• No results found

VU Research Portal

N/A
N/A
Protected

Academic year: 2021

Share "VU Research Portal"

Copied!
30
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Non-canonical modulation of cellular signaling by the viral chemokine receptor ORF74

de Munnik, S.M.

2015

document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

de Munnik, S. M. (2015). Non-canonical modulation of cellular signaling by the viral chemokine receptor ORF74.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

(2)
(3)

RefeRences

1. Pierce, K.L., R.T. Premont, and R.J. Lefkowitz, Seven-transmembrane receptors. Nat Rev Mol Cell Biol, 2002. 3(9): p. 639-50.

2. Katritch, V., V. Cherezov, and R.C. Stevens, Diversity and modularity of G protein-coupled

receptor structures. Trends Pharmacol Sci, 2012. 33(1): p. 17-27.

3. Fredriksson, R., et al., The G-protein-coupled receptors in the human genome form five main

families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol, 2003.

63(6): p. 1256-72.

4. Granier, S. and B. Kobilka, A new era of GPCR structural and chemical biology. Nat Chem Biol, 2012. 8(8): p. 670-3.

5. Wise, A., K. Gearing, and S. Rees, Target validation of G-protein coupled receptors. Drug Discov Today, 2002. 7(4): p. 235-46.

6. Tautermann, C.S., GPCR structures in drug design, emerging opportunities with new

struc-tures. Bioorg Med Chem Lett, 2014. 24(17): p. 4073-4079.

7. Katritch, V., V. Cherezov, and R.C. Stevens, Structure-function of the G protein-coupled

recep-tor superfamily. Annu Rev Pharmacol Toxicol, 2013. 53: p. 531-56.

8. Oldham, W.M. and H.E. Hamm, Heterotrimeric G protein activation by G-protein-coupled

receptors. Nat Rev Mol Cell Biol, 2008. 9(1): p. 60-71.

9. Oldham, W.M. and H.E. Hamm, How do receptors activate G proteins? Adv Protein Chem, 2007. 74: p. 67-93.

10. Rohini, A., et al., Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res, 2010. 61(4): p. 269-80.

11. McCudden, C.R., et al., G-protein signaling: back to the future. Cell Mol Life Sci, 2005. 62(5): p. 551-77.

12. Heng, Y.W. and C.G. Koh, Actin cytoskeleton dynamics and the cell division cycle. Int J Bio-chem Cell Biol, 2010. 42(10): p. 1622-33.

13. Milligan, G. and E. Kostenis, Heterotrimeric G-proteins: a short history. Br J Pharmacol, 2006.

147 Suppl 1: p. S46-55.

14. Tilley, D.G., G protein-dependent and G protein-independent signaling pathways and their

impact on cardiac function. Circ Res, 2011. 109(2): p. 217-30.

15. Charo, I.F. and R.M. Ransohoff, The many roles of chemokines and chemokine receptors in

inflammation. N Engl J Med, 2006. 354(6): p. 610-21.

16. Rossi, D. and A. Zlotnik, The biology of chemokines and their receptors. Annu Rev Immunol, 2000. 18: p. 217-42.

17. Blanchet, X., et al., Touch of chemokines. Front Immunol, 2012. 3: p. 175.

18. Zlotnik, A., O. Yoshie, and H. Nomiyama, The chemokine and chemokine receptor

superfami-lies and their molecular evolution. Genome Biol, 2006. 7(12): p. 243.

19. Mortier, A., J. Van Damme, and P. Proost, Overview of the mechanisms regulating chemokine

activity and availability. Immunol Lett, 2012. 145(1-2): p. 2-9.

20. Salanga, C.L. and T.M. Handel, Chemokine oligomerization and interactions with receptors

and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res, 2011.

317(5): p. 590-601.

21. Hamel, D.J., et al., Chapter 4. Interactions of chemokines with glycosaminoglycans. Methods Enzymol, 2009. 461: p. 71-102.

Re

fer

(4)

22. Ludwig, A. and C. Weber, Transmembrane chemokines: versatile ‘special agents’ in vascular

inflammation. Thromb Haemost, 2007. 97(5): p. 694-703.

23. Neptune, E.R. and H.R. Bourne, Receptors induce chemotaxis by releasing the betagamma

subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14489-94.

24. Thelen, M., Dancing to the tune of chemokines. Nat Immunol, 2001. 2(2): p. 129-34. 25. Cotton, M. and A. Claing, G protein-coupled receptors stimulation and the control of cell

migration. Cell Signal, 2009. 21(7): p. 1045-53.

26. Thelen, M. and J.V. Stein, How chemokines invite leukocytes to dance. Nat Immunol, 2008.

9(9): p. 953-9.

27. Ulvmar, M.H., E. Hub, and A. Rot, Atypical chemokine receptors. Exp Cell Res, 2011. 317(5): p. 556-68.

28. Galliera, E., et al., beta-Arrestin-dependent constitutive internalization of the human

chemo-kine decoy receptor D6. J Biol Chem, 2004. 279(24): p. 25590-7.

29. Rajagopal, S., et al., Beta-arrestin- but not G protein-mediated signaling by the “decoy”

re-ceptor CXCR7. Proc Natl Acad Sci U S A, 2010. 107(2): p. 628-32.

30. Watts, A.O., et al., beta-Arrestin recruitment and G protein signaling by the atypical human

chemokine decoy receptor CCX-CKR. J Biol Chem, 2013. 288(10): p. 7169-81.

31. Canals, M., et al., Ubiquitination of CXCR7 controls receptor trafficking. PLoS One, 2012. 7(3): p. e34192.

32. Bonecchi, R., et al., Chemokine decoy receptors: structure-function and biological properties. Curr Top Microbiol Immunol, 2010. 341: p. 15-36.

33. Borroni, E.M., et al., beta-arrestin-dependent activation of the cofilin pathway is required

for the scavenging activity of the atypical chemokine receptor D6. Sci Signal, 2013. 6(273): p.

ra30 1-11, S1-3.

34. Bachelerie, F., et al., International Union of Basic and Clinical Pharmacology. [corrected].

LXXXIX. Update on the extended family of chemokine receptors and introducing a new no-menclature for atypical chemokine receptors. Pharmacol Rev, 2014. 66(1): p. 1-79.

35. Steen, A., et al., Biased and g protein-independent signaling of chemokine receptors. Front Immunol, 2014. 5: p. 277.

36. Jaerve, A. and H.W. Muller, Chemokines in CNS injury and repair. Cell Tissue Res, 2012.

349(1): p. 229-48.

