• No results found

The  Effectiveness  of  Portfolio  Insurance  Strategies

N/A
N/A
Protected

Academic year: 2021

Share "The  Effectiveness  of  Portfolio  Insurance  Strategies"

Copied!
65
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

A  Comparative  Investigation  of  Portfolio  Insurance  Strategies  in  

The  Netherlands  

        Thesis  

Master  of  Science  in  Business  Administration   Specialisation:  Finance  

   

   

University  of  Groningen   Faculty  of  Economics  and  Business  

       

 

(2)

                Abstract  

In  2010  a  lot  of  Dutch  pension  funds  had  trouble  in  maintaining  an  asset/liability  ratio  of   more  than  105%.  In  this  paper  we  look  at  the  assets  and  how  we  can  prevent  the  assets   from  falling  in  value  while  still  holding  the  possibility  to  gain  from  rising  asset  prices.   We  therefore  compose  3-­‐month  maturity  portfolio  using  a  risky  and  a  riskless  asset  and   test  several  strategies  on  these  portfolios.  We  compare  two  portfolio  insurance  

techniques,  namely  CPPI  and  OBPI,  with  a  buy-­‐and-­‐hold  strategy  using  the  AEX  Total   Return  Index  as  a  risky  asset  and  the  3-­‐month  LIBOR  interest  for  the  risk-­‐free  asset.  We   find  that  that  the  OBPI  strategy  is  the  most  effective  strategy  followed  by  the  CPPI   strategy  and  finally  by  the  Buy-­‐and-­‐Hold  strategy.  

 

JEL  classification   G11,  G23,  G32   Keywords  

Portfolio  insurance,  CPPI,  OBPI,  buy-­‐and-­‐hold    

(3)

The  Effectiveness  of  Portfolio  Insurance  Strategies  

A  Comparative  Investigation  of  Portfolio  Insurance  Strategies  in  the  Netherlands  

Jord  Jansen  *  

 

I.  Introduction  

Since  the  beginning  of  trade  the  world  has  seen  booms  and  crashes  resulting  in  high   volatility  for  prices  in  both  company  stocks  and  commodities.  Take  for  example  the  tulip   mania.  According  to  Thompson  (2006)  the  peak  price  of  this  bubble  was  in  February   1637.  Prices  were  20  times  higher  than  in  November  1636,  only  3  months  earlier.   However,  some  time  later,  in  May  1637,  the  prices  of  these  tulips  crashed  and  people   who  bought  contracts  for  this  flower  went  bankrupt.  In  recent  times  we  also  see   bubbles,  crashes  and  crises.  Think,  for  example,  of  the  Asian  Crisis  in  1997  or  the  

Internet  Bubble  of  2001  and  of  course  the  financial  crises  that  started  in  2007.  For  many   companies  this  volatility  in  the  market  provides  problems.  For  them  it  would  be  very   helpful  if  there  would  be  some  kind  of  insurance  against  these  price  fluctuations.  In  this   paper  we  will  investigate  what  kind  of  insurance  strategy  provides  the  best  protection   against  losses  below  a  specified  floor.  The  goal  is  to  provide  a  better  insight  in  the   possibilities  and  efficiency  of  portfolio  insurance  (PI)  strategies.  

 

The  idea  of  portfolio  insurance  was  born  on  September  11,  1976.  Hayne  Leland  was   wondering  what  kind  of  product  would  be  appealing  for  the  financial  industry.  It  was  on   this  day  that  his  brother  mentioned  that  after  the  stock  market  decline  a  lot  of  pension   funds  had  withdrawn  large  quantities  of  their  assets  from  the  stock  market  and  were   missing  out  on  the  bull  market  of  1975.  According  to  Leland  &  Rubinstein  (1976,  p.  1),                                                                                                                  

(4)

 

Leland  his  brother  said:”  If  only  insurance  were  available,  those  funds  could  be  attracted   back  to  the  market”.  He  knew  a  little  about  the  Black  &  Scholes  formula  (Black  &  Scholes   (1973))  for  valuing  options  and  other  derivatives.  He  discovered  that  the  Black  &  

Scholes  formula  could  be  extended  to  create  the  options  synthetically.  This  brought  him   on  the  idea  to  write  an  official  framework  for  portfolio  insurance  together  with  Mark   Rubinstein.  They  produced  a  paper  with  this  framework  in  1976  called  ‘The  Evolution  of   Portfolio  Insurance’.  From  than  on  option-­‐based  portfolio  insurance  (OBPI)  with  

synthetic  put  options  became  a  very  useful  tool  for  insuring  a  certain  value  of  ones   portfolio.    

 

However,  investors  would,  in  a  painful  manner,  find  out  that  this  way  of  portfolio   insurance  has  its  limitations.  The  problem  with  OBPI  is  that  it  depends  on  a  theoretical   framework.  The  problem  with  this  is,  for  example,  that  it  assumes  that  some  of  the  input   variables  are  constant  while  in  the  real  world  they  fluctuate.  This  is  one  of  the  reasons   why  OBPI  did  not  work  in  the  crash  of  1987  in  which  the  volatility  in  the  market  rose   while  OBPI  models  assumed  it  was  constant.  Therefore,  positions  were  formed  on   wrong  information  and  losses  were  made.  Another  important  issue  that  is  related  to  the   former  problem  was  pointed  out  by  Jacobs  (1999).  He  claims  that  the  positive  feedback   system  inherent  to  these  strategies  amplifies  the  market  price  movements.  For  example,   in  the  crash  of  1987  stock  prices  were  falling,  portfolio  insurance  strategies  needed  to   sell  stocks  increasing  the  pressure  on  stock  prices  to  fall  even  further.  Because  of  the   handicap  that  OBPI  has,  people  searched  for  alternatives.  One  of  these  alternatives  is  the   constant  proportion  portfolio  insurance  strategy  (CPPI).    

(5)

CPPI  was  first  introduced  by  Perold  (1986)  in  his  paper  ‘Constant  Portfolio  Insurance’.   CPPI  does  not  depend  on  the  Black  &  Scholes  framework,  as  the  OBPI  strategy.  Hence,  it   does  not  have  to  cope  with  the  assumptions  of  this  model  like  a  constant  volatility  and   constant  interest  rate.  However,  this  strategy  also  has  its  disadvantages.  The  biggest   disadvantage  is  that  it  does  not  rely  on  a  theoretical  framework.  Moreover,  there  are  two   factors  in  the  model  which  have  to  be  determined  without  any  idea  of  what  the  

theoretical  value  of  these  variables  should  be.      

