wavelength conversion in SOAs. We will not address work on quantum dashes or wires, other substrate orientations, and the InAs/GaAs materials system.

2. Wavelength tuning

When InAs QDs are grown by MOVPE on quaternary InGaAsP layers (in our case lattice-matched InGaAsP with bandgap at 1.25 µm, Q1.25), their emission wavelength at room temperature (RT) is far beyond 1.6 µm due to As/P exchange, rendering the QDs too big. We have solved this problem by the insertion of ultra-thin (1-2 monolayers) GaAs interlayers underneath the QDs. The GaAs interlayers passivate the Q1.25 surface against As/P exchange. Hence, upon increase of the interlayer thickness the QD height is continuously reduced and the emission wavelength tuned through the 1.55 µm wavelength range [1]. The QD density is 2-3 x 1010 cm-2.

3. Shallow and deep etched FP and ring lasers

The narrow-ridge waveguide lasers with active region of five-fold stacked InAs QD layers operate in continuous wave (CW) mode at RT on the QD ground state (GS) transition. Device parameters for as-cleaved shallow etched FP lasers with 3.5-µm waveguide width are: 125 mA threshold current for 1-mm cavity length, 6 A/cm2 transparency current density per QD layer, 4.2 cm-1 internal optical loss, 37 % internal differential quantum efficiency, 15 cm-1 maximum QD GS modal gain, and 80 nm 3 dB gain bandwidth [2]. The deep etched FP lasers with 1.65 µm waveguide width exhibit the same threshold current as shallow etched lasers due to the zero-dimensional carrier confinement inhibiting non-radiative sidewall recombination (Fig. 1). The broad lasing spectrum reflects the inhomogeneous nature of the QD gain medium. The low absorption of the QDs allows for unpumped output waveguides of the 2-mm circumference QD ring lasers, increasing the flexibility for photonic integration [3]. CW lasing at RT has been reported also in Refs. 4 and 5, however, on the QD excited state (ES) transition.

Fig. 1. Left: Cross-sectional scanning electron microscope (SEM) image of the deep etched FP QD laser. Right: Lasing spectrum at 300 mA. Insets: Light-current characteristics of shallow and deep etched FP QD lasers and lasing spectrum with enhanced resolution.

1580 1585 1590 15951600 1605 -60 -50 -40 -30 -20 S p e c tr a l p o w er d e n s ity ( d B m ) Wavelengt h (nm) I=300 m A CW , RT, GS L = 2 mm, w = 1. 65 µm As -cl eaved Hi gh Res ol ution OSA

1591 1592 1593 1594 -60 -50 -40 -30 -20 1591 1592 1593 1594 -60 -50 -40 -30 -20 0 50 100 150 2 00 250 0.0 0.5 1.0 1.5 2.0 O u tp u t p o w e r ( m W /f a c e t) I (mA) shallow deep CW 1580 1585 1590 15951600 1605 -60 -50 -40 -30 -20 S p e c tr a l p o w er d e n s ity ( d B m ) Wavelengt h (nm) I=300 m A CW , RT, GS L = 2 mm, w = 1. 65 µm As -cl eaved Hi gh Res ol ution OSA

1591 1592 1593 1594 -60 -50 -40 -30 -20 1591 1592 1593 1594 -60 -50 -40 -30 -20 0 50 100 150 2 00 250 0.0 0.5 1.0 1.5 2.0 O u tp u t p o w e r ( m W /f a c e t) I (mA) shallow deep CW a801_1.pdf

OWJ5.pdf

OWJ5.pdf

© 2009 OSA/OFC/NFOEC 2009

978-1-55752-865-0/09/$25.00 ©2009 IEEE

(3)

4. Micro-ring lasers

Electrically pumped micro-ring QD lasers operate in CW mode at RT for diameters down to 22 µm for which the threshold current is 12.5 mA [6]. The small bending radii are allowed by deep etching the 2-µm wide waveguides, enabled by the QD gain medium (Fig. 2).

Fig. 2. Left: SEM image of the micro-ring QD laser after waveguide etching. Right: Lasing spectrum of the 42-µm diameter ring laser at 27.5 mA. Inset: Light-current characteristics showing a threshold current of 16 mA.

5. Mode-locked laser

Passive mode-locking is achieved in two-section QD lasers (Fig. 3). The output pulses are heavily up-chirped with a value of 20 ps/nm [7]. The output spectrum is coherent over 10 nm. Stable mode locking is observed in a much wider parameter field of forward current in the SOA section and reverse bias of the absorber section compared to mode-locked lasers with bulk active region.