37. Kiefer, F. and A.F. Siekmann, The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci, 2011. 68(17): p. 2811-30.

38. Martins-Green, M., M. Petreaca, and L. Wang, Chemokines and Their Receptors Are Key

Play-ers in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle), 2013.

2(7): p. 327-347.

39. Strohmann, G., R. Herzog, and H.J. Kundiger, [Anamnesis and x-ray result in patients with

stomach diseases. Analysis from the x-ray point of view]. Z Arztl Fortbild (Jena), 1974. 68(16):

p. 831-6.

40. Bendall, L., Chemokines and their receptors in disease. Histol Histopathol, 2005. 20(3): p. 907-26.

41. Cardona, S.M., J.A. Garcia, and A.E. Cardona, The fine balance of chemokines during disease:

trafficking, inflammation, and homeostasis. Methods Mol Biol, 2013. 1013: p. 1-16.

42. Marra, F. and F. Tacke, Roles for Chemokines in Liver Disease. Gastroenterology, 2014. 147(3): p. 577-594 e1.

43. Koizumi, K., et al., Chemokine receptors in cancer metastasis and cancer cell-derived

chemo-kines in host immune response. Cancer Sci, 2007. 98(11): p. 1652-8.

44. Lazennec, G. and A. Richmond, Chemokines and chemokine receptors: new insights into

cancer-related inflammation. Trends Mol Med, 2010. 16(3): p. 133-44.

45. Wu, X., et al., Chemokine receptors as targets for cancer therapy. Curr Pharm Des, 2009.

15(7): p. 742-57.

Re

fer

(5)

46. Berger, E.A., P.M. Murphy, and J.M. Farber, Chemokine receptors as HIV-1 coreceptors: roles

in viral entry, tropism, and disease. Annu Rev Immunol, 1999. 17: p. 657-700.

47. Xu, G.G., J. Guo, and Y. Wu, Chemokine Receptor CCR5 Antagonist Maraviroc: Medicinal

Chemistry and Clinical Applications. Curr Top Med Chem, 2014.

48. De Clercq, E., Recent advances on the use of the CXCR4 antagonist plerixafor (AMD3100,

Mozobil) and potential of other CXCR4 antagonists as stem cell mobilizers. Pharmacol Ther,

2010. 128(3): p. 509-18.

49. Yoshie, O. and K. Matsushima, CCR4 and its ligands: from bench to bedside. Int Immunol, 2014.

50. Vischer, H.F., et al., Virus-encoded G-protein-coupled receptors: constitutively active (dys)

regulators of cell function and their potential as drug target. Ernst Schering Found Symp

Proc, 2006(2): p. 187-209.

51. Vischer, H.F., C. Vink, and M.J. Smit, A viral conspiracy: hijacking the chemokine system

through virally encoded pirated chemokine receptors. Curr Top Microbiol Immunol, 2006.

303: p. 121-54.

52. Cesarman, E., How do viruses trick B cells into becoming lymphomas? Curr Opin Hematol, 2014. 21(4): p. 358-68.

53. Vischer, H.F., et al., Herpesvirus-encoded GPCRs: neglected players in inflammatory and

pro-liferative diseases? Nat Rev Drug Discov, 2014. 13(2): p. 123-39.

54. McGeoch, D.J., A. Dolan, and A.C. Ralph, Toward a comprehensive phylogeny for mammalian

and avian herpesviruses. J Virol, 2000. 74(22): p. 10401-6.

55. Slinger, E., et al., Herpesvirus-encoded GPCRs rewire cellular signaling. Mol Cell Endocrinol, 2011. 331(2): p. 179-84.

56. Arvanitakis, L., et al., Establishment and characterization of a primary effusion (body

cavity-based) lymphoma cell line (BC-3) harboring kaposi’s sarcoma-associated herpesvirus (KSHV/ HHV-8) in the absence of Epstein-Barr virus. Blood, 1996. 88(7): p. 2648-54.

57. Russo, J.J., et al., Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A, 1996. 93(25): p. 14862-7.

58. Minhas, V. and C. Wood, Epidemiology and Transmission of Kaposi’s Sarcoma-Associated

Herpesvirus. Viruses, 2014. 6(11): p. 4178-4194.

59. Akula, S.M., et al., Integrin alpha3beta1 (CD 49c/29) is a cellular receptor for Kaposi’s

sar-coma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell, 2002. 108(3): p.

407-19.

60. Blackbourn, D.J., et al., The restricted cellular host range of human herpesvirus 8. AIDS, 2000.

14(9): p. 1123-33.

61. Garrigues, H.J., et al., KSHV attachment and entry are dependent on alphaVbeta3 integrin

localized to specific cell surface microdomains and do not correlate with the presence of heparan sulfate. Virology, 2014. 464-465c: p. 118-133.

62. Hahn, A.S., et al., The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi’s

sarcoma-associated herpesvirus. Nat Med, 2012. 18(6): p. 961-6.

63. Kaleeba, J.A. and E.A. Berger, Broad target cell selectivity of Kaposi’s sarcoma-associated

herpesvirus glycoprotein-mediated cell fusion and virion entry. Virology, 2006. 354(1): p.

7-14.

64. Dollery, S.J., et al., Efficient infection of a human B cell line with cell-free Kaposi’s

sarcoma-associated herpesvirus. J Virol, 2014. 88(3): p. 1748-57.

65. Hassman, L.M., T.J. Ellison, and D.H. Kedes, KSHV infects a subset of human tonsillar B cells,

driving proliferation and plasmablast differentiation. J Clin Invest, 2011. 121(2): p. 752-68.

66. Rappocciolo, G., et al., DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and

macrophages. J Immunol, 2006. 176(3): p. 1741-9.

67. Dedicoat, M. and R. Newton, Review of the distribution of Kaposi’s sarcoma-associated

her-pesvirus (KSHV) in Africa in relation to the incidence of Kaposi’s sarcoma. Br J Cancer, 2003.

Re

fer

(6)

88(1): p. 1-3.

68. Hayward, G.S., KSHV strains: the origins and global spread of the virus. Semin Cancer Biol, 1999. 9(3): p. 187-99.

69. Martin, J.N., The epidemiology of KSHV and its association with malignant disease, in

Hu-man Herpesviruses: Biology, Therapy, and Immunoprophylaxis, A. Arvin, et al., Editors. 2007:

Cambridge.

70. Chang, Y., et al., Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s

sarcoma. Science, 1994. 266(5192): p. 1865-9.