So,  above  we  see  two  dynamic  portfolio  insurance  strategies.  However,  is  there  one   strategy  that  outperforms  the  other  or  could  it  be  that  there  is  a  “do  nothing”  strategy,  as   Perold  and  Sharpe  (1988)  call  it,  which  outperforms  these  dynamic  portfolio  insurance   strategies?  One  of  the  best-­‐known  “do  nothing”  strategies  is  the  buy-­‐and-­‐hold  strategy.   The  idea  of  this  strategy  is  to  allocate  assets  between  risky  assets  (stock)  and  safe  assets   (bills)  and  than  hold  the  position  until  maturity.  The  proportion  allocated  to  safe  assets   provides  a  minimum  return  while  the  proportion  allocated  to  stocks  provides  an  upside   potential  return.    

 

(6)

 

beneficiaries  of  portfolio  insurance,  we  will  focus  and  approach  our  research  from  the   perspective  of  these  funds.  One  important  note  that  we  make  is  that  this  research  only   focuses  on  the  asset  side  of  the  asset/liability  ratio  that  pension  funds  have  to  maintain.   Hence,  it  is  still  possible  for  a  pension  fund  to  fail  this  ratio  when  its  assets  are  

protected.  This  could,  for  example,  happen  when  the  interest  rate  decreases,  which   increases  the  liabilities.  

 

Now  that  we  know  what  portfolio  insurance  is,  who  could  benefit  from  it,  and  given   there  are  multiple  strategies  to  provide  this  protection,  we  could  ask  ourselves  the   following:  What  is  the  best  and  most  efficient  way  to  protect  ones  assets  from  losses   while  still  having  the  possibility  to  gain  from  increasing  asset  prices?    This  will  be  the   main  research  question  of  this  paper.  

 

To  give  a  complete  answer  to  this  question  we  need  to  find  an  answer  to  several   different  aspects  of  portfolio  insurance.  We  will  try  to  answer  the  following  research   questions  in  order  to  obtain  a  valid  conclusion:  

-­‐ Do  portfolio  insurance  techniques  provide  superior  floor  protection  against   losses  compared  to  a  simple  buy-­‐and-­‐hold  strategy?  

-­‐ Which  portfolio  insurance  technique  is  the  best  in  protecting  the  floor  value  of   a  portfolio?  

-­‐ Which  technique  gives  the  most  return  over  the  investment  period?  

-­‐ How  do  the  distributions  of  the  different  strategies  compare  to  each  other?   -­‐ What  technique  is  the  most  cost-­‐efficient?  

(7)

We  will  answer  these  questions  for  two  portfolio  insurance  strategies,  namely  OBPI  and   CPPI.  To  look  whether  these  strategies  actually  improve  insurance  against  losses  we  will   compare  these  strategies  with  a  buy-­‐and-­‐hold  strategy  by  simulating  portfolio  insurance   strategies  with  a  length  of  3  months  using  the  AEX  Total  Return  index  and  the  3-­‐month   LIBOR  middle  rate  as  the  interest  rate.  The  reason  for  choosing  three  months  as  the   insurance  period  is  because  pension  funds  have  to  report  their  coverage  ratio  to  ‘De   Nederlandsche  Bank’  every  three  months.  We  compare  the  results  between  the  several   strategies  over  111  3-­‐month  periods  to  answer  the  above  questions.    

 

This  paper  adds  to  the  existing  literature  by  adding  information  on  the  performance  of   these  strategies  in  the  Netherlands.  

 

In  section  one  we  will  discuss  the  literature  with  respect  to  the  dynamic  portfolio  

insurance  strategies  and  their  performance.  Next,  we  will  discuss  the  methodology  used   for  our  analysis  followed  by  a  description  of  the  data.  After  that  we  will  discuss  the   results  and  draw  the  conclusions.  

 

II.  Literature  Review  

To  understand  the  idea  and  reasoning  of  this  paper  we  need  to  explain  the  basic   principles  of  portfolio  insurance  and  how  it  works.  Rubinstein  (1985)  explains  that   portfolio  insurance  protects  the  insurance  taker  against  a  devaluation  of  his  portfolio   value  below  a  certain  minimum  value  at  time  T  while  still  giving  him  the  opportunity  to   benefit  from  the  upward  potential  on  his  investment.  Of  course,  such  protection  is  not   for  free  and  thus  a  fee  has  to  be  paid  for  this  kind  of  pay-­‐off  structure.    

(8)

 

Now  that  we  know  that  portfolio  insurance  is  about  protecting  a  portfolio  from  sharp   declines  in  value,  it  is  a  good  idea  to  look  at  some  of  the  properties  of  the  pay-­‐off  

structure  of  these  strategies.  According  to  Rubinstein  (1985)  there  are  three  important   properties  for  the  return  pattern  of  a  perfectly  insured  portfolio.  First,  the  probability  of   experiencing  losses  below  a  certain  floor  during  the  insurance  period  is  equal  to  zero.   Second,  the  expected  return  of  any  profitable  position  is  a  predictable  percentage  of  the   expected  return  that  would  have  been  earned  if  all  funds  were  invested  in  the  risky   assets  underlying  the  portfolio.  The  third  property  depends  on  three  assumptions.  (i)   There  is  a  restriction,  which  obliges  the  portfolio  to  be  invested  only  in  one  asset  class   and  in  cash  loans.  (ii)  The  expected  rate  of  return  on  the  risky  asset  is  higher  than  the   expected  return  on  cash.  (iii)  The  portfolio  insurance  is  fairly  priced.  If  these  three   assumptions  hold  then  the  third  property  states  that,  among  all  strategies  that  possess   property  one  and  property  two,  the  insured  portfolio  will  have  the  highest  expected   return  amongst  insured  portfolios.  These  three  properties  are  always  present  in  a   perfectly  insured  portfolio.    

 

(9)

minimum  value  of  their  portfolio  but  can  accept  reasonable  risk  on  the  extra  value  of  the   portfolio.  An  example  of  the  second  investor  type  would  be  funds  with  managers  who   think  they  can  produce  above  average  returns  through  stock  selection.  So  the  paper  of   Leland  (1980)  supports  our  idea  of  pension  funds  being  a  consumer  of  portfolio   insurance.  