Fig. 3. Left: Photograph of various two-section mode-locked QD lasers. Right: RF-spectrum for a 9 mm device with 3% saturable absorber (SA) length. Injection current is 900 mA and SA bias voltage is -1 V. The RF-peak is 43 dB over the noise floor and the width is 570 kHz at -20 dB.

6. Butt-joint integrated extended cavity laser

Operation of a monolitically integrated extended cavity laser in CW mode at RT on the QD GS transition demonstrates the compatibility of our QD gain material with Butt-joint active-passive integration technology (Fig. 4) [8]. The threshold current is comparable to that of our all-active FP QD lasers. The Butt-joint reflectivity is below -40 dB for straight waveguides.

Fig. 4. Left: Photograph of various integrated extended cavity QD lasers. The two current probes contact the laser with 1450 µm long active and 800 µm long passive waveguides. Right: Electroluminescence and lasing spectra as a function of current. Inset: Light-current characteristics.

7. Polarization control of gain

Linear polarization control of the cleaved-side emission [9] and gain [10] is achieved for SOAs employing closely stacked InAs QDs with separation layer thicknesses of 4-5 nm. Increasing the number of stacked QD layers to 5

1350 1400 1450 1500 1550 1600 1650 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0.01 226 mA S p ec tr a l p o w er ( m W ) Wavelength (nm) 241 mA 0 100 200 3 00 In te gr a ted o pt ic al p o we r ( m W ) Current (mA) CW, RT, GS Lact= 1450 µm Lpa s= 800 µm W = 2 µm As-cleaved

B utt j oi nt refl ectiv ity < – 4 0 d B

Ith= 231 m A 1 1 . 1.5 1 0.5 0 1350 1400 1450 1500 1550 1600 1650 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0.01 226 mA S p ec tr a l p o w er ( m W ) Wavelength (nm) 241 mA 0 100 200 3 00 In te gr a ted o pt ic al p o we r ( m W ) Current (mA) CW, RT, GS Lact= 1450 µm Lpa s= 800 µm W = 2 µm As-cleaved

B utt j oi nt refl ectiv ity < – 4 0 d B

Ith= 231 m A 1 1 . 1.5 1 0.5 0 20 µm 20 µm 1480 1490 1500 1510 1520 1530 1540 1550 0 0.2 0.4 0.6 0.8 1 1.2 x 10-7 Wavelength (nm) O p tic al p ow e r (a .u .) 1480 1490 1500 1510 1520 1530 1540 1550 0 0.2 0.4 0.6 0.8 1 1.2 x 10-7 Wavelength (nm) O p tic al p ow e r (a .u .) Ring laser Diam et er 42-µm CW, 27. 5 mA , 10oC 0 5 10 15 20 25 30 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Cur rent ( mA)

O u p u tl ig h t (a .u . ) CW 0 5 10 15 20 25 30 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Cur rent ( mA)

O u p u tl ig h t (a .u . ) CW L = 9 mm, 3% SA 570 kHz @ -20 dB L = 9 mm, 3% SA 570 kHz @ -20 dB SOA SA Length a801_1.pdf

OWJ5.pdf

OWJ5.pdf

© 2009 OSA/OFC/NFOEC 2009

(4)

rotates the linear polarization of the emission and QD GS gain from TE to TM due to vertical electronic coupling. With increase of the injection current the polarization rotates back to TE due to QD ES gain (Fig. 5). This provides novel functionalities such as polarization switching at operation wavelengths between QD GS and ES. TM dominant gain has been reported also in Ref. 11, however, with strongly tensile strained thin separation layers.

Fig. 5. Left: Cross-sectional SEM image of the QD SOA. Right: TE and TM polarized net modal gain spectra at RT for various CW injection currents.

8. Wavelength conversion

Direct non-inverted, error-free, and low penalty (<2.5 dB) multi-wavelength conversion at 40 Gbit/s is demonstrated in a QD SOA based on a simplified filtering scheme (Fig. 6) [12]. By detuning the filter pass band to the shorter wavelength, the QD SOA induced phase modulation is converted into amplitude modulation. Non-inverted wavelength conversion is realized by the enhanced blue chirped components of the output pulses. Wavelength conversion has been reported also in Ref. 13 via four-wave mixing and a small-signal modulation bandwidth >25 GHz has been suggested.

Fig. 6: Left: Schematic operation with a non-detuned and detuned filter (top and bottom) giving inverted or non-inverted signal. Left: Spectrum at output of the QD SOA (solid) compared to that of a bulk SOA (dashed).

9. References

[1] S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, T. J. Eijkemans, and J. H. Wolter, “Wavelength tunable (1.55 µm region) InAs quantum dots in InGaAsP/InP (100) grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 98, 013503-1-7 (2005).