71. Radu, O. and L. Pantanowitz, Kaposi sarcoma. Arch Pathol Lab Med, 2013. 137(2): p. 289-94. 72. Chen, Y.B., A. Rahemtullah, and E. Hochberg, Primary effusion lymphoma. Oncologist, 2007.

12(5): p. 569-76.

73. Cesarman, E., Gammaherpesviruses and lymphoproliferative disorders. Annu Rev Pathol, 2014. 9: p. 349-72.

74. Dittmer, D.P., K.L. Richards, and B. Damania, Treatment of Kaposi sarcoma-associated

her-pesvirus-associated cancers. Front Microbiol, 2012. 3: p. 141.

75. Cesarman, E., et al., Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled

receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and malignant lymphoma. J Virol, 1996. 70(11): p. 8218-23.

76. Staskus, K.A., et al., Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial

(spindle) tumor cells. J Virol, 1997. 71(1): p. 715-9.

77. Guo, H.G., et al., Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic

mouse. J Virol, 2003. 77(4): p. 2631-9.

78. Yang, T.Y., et al., Transgenic expression of the chemokine receptor encoded by human

herpes-virus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med, 2000.

191(3): p. 445-54.

79. Liang, Y. and D. Ganem, RBP-J (CSL) is essential for activation of the K14/vGPCR promoter

of Kaposi’s sarcoma-associated herpesvirus by the lytic switch protein RTA. J Virol, 2004.

78(13): p. 6818-26.

80. Jham, B.C. and S. Montaner, The Kaposi’s sarcoma-associated herpesvirus G protein-coupled

receptor: Lessons on dysregulated angiogenesis from a viral oncogene. J Cell Biochem, 2010.

110(1): p. 1-9.

81. Martin, D. and J.S. Gutkind, Kaposi’s sarcoma virally encoded, G-protein-coupled receptor: a

paradigm for paracrine transformation. Methods Enzymol, 2009. 460: p. 125-50.

82. Montaner, S., et al., The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus

vGPCR to cytokine secretion and paracrine neoplasia. Blood, 2004. 104(9): p. 2903-11.

83. Pati, S., et al., Activation of NF-kappaB by the human herpesvirus 8 chemokine receptor

ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. J Virol, 2001.

75(18): p. 8660-73.

84. Montaner, S., et al., The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor

as a therapeutic target for the treatment of Kaposi’s sarcoma. Cancer Res, 2006. 66(1): p.

168-74.

85. Baer, R., et al., DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Na-ture, 1984. 310(5974): p. 207-11.

86. White, M.K., J.S. Pagano, and K. Khalili, Viruses and human cancers: a long road of discovery

of molecular paradigms. Clin Microbiol Rev, 2014. 27(3): p. 463-81.

87. Dorner, M., et al., beta1 integrin expression increases susceptibility of memory B cells to

Epstein-Barr virus infection. J Virol, 2010. 84(13): p. 6667-77.

88. Haan, K.M., et al., Epstein-Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor. J Virol, 2000. 74(5): p. 2451-4.

89. Hutt-Fletcher, L.M. and L.S. Chesnokova, Integrins as triggers of Epstein-Barr virus fusion and

epithelial cell infection. Virulence, 2010. 1(5): p. 395-8.

Re

fer

(7)

90. Li, Q., et al., Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol, 1997. 71(6): p. 4657-62.

91. Epstein, M.A., B.G. Achong, and Y.M. Barr, Virus Particles in Cultured Lymphoblasts from

Burkitt’s Lymphoma. Lancet, 1964. 1(7335): p. 702-3.

92. Carbone, A., A. Gloghini, and G. Dotti, EBV-associated lymphoproliferative disorders:

clas-sification and treatment. Oncologist, 2008. 13(5): p. 577-85.

93. Thompson, M.P. and R. Kurzrock, Epstein-Barr virus and cancer. Clin Cancer Res, 2004. 10(3): p. 803-21.

94. Beisser, P.S., et al., The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor

that inhibits phosphorylation of RNA-dependent protein kinase. J Virol, 2005. 79(1): p. 441-9.

95. Griffin, B.D., et al., EBV BILF1 evolved to downregulate cell surface display of a wide range of

HLA class I molecules through their cytoplasmic tail. J Immunol, 2013. 190(4): p. 1672-84.

96. Zuo, J., et al., The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition

of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways. J Virol, 2011. 85(4): p.

1604-14.

97. Hewitt, E.W., The MHC class I antigen presentation pathway: strategies for viral immune

eva-sion. Immunology, 2003. 110(2): p. 163-9.

98. Zuo, J., et al., The Epstein-Barr virus G-protein-coupled receptor contributes to immune

evasion by targeting MHC class I molecules for degradation. PLoS Pathog, 2009. 5(1): p.

e1000255.

99. Murphy, E., et al., Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13585-90.

100. Murphy, E., et al., Coding potential of laboratory and clinical strains of human

cytomegalovi-rus. Proc Natl Acad Sci U S A, 2003. 100(25): p. 14976-81.

101. Stern-Ginossar, N., et al., Decoding human cytomegalovirus. Science, 2012. 338(6110): p. 1088-93.

102. Sinzger, C., M. Digel, and G. Jahn, Cytomegalovirus cell tropism. Curr Top Microbiol Immunol, 2008. 325: p. 63-83.

103. Feire, A.L., H. Koss, and T. Compton, Cellular integrins function as entry receptors for human

cytomegalovirus via a highly conserved disintegrin-like domain. Proc Natl Acad Sci U S A,

2004. 101(43): p. 15470-5.

104. Feire, A.L., et al., The glycoprotein B disintegrin-like domain binds beta 1 integrin to mediate

cytomegalovirus entry. J Virol, 2010. 84(19): p. 10026-37.

105. Soroceanu, L., A. Akhavan, and C.S. Cobbs, Platelet-derived growth factor-alpha receptor

ac-tivation is required for human cytomegalovirus infection. Nature, 2008. 455(7211): p. 391-5.

106. Wang, X., et al., Epidermal growth factor receptor is a cellular receptor for human

cytomega-lovirus. Nature, 2003. 424(6947): p. 456-61.

107. Streblow, D.N. and J.A. Nelson, Models of HCMV latency and reactivation. Trends Microbiol, 2003. 11(7): p. 293-5.

108. Bate, S.L., S.C. Dollard, and M.J. Cannon, Cytomegalovirus seroprevalence in the United

States: the national health and nutrition examination surveys, 1988-2004. Clin Infect Dis,

2010. 50(11): p. 1439-47.

109. Cannon, M.J., D.S. Schmid, and T.B. Hyde, Review of cytomegalovirus seroprevalence and

de-mographic characteristics associated with infection. Rev Med Virol, 2010. 20(4): p. 202-13.