 

Next,  we  turn  to  the  different  kinds  of  portfolio  insurance  strategies  beginning  with  the   OBPI  strategy.  There  are  several  different  options  to  insure  your  portfolio  within  the   OBPI  strategy.  It  is  for  example  possible  to  use  exchange-­‐traded  European  put  options  to   insure  the  portfolio  against  losses.  According  to  Rubinstein  (1985)  the  advantage  of   using  exchange-­‐traded  European  put  options  is  that  it  is  100  percent  reliable  in   preventing  losses.  Furthermore,  this  strategy  only  depends  on  the  price  at  maturity  of   the  index,  if  dividends  are  reinvested,  so  that  the  portfolio  is  path  independent.        

The  reason  why  path  independence  is  a  beneficial  property  is  explained  by  Rubinstein   (1985)  and  Bookstaber  &  Langsam  (2000).  The  bottom  line  is  that  path  dependency   leads  to  extra  uncertainty  on  the  outcome  of  the  portfolio  value.  The  investor  interested   in  portfolio  insurance  is  not  rewarded  for  bearing  this  extra  risk  and  thus  does  not  want   to  have  it.  Therefore,  path  independence  is  seen  as  a  beneficial  property  when  insuring  a   portfolio.  As  Bookstaber  and  Langsam  (2000,  p.3)  state:  “A  strategy  that  is  not  path   independent  gives  an  uncertain  payoff,  and  therefore  violates  the  very  premise  of   portfolio  insurance:  giving  a  known  payoff.”  

 

(10)

 

exercise  early  while  European  options  have  to  be  held  to  maturity.  Because  of  this   flexibility  the  cost  of  an  American  put  option  is  higher  than  that  of  its  European  

counterpart.  Since  an  investor,  interested  in  insuring  its  portfolio  on  a  certain  date  in  the   future,  is  not  interested  in  early  exercise  he  is  not  willing  to  pay  for  the  extra  costs  an   American  option  entails.  

 

The  use  of  exchange-­‐traded  European  put  options  does  not  only  bring  advantages  with   it.  MacKenzie  (2004)  states  that  there  are  several  disadvantages  with  using  exchange-­‐ traded  options  for  portfolio  insurance.  He  says  that  although  there  have  been  organized   option  exchanges  in  the  US  from  as  early  as  1973,  most  of  the  options  available  had   short-­‐term  maturities  so  that  problems  arose  when  the  expiration  date  of  the  insurance   strategy  was  longer  than  the  time  to  maturity  of  the  option.  Options  have  to  be  rolled   over  increasing  the  transaction  costs  of  the  strategy.  Furthermore,  there  were  

limitations  in  the  amount  of  positions  that  could  be  accumulated.  Another  problem  was   that,  especially  in  the  1970s  and  beginning  of  the  1980s,  it  was  hard  to  find  and  collect   options  to  insure  a  well-­‐diversified  portfolio.  In  these  decades  options  were  only  traded   on  individual  stocks  and  not  on  stock  indices.  The  reason  for  this  was  that  the  Securities   and  Exchange  Commission  (SEC)  was  suspicious  of  derivatives  like,  for  example,  options   because  they  feared  that  they  would  be  used  for  destabilising  speculation.  Therefore,  the   SEC  rejected  proposals  to  introduce  index  options    on  the  exchange.  Rubinstein  (1985)   explains  another  important  issue  concerning  the  time  to  maturity  of  options.  He  explains   that,  if  an  option  has  to  be  rolled  over  because  the  insurance  period  is  longer  than  the   maturity  of  the  put  option,  this  has  an  impact  on  the  path  independency  of  the  strategy.   Reason  for  this  is  that  the  price  of  the  option  will  differ  with  different  market  

(11)

return  to  fall  in  comparison  with  a  put  option  that  does  not  have  to  be  rolled  over.  So,  as   the  amount  of  rollovers  becomes  more  frequent,  path  dependency  increases.    

 

One  solution  to  these  problems  could  be  the  use  of  the  over-­‐the-­‐counter  market.  

Another  financial  institution  could  write  a  put  option  on  the  whole  portfolio  that  needs   to  be  insured.  The  benefits  of  this  market  are  (i)  the  possibilities  to  match  the  maturity   of  the  option  to  the  maturity  of  the  insurance  period,  (ii)  the  fact  that  only  one  option  on   the  whole  portfolio  can  be  obtained  so  that  the  risk  and  return  of  the  option  exactly   matches  the  risk  and  return  of  the  portfolio,  and  (iii)  path  independence  is  restored.   However,  Hull  (2009)  and  Bertrand  &  Prigent  (2002)  provide  us  with  some  

disadvantages  for  this  method.  First,  the  writer  of  the  option  may  default  so  the  

purchaser  is  subject  to  some  credit  risk.  Second,  over-­‐the-­‐counter  options  are  not  liquid   due  to  the  fact  that  they  are  adjusted  to  match  one  certain  portfolio.  Third,  the  prices  of   over-­‐the-­‐counter  products  are  less  competitive.  So,  although  the  over-­‐the-­‐counter   market  provides  a  solution  to  some  problems  mentioned  above,  it  also  has  its   disadvantages.  

 

(12)

 

put  and  equalize  it  to  the  period  to  be  insured  and  therefore  there  is  no  need  to  rollover   options.  Second,  it  is  easier  to  insure  a  portfolio  of  assets  with  synthetic  put  options  than   with  exchange-­‐traded  put  options.  This  holds  especially  for  the  70s  and  80s  since  at  that   time  options  were  only  traded  on  stocks  and  not  on  indices.  With  synthetic  puts  you  can   choose  the  risky  asset  and  make  use  of  stock  indices.  Finally,  the  strike  price  of  a  

synthetic  put  can  be  chosen  by  the  investor,  therefore  one  does  not  have  the  problem  of   finding  options  with  the  right  exercise  prices.  

 

Huu  Do  and  Faff  (2004)  state  that  one  of  the  problems  with  synthetic  puts  is  that  they   are  path  dependent.  Reason  for  this  is  that  they  are  subject  to  replication  error.  Because   of  this  error,  funds  are  allocated  to  the  wrong  assets  and  the  payoff  becomes  dependent   on  the  future  path  of  this  asset.  Another  problem  indicated  by  Huu  Do  and  Faff  (2004)  is   the  necessity  of  frequent  trading  when  a  synthetic  put  strategy  is  used.  Therefore,   transaction  costs  will  be  relatively  high.  According  to  them,  one  solution  to  this  problem   could  be  the  use  of  futures.  Instead  of  trading  in  the  asset  itself  one  could  short  futures   written  on  the  stock.  For  example,  if  the  risky  asset  falls  in  value  one  should  increase  the   short  position  in  futures  and  vice  versa.  Sutcliffe  (2006)  states  some  other  benefits  of   trading  in  futures  like  greater  liquidity,  lower  transaction  costs  and  faster  execution.   However,  there  are  several  disadvantages  with  the  use  of  futures.  There  exists  the  risk  of   a  potential  mismatch  between  the  asset  price  and  the  futures  price.  Also,  futures  

contracts  are  standardized,  hence,  it  is  much  more  difficult  to  replicate  a  portfolio   perfectly.  Furthermore,  if  the  maturity  of  the  insurance  strategy  is  longer  than  the   maturity  of  the  future,  than  the  future  has  to  be  rolled  over,  so  that  path  dependency   increases.    