[2] S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, et al., “Lasing of wavelength-tunable InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89, 073115-1-3 (2006).

[3] Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55-µm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Phot. Technol. Lett. 18, 2644-2646 (2006).

[4] H. D. Kim, W. G. Jeong, J. H. Lee, J. S. Yim, D. Lee, R. Stevenson, P. D. Dapkus, J. W. Jang, and S. H. Pyun, “Continuous-wave operation of 1.5 µm InGaAs/InGaAsP/InP quantum dot lasers at room temperature,” Appl. Phys. Lett. 87, 083110-1-3 (2005).

[5] D. Franke, M. Moehrle, J. Boettcher, P. Harde, A. Sigmund, and H. Kuenzel, “Effect of metal organic vapor phase epitaxy growth conditions on emission wavelength stability of 1.55 µm quantum dot lasers,” Appl. Phys. Lett. 91, 081117-1-3 (2007).

[6] M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-µm region) quantum-dot microring lasers,” IEEE. Phot. Technol. Lett. 20, 446-448 (2008).

[7] M. J. R Heck, E. A. J. M. Bente, E. Smalbrugge, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs-InP quantum dot lasers at 1.53 um,” Optics Express, 15, 16292-16301 (2007).

[8] H. Wang, J. Yuan, P. J. van Veldhoven, et al., “Butt joint integrated extended cavity InAs/InP (100) quantum dot laser emitting around 1.55 µm,” IEE Electron. Lett. 44, 522-523 (2008).

[9] S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, and J. H. Wolter, “Stacking and polarization control of wavelength-tunable (1.55-µm region) InAs/InGaAsP/InP (100) quantum dots,” Appl. Phys. Lett. 88, 063105-1-3 (2006).

[10] S. Anantathanasarn, P. J. van Veldhoven, T. J. Eijkemans, et al., “Polarization control of gain of stacked InAs/InP (100) quantum dots at 1.55 µm: Interplay between ground and excited state transitions,” Appl. Phys. Lett. 92, 123113-1-3 (2008).

[11] T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95, 1757-1766 (2007). [12] O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44, 988-989 (2008).

[13] D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. Lay, “High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers,” Appl. Phys. Lett. 92, 211101-1-3 (2008).

14 80 15 20 15 60 1 60 0 1 64 0 -7 -6 -5 -4 -3 -2 -1 0 1 2 TE TM 6 Wavelength (nm) 3 12 20 20 12 6 3 14 80 15 20 15 60 1 60 0 1 64 0 -7 -6 -5 -4 -3 -2 -1 0 1 2 TE TM 6 N e t m o d a l g a in ( c m -1) 3 12 20 20 12 6 3 I (mA ) CW, RT 5 st ac ks 14 80 15 20 15 60 1 60 0 1 64 0 -7 -6 -5 -4 -3 -2 -1 0 1 2 TE TM 6 Wavelength (nm) 3 12 20 20 12 6 3 14 80 15 20 15 60 1 60 0 1 64 0 -7 -6 -5 -4 -3 -2 -1 0 1 2 TE TM 6 N e t m o d a l g a in ( c m -1) 3 12 20 20 12 6 3 I (mA ) CW, RT 5 st ac ks QD-SOA Non-detuned Gaussian filter CW QD-SOA Detuned flat top filter CW 1ps/div 5ps/div Inverted Non-inverted a801_1.pdf

OWJ5.pdf

OWJ5.pdf

© 2009 OSA/OFC/NFOEC 2009

Referenties

GERELATEERDE DOCUMENTEN

While the explicit objective of this research was to identify and compile a generic list of important political risk factors affecting the agricultural industry in southern Africa

Iemand die zelf zijn bovenlichaam kan wassen geef je bij voorkeur rustig de gelegenheid zichzelf te wassen aan de wastafel met water en zeep of met verzorgend wassen.. Daarna

In conclusion, our KF approach is able to estimate a linear model of neural re- sponse and stimulation artifact when using clinical stimulation parameters.. The advantages of KF

In [4], [9] the authors propose a variable metric version of the algorithm with a preconditioning that accounts for the general Lipschitz metric. This is accomplished by fixing

Er zitten dus respectievelijk 21 rijksdaalders en 30 guldens in

With this in mind, the basic research questions of the paper could be stated as: What is meant by the promise of performing the Gospel seen from a preaching point of view and in

Door nu een lijn evenwijdig aan AB te construeren op afstand CE zal deze lijn het verlengde van BD snijden in C.. We passen nu twee keer de stelling van Pythagoras toe, zowel in DTS 

[r]