110. Gandhi, M.K. and R. Khanna, Human cytomegalovirus: clinical aspects, immune regulation,

and emerging treatments. Lancet Infect Dis, 2004. 4(12): p. 725-38.

111. Landolfo, S., et al., The human cytomegalovirus. Pharmacol Ther, 2003. 98(3): p. 269-97. 112. Gombos, R.B., et al., Vascular dysfunction in young, mid-aged and aged mice with latent

cytomegalovirus infections. Am J Physiol Heart Circ Physiol, 2013. 304(2): p. H183-94.

113. Carlson, A., E.R. Norwitz, and R.J. Stiller, Cytomegalovirus infection in pregnancy: should all

Re

fer

(8)

women be screened? Rev Obstet Gynecol, 2010. 3(4): p. 172-9.

114. Cainelli, F. and S. Vento, Infections and solid organ transplant rejection: a cause-and-effect

relationship? Lancet Infect Dis, 2002. 2(9): p. 539-49.

115. Ishibashi, K., O. Yamaguchi, and T. Suzutani, Reinfection of cytomegalovirus in renal

trans-plantation. Fukushima J Med Sci, 2011. 57(1): p. 1-10.

116. Bongers, G., et al., The cytomegalovirus-encoded chemokine receptor US28 promotes

intes-tinal neoplasia in transgenic mice. J Clin Invest, 2010. 120(11): p. 3969-78.

117. Mariguela, V.C., et al., Cytomegalovirus in colorectal cancer and idiopathic ulcerative colitis. Rev Inst Med Trop Sao Paulo, 2008. 50(2): p. 83-7.

118. Cobbs, C.S., Cytomegalovirus and brain tumor: epidemiology, biology and therapeutic

as-pects. Curr Opin Oncol, 2013. 25(6): p. 682-8.

119. Michaelis, M., H.W. Doerr, and J. Cinatl, The story of human cytomegalovirus and cancer:

increasing evidence and open questions. Neoplasia, 2009. 11(1): p. 1-9.

120. Soderberg-Naucler, C. and J.I. Johnsen, Cytomegalovirus infection in brain tumors: A

poten-tial new target for therapy? Oncoimmunology, 2012. 1(5): p. 739-740.

121. Zipeto, D., et al., Kinetics of transcription of human cytomegalovirus chemokine receptor

US28 in different cell types. J Gen Virol, 1999. 80 ( Pt 3): p. 543-7.

122. Michel, D., et al., The human cytomegalovirus UL78 gene is highly conserved among

clini-cal isolates, but is dispensable for replication in fibroblasts and a renal artery organ-culture system. J Gen Virol, 2005. 86(Pt 2): p. 297-306.

123. Margulies, B.J. and W. Gibson, The chemokine receptor homologue encoded by US27 of

hu-man cytomegalovirus is heavily glycosylated and is present in infected huhu-man foreskin fibro-blasts and enveloped virus particles. Virus Res, 2007. 123(1): p. 57-71.

124. Bodaghi, B., et al., Chemokine sequestration by viral chemoreceptors as a novel viral escape

strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells.

J Exp Med, 1998. 188(5): p. 855-66.

125. O’Connor, C.M. and T. Shenk, Human cytomegalovirus pUL78 G protein-coupled receptor

homologue is required for timely cell entry in epithelial cells but not fibroblasts. J Virol, 2012.

86(21): p. 11425-33.

126. O’Connor, C.M. and T. Shenk, Human cytomegalovirus pUS27 G protein-coupled receptor

homologue is required for efficient spread by the extracellular route but not for direct cell-to-cell spread. J Virol, 2011. 85(8): p. 3700-7.

127. Maussang, D., et al., Human cytomegalovirus-encoded chemokine receptor US28 promotes

tumorigenesis. Proc Natl Acad Sci U S A, 2006. 103(35): p. 13068-73.

128. Slinger, E., et al., HCMV-encoded chemokine receptor US28 mediates proliferative signaling

through the IL-6-STAT3 axis. Sci Signal, 2010. 3(133): p. ra58.

129. Soroceanu, L., et al., Human cytomegalovirus US28 found in glioblastoma promotes an

inva-sive and angiogenic phenotype. Cancer Res, 2011. 71(21): p. 6643-53.

130. Vomaske, J., et al., Differential ligand binding to a human cytomegalovirus chemokine

recep-tor determines cell type-specific motility. PLoS Pathog, 2009. 5(2): p. e1000304.

131. Pleskoff, O., et al., Identification of a chemokine receptor encoded by human

cytomegalovi-rus as a cofactor for HIV-1 entry. Science, 1997. 276(5320): p. 1874-8.

132. Dominguez, G., et al., Human herpesvirus 6B genome sequence: coding content and

com-parison with human herpesvirus 6A. J Virol, 1999. 73(10): p. 8040-52.

133. Caselli, E. and D. Di Luca, Molecular biology and clinical associations of Roseoloviruses

hu-man herpesvirus 6 and huhu-man herpesvirus 7. New Microbiol, 2007. 30(3): p. 173-87.

134. Tang, H. and Y. Mori, Human herpesvirus-6 entry into host cells. Future Microbiol, 2010. 5(7): p. 1015-23.

135. De Bolle, L., L. Naesens, and E. De Clercq, Update on human herpesvirus 6 biology, clinical

features, and therapy. Clin Microbiol Rev, 2005. 18(1): p. 217-45.

136. Lusso, P., et al., CD4 is a critical component of the receptor for human herpesvirus 7:

interfer-Re

fer

(9)

ence with human immunodeficiency virus. Proc Natl Acad Sci U S A, 1994. 91(9): p. 3872-6.

137. Emery, V.C. and D.A. Clark, HHV-6A, 6B, and 7: persistence in the population, epidemiology

and transmission, in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, A.

Arvin, et al., Editors. 2007: Cambridge.

138. Tanaka, K., et al., Human herpesvirus 7: another causal agent for roseola (exanthem

subi-tum). J Pediatr, 1994. 125(1): p. 1-5.

139. Tang, H., T. Sadaoka, and Y. Mori, [Human herpesvirus-6 and human herpesvirus-7 (HHV-6,

HHV-7)]. Uirusu, 2010. 60(2): p. 221-35.

140. Campadelli-Fiume, G., P. Mirandola, and L. Menotti, Human herpesvirus 6: An emerging

pathogen. Emerg Infect Dis, 1999. 5(3): p. 353-66.