(13)

So  we  see  that  there  are  different  OBPI  strategies  for  protecting  the  value  of  the   portfolio  which  all  have  their  own  advantages  and  disadvantages.  But  there  are  also   some  other  disadvantages  that  concern  all  of  these  OBPI  strategies.  Rubinstein  (1985)   gives  several  examples  of  disadvantages  due  to  market  imperfections  or  uncertainty  for   these  OBPI  strategies.  The  problems  that  he  mentions  are  uncertain  interest  rates,   uncertain  volatility,  security  price  jumps,  and  transaction  costs.    

 

Rubinstein  explains  that  if  there  are  uncertainties  about  the  interest  rate,  it  will  be   impossible  to  replicate  long-­‐term  European  options  exactly  since  OBPI  relies  on  

constant  interest  rates.  He  also  states  that  uncertain  volatility  is  a  major  impediment  on   dynamic  insurance  strategies  since  the  predicted  volatility  is  not  only  important  for  the   pricing  of  options  but  also  for  all  determinants.  Hence,  misestimation  could  have  a  major   impact  on  the  outcomes  of  an  insurance  strategy.  Rendleman  &  O’Brien  (1990)  wrote  a   paper  in  which  they  investigate  the  effect  of  volatility  misestimation  on  the  outcome  of  a   portfolio  insurance  strategy.  They  found  that  volatility  misestimation  has  a  significant   impact  on  the  ending  payoffs.  However,  there  results  are  based  on  the  assumption  that   the  volatility  is  constant  over  the  whole  insurance  period,  stock  prices  evolve  according   to  a  certain  probability  distribution,  and  a  weekly  revision  of  the  portfolio.  Moreover,   the  results  of  their  research  pertain  only  limited  to  pure  option-­‐replication  insurance   strategies.    

 

(14)

 

misalignment  in  the  allocation  of  resources  and  the  risk  exists  that  the  portfolio  value   will  deviate  from  its  insured  value.  Another  way  in  which  this  can  happen  is  when  the   portfolio  is  not  updated  continuously.  The  ideal  situation  with  OBPI  strategies  would  be   to  update  ones  portfolio  continuously.  However,  in  real  life  this  is  impossible  and  

portfolios  are  updated,  for  example,  daily.  Thus,  between  every  update  there  is  a  jump  in   prices  so  that  positions  cannot  move  to  its  new  level  in  a  smooth  manner,  which  can  lead   to  a  portfolio  value  that  is  lower  than  the  assigned  floor.    

 

Lastly  Rubinstein  explains  that  transaction  costs  are  an  extra  cost  that  is  made  by   changing  the  positions  in  the  risky  and  riskless  assets.  These  costs  are  not  incorporated   in  the  model  for  determining  the  correct  positions.  Therefore,  positions  are  allocated  in   a  slightly  inefficient  manner.  According  to  Arnott  &  Clarke  (1987)  transaction  costs  can   have  two  effects.  First,  it  can  lead  to  the  possibility  of  missing  the  floor  of  your  insurance   strategy.  However,  these  shortfalls  are  relatively  small  and  should  not  be  too  alarming.   Second,  the  transaction  costs  have  an  impact  on  the  mean  and  median  returns  of  the   portfolio.  The  average  return  on  an  insured  portfolio  drops  significantly  against  the  rate   of  return  without  transaction  costs.  

 

(15)

There  are  some  special  cases  of  CPPI  in  which  the  strategy  mimics  other  strategies.  For   example,  Bertrand  and  Prigent  (2002)  showed  that  although  CPPI  does  not  depend  on   input  variables  (interest  rates,  variance)  like  the  synthetic  put  strategy  does,  it  can   replicate  a  synthetic  put  strategy.  They  state  that  the  synthetic  put  strategy  can  be   considered  as  a  generalized  version  of  the  CPPI  approach.  In  this  case  the  multiplier  is  a   function  of  the  value  of  the  risky  assets  and  hence  it  is  variable  itself.  Furthermore,  Black   &  Perold  (1992)  explain  that  a  stop-­‐loss  strategy  is  another  special  case  of  the  CPPI   strategy.  A  stop-­‐loss  strategy  orders  to  sell  the  asset  if  its  value  falls  below  a  specified   floor  value.  A  stop-­‐loss  strategy  can  be  presented  as  a  CPPI  strategy  when  the  multiplier   goes  to  infinity  so  that  the  complete  portfolio  is  completely  invested  in  the  risky  asset  if   the  portfolio  value  is  above  the  floor  value.  The  assets  completely  switch  to  the  riskless   asset  when  the  portfolio  value  is  below  the  floor  value.  The  last  case  is  explained  by   Constantinou  and  Khuman  (2009).  They  state  that  if  the  multiplier  is  set  to  one,  the  CPPI   strategy  is  equal  to  a  buy-­‐and-­‐hold  strategy.  If  the  multiplier  is  equal  to  one  then  it  is   impossible  to  fall  below  the  floor  since  only  the  cushion  is  invested.  So  during  the   investment  period  there  is  no  need  to  adjust  the  amount  of  money  allocated  to  the   riskless  asset.    

 

(16)

 

market  pricing  mechanism1.  Furthermore,  there  is  no  need  to  agree  on  a  definitive  

expiration  date  for  the  insured  portfolio,  the  CPPI  strategy  can  be  used  as  long  as   necessary.  Another  important  property  is  pointed  out  by  Merchant  (2004).  He  states   that  with  rising  interest  rates  the  likelihood  of  higher  returns  increases.  The  reason  for   this  is  that  with  higher  interest  rates,  there  is  less  cash  needed  to  make  sure  that  the   minimum  floor  is  achieved.  Therefore  more  cash  can  be  allocated  to  the  risky  asset,   which  increases  the  chance  of  a  higher  return.  

