• No results found

University of Groningen New applications of dynamic combinatorial chemistry to medicinal chemistry Hartman, Alwin

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen New applications of dynamic combinatorial chemistry to medicinal chemistry Hartman, Alwin"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

New applications of dynamic combinatorial chemistry to medicinal chemistry

Hartman, Alwin

DOI:

10.33612/diss.102259269

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Hartman, A. (2019). New applications of dynamic combinatorial chemistry to medicinal chemistry. Rijksuniversiteit Groningen. https://doi.org/10.33612/diss.102259269

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Stellingen

Behorende bij het proefschrift

New applications of dynamic combinatorial chemistry to medicinal

chemistry

van Alwin Hartman

1) You always get experience, no matter what the outcome of your experiment was. 2) Life is an example of induced fit.

3) Slim zijn is relatief, het is hoe hard je voor iets wilt werken.

4) Amplified products in DCC do not necessarily have to be potent binders, as was the case for the hits in Chapter 4.

5) In modelling, do not design too exotic structures: the synthesis should be feasible within a few steps.

6) Flat ligands are boring, venture into less explored chemical space to use the entire volume of a binding pocket.

7) Many scientists are working according the ‘monkey see, monkey do’ principle: imitating or expanding other scientist’s work. We should stop this and as scientists be more creative. (Try something else than click chemistry).

8) Visual inspection of HPLC-chromatograms, for the analysis of DCC experiments like in Chapter 4, can be misleading. Therefore, one should always compare the peak areas.

Referenties

GERELATEERDE DOCUMENTEN

Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) — Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization,

As the equilibrium of the library shifts by the templating effect of the added protein sample, it should consist of the target protein as close to its native state as possible..

This derivative targets 14-3-3 in the human potassium channel TASK-3 and interacts in the mode 3 motif of the conserved binding

Intrigued by these findings, we next investigated the mode of binding of the new 14-3-3 PPIs modulators (compounds 2, A1H3, and A2H3) by SPR competition assays using synaptopodin

surface areas of peaks in the UV-chromatograms of the protein-templated reaction (P) and blank reaction (B). Data obtained from

The world’s first stock exchange: how the Amsterdam market for Dutch East India Company shares became a modern securities market, 1602-1700..

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

As he puts it: ‘The Kantian idea of moral autonomy does not primarily enlighten us about how we should actually structure our life and actions, but about the