141. Schwartz, K.L., et al., Delayed primary HHV-7 infection and neurologic disease. Pediatrics, 2014. 133(6): p. e1541-7.

142. Menotti, L., et al., Trafficking to the plasma membrane of the seven-transmembrane protein

encoded by human herpesvirus 6 U51 gene involves a cell-specific function present in T lym-phocytes. J Virol, 1999. 73(1): p. 325-33.

143. Isegawa, Y., et al., Human herpesvirus 6 open reading frame U12 encodes a functional

beta-chemokine receptor. J Virol, 1998. 72(7): p. 6104-12.

144. Griffin, B.D., M.C. Verweij, and E.J. Wiertz, Herpesviruses and immunity: the art of evasion. Vet Microbiol, 2010. 143(1): p. 89-100.

145. Rosenkilde, M.M., et al., Agonists and inverse agonists for the herpesvirus 8-encoded

consti-tutively active seven-transmembrane oncogene product, ORF-74. J Biol Chem, 1999. 274(2):

p. 956-61.

146. Gershengorn, M.C., et al., Chemokines activate Kaposi’s sarcoma-associated herpesvirus G

protein-coupled receptor in mammalian cells in culture. J Clin Invest, 1998. 102(8): p.

1469-72.

147. Arvanitakis, L., et al., Human herpesvirus KSHV encodes a constitutively active

G-protein-coupled receptor linked to cell proliferation. Nature, 1997. 385(6614): p. 347-50.

148. Geras-Raaka, E., et al., Kaposi’s sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II

and human SDF-1alpha inhibit signaling by KSHV G protein-coupled receptor. Biochem

Bio-phys Res Commun, 1998. 253(3): p. 725-7.

149. Geras-Raaka, E., et al., Human interferon-gamma-inducible protein 10 (IP-10) inhibits

consti-tutive signaling of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. J Exp

Med, 1998. 188(2): p. 405-8.

150. Nicholas, J., Human herpesvirus 8-encoded cytokines. Future Virol, 2010. 5(2): p. 197-206. 151. Coscoy, L., Immune evasion by Kaposi’s sarcoma-associated herpesvirus. Nat Rev Immunol,

2007. 7(5): p. 391-401.

152. Scholten, D.J., et al., Pharmacological modulation of chemokine receptor function. Br J Phar-macol, 2012. 165(6): p. 1617-43.

153. Ho, H.H., D. Du, and M.C. Gershengorn, The N terminus of Kaposi’s sarcoma-associated

her-pesvirus G protein-coupled receptor is necessary for high affinity chemokine binding but not for constitutive activity. J Biol Chem, 1999. 274(44): p. 31327-32.

154. Feng, H., et al., Sulfotyrosines of the Kaposi’s sarcoma-associated herpesvirus G

protein-cou-pled receptor promote tumorigenesis through autocrine activation. J Virol, 2010. 84(7): p.

3351-61.

155. Holst, P.J., et al., Tumorigenesis induced by the HHV8-encoded chemokine receptor requires

ligand modulation of high constitutive activity. J Clin Invest, 2001. 108(12): p. 1789-96.

156. Gao, J.L. and P.M. Murphy, Human cytomegalovirus open reading frame US28 encodes a

functional beta chemokine receptor. J Biol Chem, 1994. 269(46): p. 28539-42.

157. Kledal, T.N., M.M. Rosenkilde, and T.W. Schwartz, Selective recognition of the

membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spec-trum receptor US28. FEBS Lett, 1998. 441(2): p. 209-14.

Re

fer

(10)

158. Kuhn, D.E., C.J. Beall, and P.E. Kolattukudy, The cytomegalovirus US28 protein binds multiple

CC chemokines with high affinity. Biochem Biophys Res Commun, 1995. 211(1): p. 325-30.

159. Kledal, T.N., et al., A broad-spectrum chemokine antagonist encoded by Kaposi’s

sarcoma-associated herpesvirus. Science, 1997. 277(5332): p. 1656-9.

160. Casarosa, P., et al., CC and CX3C chemokines differentially interact with the N terminus of the

human cytomegalovirus-encoded US28 receptor. J Biol Chem, 2005. 280(5): p. 3275-85.

161. Burg, J.S., et al., Structural biology. Structural basis for chemokine recognition and activation

of a viral G protein-coupled receptor. Science, 2015. 347(6226): p. 1113-7.

162. Thiele, S. and M.M. Rosenkilde, Interaction of chemokines with their receptors--from initial

chemokine binding to receptor activating steps. Curr Med Chem, 2014. 21(31): p. 3594-614.

163. Michelson, S., et al., Modulation of RANTES production by human cytomegalovirus infection

of fibroblasts. J Virol, 1997. 71(9): p. 6495-500.

164. Billstrom, M.A., L.A. Lehman, and G. Scott Worthen, Depletion of extracellular RANTES

dur-ing human cytomegalovirus infection of endothelial cells. Am J Respir Cell Mol Biol, 1999.

21(2): p. 163-7.

165. Randolph-Habecker, J.R., et al., The expression of the cytomegalovirus chemokine receptor

homolog US28 sequesters biologically active CC chemokines and alters IL-8

production. Cy-tokine, 2002. 19(1): p. 37-46.

166. Boomker, J.M., et al., Chemokine scavenging by the human cytomegalovirus chemokine

de-coy receptor US28 does not inhibit monocyte adherence to activated endothelium. Antiviral

Res, 2006. 69(2): p. 124-7.

167. Noriega, V.M., et al., Human cytomegalovirus US28 facilitates cell-to-cell viral dissemination. Viruses, 2014. 6(3): p. 1202-18.

168. Luttichau, H.R., The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and

CXCR2 as an agonist. J Biol Chem, 2010. 285(12): p. 9137-46.

169. Catusse, J., et al., Immunomodulation by herpesvirus U51A chemokine receptor via CCL5 and

FOG-2 down-regulation plus XCR1 and CCR7 mimicry in human leukocytes. Eur J Immunol,

2008. 38(3): p. 763-77.

170. Milne, R.S., et al., RANTES binding and down-regulation by a novel human herpesvirus-6

beta chemokine receptor. J Immunol, 2000. 164(5): p. 2396-404.

171. Tadagaki, K., K. Nakano, and K. Yamanishi, Human herpesvirus 7 open reading frames U12

and U51 encode functional beta-chemokine receptors. J Virol, 2005. 79(11): p. 7068-76.

172. Luttichau, H.R., et al., A highly selective CCR2 chemokine agonist encoded by human

herpes-virus 6. J Biol Chem, 2003. 278(13): p. 10928-33.