 

Earlier  we  stated  that  CPPI  is  very  popular  because  of  its  simplism,  however,  this   simplism  also  comes  with  a  downside.  Bookstaber  &  Langsam  (2000)  explain  that  the   CPPI  strategy  lacks  a  theoretical  foundation.  It  is  a  heuristic  that  does  not  contain  a   foundation  for  analytical  study  like,  for  example,  the  Black-­‐Scholes  formula.  So,  values   for  the  multiple  and  floor  are  chosen  without  any  theoretical  framework  that  can  explain   why  these  values  are  used.  Furthermore,  the  CPPI  technique  has  problems  with  price   jumps.  As  is  the  case  with  OBPI  techniques,  CPPI  strategies  could  break  through  the  floor   because  the  positions  cannot  change  gradually  with  prices.  Cont  &  Tankov  (2009)  refer   to  this  risk  as  ‘Gap  Risk’.  They  have  investigated  this  problem  and  they  introduce  a  jump   parameter  to  adjust  for  jumps  in  prices  so  that  the  multiplier  is  corrected  based  on  the   investor’s  risk  aversion.  Another  problem  has  to  do  with  the  transaction  costs.  For   example,  Black  &  Perold  (1992)  have  theoretically  shown  that  in  a  CPPI  strategy  it  is   possible  that,  if  the  index  ratio  follows  a  geometric  Brownian  motion,  the  transaction   costs  can  destroy  the  cushion  above  the  floor  as  the  trading  frequency  increases.  

Another  very  important  problem  with  the  CPPI  strategy  is  called  the  ‘cash  lock’  problem   (Brandl  (2009)).  This  problem  occurs  when  the  value  of  the  portfolio  invested  in  risky                                                                                                                  

(17)

assets  declines  by  as  much  as  the  size  of  the  cushion.  When  this  happens,  the  portfolio   will  be  fully  invested  in  the  riskless  assets  and  it  is  impossible  to  benefit  from  a  price   increase  of  the  risky  assets.  This  also  explains  the  fact  that  the  CPPI  strategy  is  a  path   dependent  strategy.  For  example,  if  a  portfolio  gets  cash  locked  before  maturity  of  the   insurance  period,  it  influences  the  future  outcome  of  the  portfolio  value.  

 

Now  that  we  know  that  there  exist  inefficiencies  in  portfolio  insurance  strategies,  it   could  be  the  case  that  the  strategies  have  different  levels  of  efficiency.  There  have  been   several  papers  that  compare  the  CPPI  and  OBPI  strategy.  For  example,  Huu  Do  (2002)   looked  at  the  performance  of  these  two  strategies  using  the  (old)  Australian  All  

Ordinaries  Index  (AAOI)  from  1992  up  to  2000.  He  divided  the  sample  period  in  33  non-­‐ overlapping  three-­‐month  insurance  periods.  Furthermore,  he  uses  transaction  costs  of   0.5%.  Huu  Do  finds  that  CPPI  dominates  in  floor  protection  with  daily  rebalancing.   However,  the  synthetic  put  strategy  works  better  when  there  is  a  value-­‐based   rebalancing  trigger  like,  for  example,  a  market  movement  (AAOI)  of  more  than  2%.   Furthermore,  he  finds  that  there  is  no  justification  to  use  dynamic  portfolio  insurance   practises  when  CPPI  and  OBPI  are  restricted  to  trading  in  only  one  bill  and  ones  index.      

Black  and  Rouhani  (1989)  compared  the  pay-­‐offs  of  both  the  CPPI  and  OBPI  strategies.   Their  conclusion  was  that  the  CPPI  strategy  works  better  in  a  volatile  market,  and  that   the  OBPI  strategy  works  better  in  relatively  calm  markets.  

 

(18)

 

is  split  in  consecutive  2-­‐month  insurance  periods.  Furthermore,  transaction  costs  are   0.8%.    They  find  that  both  techniques  provide  a  superior  performance  to  the  buy-­‐and-­‐ hold  technique.  However,  the  performance  of  CPPI  really  stands  out  against  the  OBPI   technique.    

 

Another  paper  by  Bertrand  and  Prigent  (2002)  compares  the  OBPI  strategy  and  the  CPPI   technique  on  several  aspects.  They  compare  the  two  strategies  on  their  payoffs,  

expectations,  variance,  skewness  and  kurtosis  of  the  returns,  possible  property  of  

stochastic  dominance,  and  some  of  the  quantiles  of  the  returns.  They  conclude  that  there   is  no  dominance  for  the  standard  criteria  of  portfolio  choices.  Furthermore,  they  found   that,  conditionally  to  some  events  of  the  dynamics  of  the  asset  price,  it  is  possible  to   prefer  one  strategy  to  the  other.  For  example,  in  case  of  a  large  drop  in  asset  prices  the   value  of  the  portfolio  under  the  CPPI  strategy  is  always  larger  than  under  the  OBPI   strategy.  Next  to  that  they  prove  that  the  synthetic  put  method  can  be  seen  as  a   generalized  CPPI  method.    

 

(19)

percentage  of  the  initial  insured  investment  rises,  the  probability  that  the  CPPI  portfolio   value  is  higher  than  the  value  of  its  counterpart  increases.    

 

One  can  see  that  there  already  is  quite  some  literature  about  this  subject.  However,   conclusions  in  these  papers  are  all  different  and  thus  there  is  no  definitive  answer.   Therefore  we  try  to  add  some  information  on  this  subject  by  performing  this  study.   In  the  next  section  we  will  discuss  the  methodology  that  we  use  in  this  paper.    

Table 1: Empirical Results: OBPI versus CPPI

Author (Year) Subject Method Conclusions

Black & Rouhani (1989)

Constant Proportion Portfolio Insurance and the Synthetic Put Option: A Comparison

Monte Carlo simulation and an analysis of the impact of actual/implied volatalities

(i) CPPI perfoms better in a bear market or a slightly bullish market (ii) OBPI works better in a

moderately bullish market Huu Do (2002) Relative Performance of

Dynamic portfolio Insurance Strategies: Australian Evidence

Simulations of the CPPI and OBPI strategy using the AAOI index using data from 1992 till 2000

(i) CPPI dominates in floor protection using daily rebalancing.

(ii) OBPI dominates in floor protection with trigger based rebalancing

(iii) PI is not supported if it is restricted to trading in one risky and one riskless asset

Bertrand & Prigent (2002)

Portfolio Insurance Strategies : OBPI versus CPPI

Comparison of both strategies in pay-offs, property of

stochastic dominance, expectations, variance, skewness and kurtosis of the returns. And the “Greeks” are studied.

(i) There is no dominance for the standard criteria of portfolio choices (ii) Conditional to some dynamics of asset prices one strategy can be preferred over the other.

(20)

 

Author (Year) Subject Method Conclusions

Bertrand & Prigent (2003)

Portfolio Insurance Strategies: A Comparison of Standard Methods when the Volatility of the Stock is Stochastic

Both methods are analyzed in a Black-Scholes model and in a stochastic volatility world modelled by a Ornstein-Uhlenbeck process

(i) Stochastic volatility slightly increases the expected return for OBPI but decreases it for CPPI (ii) CPPI is more affected by stochastic volatility

(iii) if the percentage of the initial insured investment rises, the probability that the CPPI portfolio value is higher than the OBPI value increases.

Er & Erdogan Aktan (2009)

Performance Of Portfolio Insurance Strategies: Evidence From Turkey

Simulations of the OBPI and CPPI strategy using data from the Turkish ISE-30 from 1997 till 2008

(i) Both OBPI and CPPI perform better than a buy-and-hold strategy (ii) CPPI performs better than OBPI

(21)

III.  Methodology  

In  the  introduction  we  stated  the  following  research  question:  “What  is  the  best  and   most  efficient  way  to  protect  ones  assets  from  losses  while  still  having  the  possibility  to   gain  from  bull  markets?”  To  answer  this  question  we  have  to  state  two  hypotheses.  The   first  hypothesis  is  needed  to  answer  the  question  whether  portfolio  insurance  

techniques  provide  better  protection  than  other  techniques  like  the  buy-­‐and-­‐hold   strategy.  The  second  hypothesis  tests  whether  one  of  the  two  portfolio  insurance   techniques  performs  better  than  the  other.  Below  we  find  the  two  hypotheses:    

Hypothesis  1  

    H0   The  performance  of  OBPI  and  CPPI  as  an  insurance  technique,  is  equal  to   the  performance  of  a  Buy-­and-­Hold  strategy.  

    H1   The  performance  of  OBPI  and  CPPI  as  an  insurance  technique  is  not  equal   to  the  performance  of  a  Buy-­and-­Hold  strategy.  

 

Hypothesis  2  

    H0   The  performance  of  OBPI  as  a  portfolio  insurance  technique  is  equal  to   that  of  CPPI.  

    H1   The  performance  of  OBPI  as  a  portfolio  insurance  technique  is  not  equal   to  that  of  CPPI.  

 

(22)

 

A.1.  OBPI  

The  OBPI  strategy  is  based  on  the  pricing  formula  of  Black  and  Scholes  (1973),  which   was  extended  by  Merton  (1973).  To  get  a  good  understanding  of  how  this  strategy   works,  we  will  first  explain  the  assumptions  and  principles  of  the  OBPI  strategy  using   exchange-­‐traded  put  options.  

 

The  model  for  the  theoretical  value  of  a  put  option  depends  on  several  assumptions,   some  of  which  are  already  mentioned  and  explained  in  section  II.  The  assumptions  are:  

1. The  underlying  asset  (stock)  price  follows  a  geometric  Brownian  motion  in  which   the  expected  return  of  the  stock  price  and  stock  price  volatility  remains  constant   over  time  

2. There  are  no  transactions  costs  or  taxes.    

3. There  are  no  dividends  on  the  stock  during  the  life  of  the  option.   4. There  are  no  riskless  arbitrage  opportunities.  

5. Security  trading  is  continuous.  

6. The  world  in  which  the  option  exists  is  assumed  to  be  risk-­‐neutral.   7. Investors  borrow  and  lend  at  the  same  risk-­‐free  rate  of  interest.     8. The  short-­‐term  risk-­‐free  interest  rate  is  constant  over  time.   9. Short  selling  of  securities  with  the  use  of  proceeds  is  permitted.   10. The  option  uses  the  European  exercise  terms.  

(23)

Using  these  assumptions  one  can  obtain  the  value  of  a  European  put  option  by  using  the   following  formula:                              (1)    

where  St  is  the  stock  price  at  time  t,  K  is  the  strike  price  of  the  option,  r  is  the  risk-­‐free  

interest  rate, σ2  is  the  variance  of  the  underlying  asset,  T  is  the  time  to  maturity,  and   N(x)  is  the  cumulative  normal  distribution  function.  This  formula  does  not  account  for  

dividends  while  in  the  real  world  there  are  dividends.  Therefore  we  make  use  of  the  AEX   Total  Return  Index,  in  which  the  dividends  are  reinvested  in  the  index.  Hence,  we  do  not   have  to  take  into  account  a  dividend  yield  in  our  calculations.  

 

Now  that  we  know  how  an  exchange-­‐traded  put  option  is  valued  we  will  turn  to  the   creation  of  a  synthetic  put  option.  To  create  a  synthetic  put  we  have  to  adjust  equation   (1).  We  add  the  factor  St  to  both  sides  of  the  equation  to  obtain:  

pt+ St = Ke

−rT

N(−d2) + [1 − N(−d1)]St                          (2)  

On  the  left-­‐hand-­‐side  we  see  that  portfolio  insurance  can  be  obtained  by  investing  St  in  

the  asset  and  by  buying  a  put  on  this  asset  that  covers  the  value  invested  in  the  asset.  On   the  right-­‐hand-­‐side  we  see  that  the  same  portfolio  insurance  can  be  obtained  by  

(24)

 

To  find  the  values  that  have  to  be  invested  in  stocks  and  bonds  we  assume  that  the  total   value  of  the  portfolio  at  the  start  is  equal  to  W0.  If  we  would  invest  all  of  it  in  stocks  than    

nS0 = W0                            (3)  

Where  n  is  the  amount  of  stocks,  S0  is  the  price  of  stocks  at  the  start  of  the  insurance  

period.      

The  floor  value,  which  is  the  minimum  value  of  the  portfolio  at  maturity,  is  equal  to  aW0.  

Where  a  is  the  floor  protected  as  a  percentage  of  the  initial  portfolio  value  W0.  

 

If  we  want  to  protect  the  portfolio  we  could  buy  a  put  for  every  stock  held  at  the  start  of   the  insurance  period.  However,  costs  are  involved  in  buying  a  put,  these  costs  have  to  be   paid  out  of  the  portfolio  value.  So  the  portfolio  value  is  composed  as:  

b(P0+ S0) = W0                          (4)  

where  b  is  the  amount  of  bonds  and  puts  that  need  to  be  bought  for  the  portfolio  to  be   protected.  Because  P0  and  S0  have  a  positive  value,  b  should  be  smaller  than  n.  