173. Ballesteros, J.A.W., H., Integrated methods for the construction of three dimensional models

and computational probing of structure-function relations in G-protein coupled receptors.

Methods in Neuroscience, 1995. 25: p. 366-428.

174. Rasmussen, S.G., et al., Crystal structure of the beta2 adrenergic receptor-Gs protein

com-plex. Nature, 2011. 477(7366): p. 549-55.

175. Mirzadegan, T., et al., Sequence analyses of G-protein-coupled receptors: similarities to

rho-dopsin. Biochemistry, 2003. 42(10): p. 2759-67.

176. Rovati, G.E., V. Capra, and R.R. Neubig, The highly conserved DRY motif of class A G

protein-coupled receptors: beyond the ground state. Mol Pharmacol, 2007. 71(4): p. 959-64.

177. Verzijl, D., et al., Differential activation of murine herpesvirus 68- and Kaposi’s

sarcoma-associated herpesvirus-encoded ORF74 G protein-coupled receptors by human and murine chemokines. J Virol, 2004. 78(7): p. 3343-51.

178. Rosenkilde, M.M., et al., The CXC chemokine receptor encoded by herpesvirus saimiri, ECRF3,

shows ligand-regulated signaling through Gi, Gq, and G12/13 proteins but constitutive sig-naling only through Gi and G12/13 proteins. J Biol Chem, 2004. 279(31): p. 32524-33.

179. Cannon, M.L. and E. Cesarman, The KSHV G protein-coupled receptor signals via multiple

pathways to induce transcription factor activation in primary effusion lymphoma cells.

On-Re

fer

(11)

cogene, 2004. 23(2): p. 514-23.

180. Shepard, L.W., et al., Constitutive activation of NF-kappa B and secretion of interleuk8

in-duced by the G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus involve G alpha(13) and RhoA. J Biol Chem, 2001. 276(49): p. 45979-87.

181. Smit, M.J., et al., Kaposi’s sarcoma-associated herpesvirus-encoded G protein-coupled

re-ceptor ORF74 constitutively activates p44/p42 MAPK and Akt via G(i) and phospholipase C-dependent signaling pathways. J Virol, 2002. 76(4): p. 1744-52.

182. Bais, C., et al., G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a

viral oncogene and angiogenesis activator. Nature, 1998. 391(6662): p. 86-9.

183. Munshi, N., et al., Kaposi’s sarcoma-associated herpesvirus-encoded G protein-coupled

re-ceptor activation of c-jun amino-terminal kinase/stress-activated protein kinase and lyn ki-nase is mediated by related adhesion focal tyrosine kiki-nase/proline-rich tyrosine kiki-nase 2. J

Biol Chem, 1999. 274(45): p. 31863-7.

184. Sodhi, A., et al., The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor

up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha.

Can-cer Res, 2000. 60(17): p. 4873-80.

185. Montaner, S., et al., The Kaposi’s sarcoma-associated herpesvirus G protein-coupled

recep-tor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer

Res, 2001. 61(6): p. 2641-8.

186. Sodhi, A., et al., The TSC2/mTOR pathway drives endothelial cell transformation induced by

the Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell, 2006.

10(2): p. 133-43.

187. Martin, M.J., et al., The Galpha12/13 family of heterotrimeric G proteins and the small

GT-Pase RhoA link the Kaposi sarcoma-associated herpes virus G protein-coupled receptor to heme oxygenase-1 expression and tumorigenesis. J Biol Chem, 2007. 282(47): p. 34510-24.

188. Ma, Q., et al., Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi’s

sar-coma. Proc Natl Acad Sci U S A, 2009. 106(21): p. 8683-8.

189. Azzi, S., et al., YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor

adjusts NF-kappaB activation and paracrine actions. Oncogene, 2013.

190. Schwarz, M. and P.M. Murphy, Kaposi’s sarcoma-associated herpesvirus G protein-coupled

receptor constitutively activates NF-kappa B and induces proinflammatory cytokine and che-mokine production via a C-terminal signaling determinant. J Immunol, 2001. 167(1): p.

505-13.

191. Cesarman, E., E.A. Mesri, and M.C. Gershengorn, Viral G protein-coupled receptor and

Ka-posi’s sarcoma: a model of paracrine neoplasia? J Exp Med, 2000. 191(3): p. 417-22.

192. Sodhi, A., S. Montaner, and J.S. Gutkind, Viral hijacking of G-protein-coupled-receptor

signal-ling networks. Nat Rev Mol Cell Biol, 2004. 5(12): p. 998-1012.

193. Jensen, A.S., et al., Structural Diversity in Conserved Regions Like the DRY-Motif among Viral

7TM Receptors-A Consequence of Evolutionary Pressure? Adv Virol, 2012. 2012: p. 231813.

194. Burger, M., et al., Point mutation causing constitutive signaling of CXCR2 leads to

transform-ing activity similar to Kaposi’s sarcoma herpesvirus-G protein-coupled receptor. J Immunol,

1999. 163(4): p. 2017-22.

195. Rosenkilde, M.M., et al., Selective elimination of high constitutive activity or chemokine

binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J Biol

Chem, 2000. 275(34): p. 26309-15.

196. Ho, H.H., et al., Charged residues at the intracellular boundary of transmembrane helices 2

and 3 independently affect constitutive activity of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. J Biol Chem, 2001. 276(2): p. 1376-82.

197. Chaisuparat, R., et al., Dual inhibition of PI3Kalpha and mTOR as an alternative treatment for

Kaposi’s sarcoma. Cancer Res, 2008. 68(20): p. 8361-8.

Re

fer

(12)

198. Sodhi, A., et al., Akt plays a central role in sarcomagenesis induced by Kaposi’s sarcoma

herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci U S A, 2004. 101(14): p.

4821-6.

199. Rosenkilde, M.M., T.N. Kledal, and T.W. Schwartz, High constitutive activity of a

virus-encod-ed seven transmembrane receptor in the absence of the conservvirus-encod-ed DRY motif (Asp-Arg-Tyr) in transmembrane helix 3. Mol Pharmacol, 2005. 68(1): p. 11-9.

200. Paulsen, S.J., et al., Epstein-Barr virus-encoded BILF1 is a constitutively active G

protein-cou-pled receptor. J Virol, 2005. 79(1): p. 536-46.

201. Lyngaa, R., et al., Cell transformation mediated by the Epstein-Barr virus G protein-coupled

receptor BILF1 is dependent on constitutive signaling. Oncogene, 2010. 29(31): p. 4388-98.

202. Waldhoer, M., et al., Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors

exhibit similar constitutive signaling activities. J Virol, 2002. 76(16): p. 8161-8.

203. Casarosa, P., et al., Constitutive signaling of the human cytomegalovirus-encoded chemokine

receptor US28. J Biol Chem, 2001. 276(2): p. 1133-7.

204. Miller, W.E., et al., US28 is a potent activator of phospholipase C during HCMV infection of

clinically relevant target cells. PLoS One, 2012. 7(11): p. e50524.

205. McLean, K.A., et al., Similar activation of signal transduction pathways by the

herpesvirus-encoded chemokine receptors US28 and ORF74. Virology, 2004. 325(2): p. 241-51.

206. Maussang, D., et al., The human cytomegalovirus-encoded chemokine receptor US28

pro-motes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res, 2009. 69(7): p.

2861-9.

207. Langemeijer, E.V., et al., Constitutive beta-catenin signaling by the viral chemokine receptor

US28. PLoS One, 2012. 7(11): p. e48935.

208. Melnychuk, R.M., et al., Human cytomegalovirus-encoded G protein-coupled receptor US28

mediates smooth muscle cell migration through Galpha12. J Virol, 2004. 78(15): p. 8382-91.

209. Waldhoer, M., et al., The carboxyl terminus of human cytomegalovirus-encoded 7

trans-membrane receptor US28 camouflages agonism by mediating constitutive endocytosis. J

Biol Chem, 2003. 278(21): p. 19473-82.

210. Casarosa, P., et al., Identification of the first nonpeptidergic inverse agonist for a

constitu-tively active viral-encoded G protein-coupled receptor. J Biol Chem, 2003. 278(7): p. 5172-8.

211. Hulshof, J.W., et al., Synthesis and structure-activity relationship of the first nonpeptidergic

inverse agonists for the human cytomegalovirus encoded chemokine receptor US28. J Med

Chem, 2005. 48(20): p. 6461-71.

212. Hulshof, J.W., et al., Synthesis and pharmacological characterization of novel inverse

ago-nists acting on the viral-encoded chemokine receptor US28. Bioorg Med Chem, 2006. 14(21):

p. 7213-30.

213. Kralj, A., et al., Synthesis and biological evaluation of biphenyl amides that modulate the

US28 receptor. ChemMedChem, 2014. 9(1): p. 151-68.

214. Kralj, A., et al., Development of flavonoid-based inverse agonists of the key signaling

recep-tor US28 of human cytomegalovirus. J Med Chem, 2013. 56(12): p. 5019-32.

215. Vischer, H.F., et al., Identification of novel allosteric nonpeptidergic inhibitors of the human

cytomegalovirus-encoded chemokine receptor US28. Bioorg Med Chem, 2010. 18(2): p.

675-88.

216. Tschammer, N., Allosteric modulation of the G protein-coupled US28 receptor of human

cy-tomegalovirus: are the small-weight inverse agonist of US28 ‘camouflaged’ agonists? Bioorg

Med Chem Lett, 2014. 24(16): p. 3744-7.

217. Stropes, M.P. and W.E. Miller, Functional analysis of human cytomegalovirus pUS28 mutants

in infected cells. J Gen Virol, 2008. 89(Pt 1): p. 97-105.

218. Casarosa, P., et al., Constitutive signaling of the human cytomegalovirus-encoded receptor

UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem, 2003. 278(50): p. 50010-23.

Re

fer

(13)

219. Lares, A.P., C.C. Tu, and J.V. Spencer, The human cytomegalovirus US27 gene product

enhanc-es cell proliferation and alters cellular gene exprenhanc-ession. Virus Renhanc-es, 2013. 176(1-2): p. 312-20.

220. Tu, C.C. and J.V. Spencer, The DRY Box and C-Terminal Domain of the Human

Cytomegalovi-rus US27 Gene Product Play a Role in Promoting Cell Growth and Survival. PLoS One, 2014.

9(11): p. e113427.

221. Nakano, K., et al., Human herpesvirus 7 open reading frame U12 encodes a functional

beta-chemokine receptor. J Virol, 2003. 77(14): p. 8108-15.

222. Fitzsimons, C.P., et al., Chemokine-directed trafficking of receptor stimulus to different g

pro-teins: selective inducible and constitutive signaling by human herpesvirus 6-encoded chemo-kine receptor U51. Mol Pharmacol, 2006. 69(3): p. 888-98.

223. De Lean, A., J.M. Stadel, and R.J. Lefkowitz, A ternary complex model explains the

agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol

Chem, 1980. 255(15): p. 7108-17.

224. Samama, P., et al., A mutation-induced activated state of the beta 2-adrenergic receptor.

Extending the ternary complex model. J Biol Chem, 1993. 268(7): p. 4625-36.

225. Weiss, J.M., et al., The cubic ternary complex receptor-occupancy model. III. resurrecting

ef-ficacy. J Theor Biol, 1996. 181(4): p. 381-97.

226. Seifert, R. and K. Wenzel-Seifert, Constitutive activity of G-protein-coupled receptors: cause

of disease and common property of wild-type

receptors. Naunyn Schmiedebergs Arch Phar-macol, 2002. 366(5): p. 381-416.

227. Smit, M.J., et al., Pharmacogenomic and structural analysis of constitutive g protein-coupled

receptor activity. Annu Rev Pharmacol Toxicol, 2007. 47: p. 53-87.

228. Tao, Y.X., Constitutive activation of G protein-coupled receptors and diseases: insights into

mechanisms of activation and therapeutics. Pharmacol Ther, 2008. 120(2): p. 129-48.

229. Ballesteros, J.A., et al., Activation of the beta 2-adrenergic receptor involves disruption of an

ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem,

2001. 276(31): p. 29171-7.

230. Kim, J.M., et al., Structure and function in rhodopsin: rhodopsin mutants with a neutral

ami-no acid at E134 have a partially activated conformation in the dark state. Proc Natl Acad Sci

U S A, 1997. 94(26): p. 14273-8.

231. Montanelli, L., et al., Modulation of ligand selectivity associated with activation of the

trans-membrane region of the human follitropin receptor. Mol Endocrinol, 2004. 18(8): p.

2061-73.

232. Scheer, A., et al., Constitutively active mutants of the alpha 1B-adrenergic receptor: role of

highly conserved polar amino acids in receptor activation. EMBO J, 1996. 15(14): p. 3566-78.

233. Trzaskowski, B., et al., Action of molecular switches in GPCRs--theoretical and experimental

studies. Curr Med Chem, 2012. 19(8): p. 1090-109.