 

We  want  to  protect  the  portfolio  from  falling  below  the  floor  value  aW0  at  maturity.  

Hence,  at  maturity:    

b(PT + ST) ≥ aW0                              (5)  

This  can  also  be  written  as:    

bmax(ST,K) ≥ aW0                          (6)  

If  we  substitute  (3)  for  W0  and  rearrange  the  equation  we  obtain  for  K:  

K = an

(25)

Now,  if  we  assume  that  at  the  start  of  the  insurance  period  St  is  equal  to  the  portfolio  

value  W0  than  n=1  so  that  equation  (7)  can  be  written  as:  

                           (8)   Because  b  <  n,  b  has  to  be  smaller  than  1.  K  is  the  floor  value  that  we  will  use  to  calculate   the  put  value.    

 

Now  that  we  explained  how  we  can  make  a  portfolio  insurance  strategy  with  exchange   traded  options  using  equation  (4),  we  will  explain  how  it  is  done  using  a  risky  and   riskless  asset.  To  make  a  synthetic  portfolio  insurance  strategy  we  have  to  invest  an   amount  equal  to  the  delta  of  equation  (4)  in  the  risky  asset  and  the  other  part  in  the   riskless  asset.  The  delta  can  be  calculated  as  follows:  

δW0

δSt

= b[N(d1) −1+1] = bN(d1)

                         (9)   This  is  equal  to  the  amount  that  we  need  to  invest  in  the  risky  asset.  

 

To  calculate  this  amount  we  need  to  estimate  a  value  for  b.  This  can  also  be  done  using   equation  (2)  and  (4).  Equation  (4)  can  also  be  written  as:  

b[Ke−rT

N(−d2) − StN(−d1) + St] = W0  

                   (10)  

(26)

 

If  we  use  equation  (8)  to  replace  K  we  see  that  the  only  variable  that  is  not  known  is  b.   So  if  we  solve  formula  (10)  for  b  and  put  it  into  equation  (9)  we  obtain  the  proportion  to   invest  in  risky  assets.    

 

As  stated  earlier  we  also  need  to  invest  in  riskless  assets  to  obtain  a  secured  portfolio.   The  proportion  invested  in  riskless  assets  is  equal  to:  

                       (11)   Where  qr  is  the  proportion  of  riskless  assets.  

 

So  if  an  amount  equal  to  the  delta  of  the  portfolio  is  invested  into  the  risky  asset,  and  the   rest  of  the  portfolio  is  put  in  the  riskless  asset,  we  should  obtain  an  insured  portfolio.   One  important  thing  to  note  is  that  the  portfolio  is  only  insured  for  a  very  short  time   since  the  delta  of  a  portfolio  changes  with  St.  Hence,  proportions  in  the  risky  and  riskless  

asset  should  be  updated  continuously  to  provide  perfect  portfolio  insurance.    

A.2.  CPPI  

The  CPPI  strategy  also  allocates  the  wealth  of  the  portfolio  between  risky  assets  and   non-­‐risky  assets.  However,  as  stated  before,  the  CPPI  strategy  does  not  rely  on  a   theoretical  framework  for  deciding  how  much  of  the  portfolio  should  be  designated  to   the  risky  asset.  The  amount  of  the  portfolio  designated  to  the  risky  asset  is  calculated  as:  

                     (12)   Where    is  the  exposure  to  the  risky  asset,  Wt  is  wealth  at  time  t,  Ft  is  the  floor  value  

(27)

If  m  >  1  than  the  CPPI  strategy  is  leveraged  which  means  that  a  part  of  the  floor  is  used   to  invest  in  the  risky  asset.  If  the  risky  asset  falls  in  value,  a  part  of  the  risky  assets  is   sold  and  invested  in  the  riskless  asset.  An  implication  of  leveraging  is  that  the  amount   invested  in  the  risk-­‐free  asset  is  not  always  equal  to  the  present  value  of  the  floor  during   the  investment  period.  Hence,  the  value  invested  in  the  risk-­‐free  asset  is  equal  to  

                     (13)   Earlier  in  this  paper  we  explained  that  the  CPPI  strategy  is  not  based  on  a  theoretical   framework  and  thus  there  is  no  way  to  determine  the  value  of  Ft  and  m.  However,  to  

compare  this  strategy  with  the  OBPI  strategy,  we  need  to  specify  Ft  and  m.  Therefore,  we  

adopt  the  approach  of  Kat  (1994):  the  floor  value  in  the  CPPI  strategy  will  be  equal  to   the  strike  price  of  the  OBPI  strategy  and  will  thus  be  set  equal  to  aW0e-­rT  at  the  beginning  

of  the  insurance  period.  Furthermore,  m  is  chosen  so  that  the  initial  allocation  to  the   risky  and  non-­‐risky  asset  is  the  same  as  in  the  OBPI  strategy.  Bertrand  and  Prigent   (2002)  provide  us  with  an  explanation  for  this  approach.  

 

As  stated  earlier,  the  OBPI  strategy  can  be  seen  as  a  generalized  CPPI  approach  

(Bertrand  &  Prigent,  (2002))  with  a  variable  multiplier.  Both  types  of  strategies  obtain   portfolio  insurance  with  dynamic  management  of  the  proportions  in  risky  and  riskless   assets.  Bertrand  and  Prigent  (2001)  have  shown  how  the  multiplier  for  an  OBPI  strategy   can  be  established.  We  know  from  Hull  (2009)  that  put-­‐call  parity  is    

                       (14)   We  than  adapt  it  so  that  the  total  value  of  the  asset  and  option  are  equal  to  the  initial   portfolio  value  W0:  

b( pt+ St) = b(ct+ Ke

−rT) = W

0                  (15)  

(28)

 

This  can  also  be  written  as:   € b( pt + St) = b[StN(d1) − Ke −rTN(d 2)] Cushion           +bKe−rT Floor                   (16)   In  equation  (16)  we  see  that  the  first  part  on  the  right  hand  side  of  the  equation  is  equal   to  the  cushion  of  the  CPPI  strategy  and  the  second  part  is  equal  to  the  floor.  In  the  CPPI   strategy  the  cushion  is  equal  to  the  exposure  to  risky  assets  divided  by  the  multiplier.   With  this  information  we  can  calculate  the  multiplier  for  the  OBPI  strategy  as:  

  € mt = Et stock (Wt − Ft) = N(d1)Wt StN(d1) − Ke −rT N(d2)                (17)  

This  explains  the  approach  from  Kat  (1994)  in  which  he  sets  the  proportions  in  the  risky   asset  equal  at  the  start  of  the  insurance  period  for  both  portfolio  insurance  techniques   using  the  multiplier.  So  at  the  beginning  of  each  insurance  period,  the  OBPI  strategy  is   equal  to  the  CPPI  strategy.  

 

A.3.  Buy-­and-­Hold  

The  last  strategy  that  we  will  discuss  is  the  Buy-­‐and-­‐Hold  strategy.  This  is  by  far  the   simplest  of  the  three  strategies  that  we  discuss  in  this  paper.  The  idea  of  the  strategy  is   to  allocate  the  portfolio  between  a  risky  and  a  riskless  asset  at  the  beginning  of  the   period  and  wait  till  the  end  of  the  “insurance”  period  to  see  what  the  final  value  is.  Let  it   be  clear  that  this  strategy  is  not  a  portfolio  insurance  strategy.  It  is  possible  for  the   portfolio  value  to  fall  below  the  set  floor.    

 

(29)

and  CPPI  strategy.  Hence,  the  total  portfolio  value,  using  a  buy-­‐and-­‐hold  strategy,  can  be   described  by:  

  and                  (18)   Where  Wt  is  the  portfolio  value  at  time  t,  α  is  the  proportion  invested  in  the  risk-­‐free  

asset,  and  β  is  the  proportion  invested  in  the  risky  asset.    

A.4.  Assumptions  

Before  we  explain  how  we  compare  the  several  different  strategies  we  have  to  make   some  assumptions  that  are  important  for  giving  some  boundaries  to  this  research.  First,   it  is  not  possible  to  sell  short.  The  reason  for  this  is  that  during  the  investigated  period  it   was  not  always  possible  to  sell  short  due  to  trading  restrictions.  For  example,  in  2008   minister  Bos  prohibited  naked  short  selling  in  the  Netherlands2.  Hence,  to  give  a  good  

comparison  over  time,  we  restrict  this  research  by  taking  away  the  possibility  of  short   selling.    

 

(30)

 

A.5.  Comparison  

There  are  several  different  ways  in  which  we  can  test  which  strategy  performs  best  in   insuring  a  portfolio  value  and  how  dependent  these  outcomes  are  on  misestimating   variables.    The  first  tests  that  we  will  perform  test  how  many  times  the  portfolio   achieves  the  minimum  required  floor  and  what  the  variance  is  in  floor  protection.  We   only  test  these  values  at  maturity.  The  percentage  of  times  the  floor  is  achieved  is   calculated  as:  

nachieved

ntotal

                       (19)   Where  nachieved  is  the  amount  of  portfolios  in  which  the  floor  is  achieved  and  ntotal  is  the  

total  amount  of  portfolios.      

We  will  also  look  at  the  variance  of  the  value  achieved  at  maturity.  The  standard   deviation  is  calculated  as:    

(Wi,T − W ) 2 i=1 n

ntotal −1                      (20)   Where  Wi,T  is  the  realized  value  of  portfolio  i  at  maturity,  

W  is  the  average  realized  

value  of  the  portfolios,  and  ntotal  is  the  amount  of  portfolios  created.    Furthermore,  we  

will  look  at  the  average  return  that  every  strategy  provides.  The  return  is  annualized   and  can  be  calculated  as:  

Ri = (Wi,T

W0 )

4

−1                      (21)    Where  Ri,T  is  the  annualized  return  on  portfolio  i,  Wi,T  is  the  realized  value  of  portfolio  i  

at  maturity  and  W0  is  the  initial  value  at  the  start  of  the  portfolio  insurance  period.    

(31)

The  standard  deviation  of  these  returns  will  be  calculated  as:   € (Ri,T − R)2 i=1 n

ntotal −1                      (22)   Another  factor  that  we  will  look  at  are  the  transaction  costs  created  by  every  strategy.   Transaction  costs  will  be  calculated  as  1%  of  the  value  that  is  transferred  from  the  risky   asset  to  the  riskless  asset  and  vice  versa.  The  costs  of  1%  are  arbitrarily  chosen  since   these  costs  are  not  incorporated  into  the  model.  Hence,  they  do  not  affect  the  results  and   the  relative  difference  in  transaction  costs  remains  the  same  between  the  strategies.      

Next,  we  will  test  the  distribution  of  the  portfolio  insurance  outcomes.  Measures  that  we   use  for  that  are  skewness  and  kurtosis.    

 

To  test  the  robustness  of  the  outcomes  we  will  test  several  values  for  the  different   variables.  First,  we  will  test  the  impact  of  misestimating  the  variance.  To  do  this  we  will   add  or  deduct  10%  in  variance  of  the  historical  variance.  We  will  then  compare  these   results  with  the  results  found  using  the  historical  variance.    Furthermore,  we  will  change   the  floor  value  that  has  to  be  achieved  at  maturity.  We  will  test  the  floor  protection  with   a  quarterly  required  floor  value  of  -­‐1.25%  and  0%  of  the  initial  portfolio  value.  

 

Referenties

GERELATEERDE DOCUMENTEN

The different items that were measured were: contact with Dutch people, contact with people from the home country, satisfaction with the buddy programme,

Er werd wel een significant effect gevonden van perceptie van CSR op de reputatie van Shell (B = .04, p = .000) Uit deze resultaten kan worden geconcludeerd dat ‘perceptie van

The results of the analysis show that a positive relationship is present between the two variables, but that the effect size of CEO-pay-ratio on company performance is almost

SNLMP can be introduced as transition systems with stochastic and non-deterministic labelled transitions over a continuous state space.. Moreover, structure must be imposed over

De afhankelijkheidsrelatie die bestaat tussen de jeugdige (diens ouders) en de gemeente leidt ertoe dat toestemming echter geen geschikte grondslag voor gegevensverwerking

Hoewel er vanuit eerder onderzoek wel ondersteuning is voor de modererende rol van werkgeheugencapaciteit op angst-gerelateerde biases en benaderingsgedrag, toonde de huidige

1969 Vienna Convention on Law of Treaties. The OTP should in the future, look to apply a more flexible approach in determining whether an entity is a state for the

Ook hier waren we het vorig jaar geweest, maar toen konden we geen toestemming krijgen om te.. verzamelen omdat de eigenaar niet