234. Urizar, E., et al., An activation switch in the rhodopsin family of G protein-coupled receptors:

the thyrotropin receptor. J Biol Chem, 2005. 280(17): p. 17135-41.

235. Verzijl, D., et al., Helix 8 of the viral chemokine receptor ORF74 directs chemokine binding. J Biol Chem, 2006. 281(46): p. 35327-35.

236. Montaner, S., et al., Molecular mechanisms deployed by virally encoded G protein-coupled

receptors in human diseases. Annu Rev Pharmacol Toxicol, 2013. 53: p. 331-54.

237. Kim, K.M., et al., Differential regulation of the dopamine D2 and D3 receptors by G

protein-coupled receptor kinases and beta-arrestins. J Biol Chem, 2001. 276(40): p. 37409-14.

238. Liang, M., et al., Phosphorylation of Ser360 in the third intracellular loop of the

alpha2A-ad-renoceptor during protein kinase C-mediated desensitization. Eur J Pharmacol, 2002.

437(1-2): p. 41-6.

239. Nakamura, K., R.W. Hipkin, and M. Ascoli, The agonist-induced phosphorylation of the rat

fol-litropin receptor maps to the first and third intracellular loops. Mol Endocrinol, 1998. 12(4):

p. 580-91.

Re

fer

(14)

240. Trester-Zedlitz, M., et al., Mass spectrometric analysis of agonist effects on posttranslational

modifications of the beta-2 adrenoceptor in mammalian cells. Biochemistry, 2005. 44(16): p.

6133-43.

241. Watari, K., M. Nakaya, and H. Kurose, Multiple functions of G protein-coupled receptor

ki-nases. J Mol Signal, 2014. 9(1): p. 1.

242. Gurevich, E.V., et al., G protein-coupled receptor kinases: more than just kinases and not only

for GPCRs. Pharmacol Ther, 2012. 133(1): p. 40-69.

243. Hisatomi, O., et al., A novel subtype of G-protein-coupled receptor kinase, GRK7, in teleost

cone photoreceptors. FEBS Lett, 1998. 424(3): p. 159-64.

244. Premont, R.T., et al., Characterization of the G protein-coupled receptor kinase GRK4.

Identi-fication of four splice variants. J Biol Chem, 1996. 271(11): p. 6403-10.

245. Ferguson, S.S., Phosphorylation-independent attenuation of GPCR signalling. Trends Phar-macol Sci, 2007. 28(4): p. 173-9.

246. Carman, C.V., et al., Selective regulation of Galpha(q/11) by an RGS domain in the G

protein-coupled receptor kinase, GRK2. J Biol Chem, 1999. 274(48): p. 34483-92.

247. Dhami, G.K., et al., G Protein-coupled receptor kinase 2 regulator of G protein signaling

ho-mology domain binds to both metabotropic glutamate receptor 1a and Galphaq to attenu-ate signaling. J Biol Chem, 2004. 279(16): p. 16614-20.

248. Giannotta, M., et al., The KDEL receptor couples to Galphaq/11 to activate Src kinases and

regulate transport through the Golgi. EMBO J, 2012. 31(13): p. 2869-81.

249. Iwata, K., et al., Bimodal regulation of the human H1 histamine receptor by G

protein-cou-pled receptor kinase 2. J Biol Chem, 2005. 280(3): p. 2197-204.

250. Sallese, M., et al., Selective regulation of Gq signaling by G protein-coupled receptor kinase

2: direct interaction of kinase N terminus with activated galphaq. Mol Pharmacol, 2000.

57(4): p. 826-31.

251. Kelly, E., C.P. Bailey, and G. Henderson, Agonist-selective mechanisms of GPCR

desensitiza-tion. Br J Pharmacol, 2008. 153 Suppl 1: p. S379-88.

252. Doronin, S., et al., Akt mediates sequestration of the beta(2)-adrenergic receptor in response

to insulin. J Biol Chem, 2002. 277(17): p. 15124-31.

253. Lee, M.J., et al., Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is

required for endothelial cell chemotaxis. Mol Cell, 2001. 8(3): p. 693-704.

254. Luo, J., J.M. Busillo, and J.L. Benovic, M3 muscarinic acetylcholine receptor-mediated

signal-ing is regulated by distinct mechanisms. Mol Pharmacol, 2008. 74(2): p. 338-47.

255. Tobin, A.B., et al., Stimulus-dependent phosphorylation of G-protein-coupled receptors by

casein kinase 1alpha. J Biol Chem, 1997. 272(33): p. 20844-9.

256. Hanyaloglu, A.C., et al., Casein kinase II sites in the intracellular C-terminal domain of the

thyrotropin-releasing hormone receptor and chimeric gonadotropin-releasing hormone re-ceptors contribute to beta-arrestin-dependent internalization. J Biol Chem, 2001. 276(21): p.

18066-74.

257. Paing, M.M., et al., beta -Arrestins regulate protease-activated receptor-1 desensitization

but not internalization or Down-regulation. J Biol Chem, 2002. 277(2): p. 1292-300.

258. Chen, Z., et al., Agonist-induced internalization of leukotriene B(4) receptor 1 requires

G-protein-coupled receptor kinase 2 but not arrestins. Mol Pharmacol, 2004. 66(3): p. 377-86.

259. Allen, J.A., R.A. Halverson-Tamboli, and M.M. Rasenick, Lipid raft microdomains and

neu-rotransmitter signalling. Nat Rev Neurosci, 2007. 8(2): p. 128-40.

260. van Koppen, C.J. and K.H. Jakobs, Arrestin-independent internalization of G protein-coupled

receptors. Mol Pharmacol, 2004. 66(3): p. 365-7.

261. Balabanian, K., et al., WHIM syndromes with different genetic anomalies are accounted for

by impaired CXCR4 desensitization to CXCL12. Blood, 2005. 105(6): p. 2449-57.

262. Kawai, T. and H.L. Malech, WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol, 2009. 16(1): p. 20-6.

Re

fer

(15)

263. Chen, B., et al., Adaptor protein complex-2 (AP-2) and epsin-1 mediate protease-activated

receptor-1 internalization via phosphorylation- and ubiquitination-dependent sorting sig-nals. J Biol Chem, 2011. 286(47): p. 40760-70.

264. Paing, M.M., et al., Clathrin adaptor AP2 regulates thrombin receptor constitutive

internal-ization and endothelial cell resensitinternal-ization. Mol Cell Biol, 2006. 26(8): p. 3231-42.

265. Diviani, D., et al., The adaptor complex 2 directly interacts with the alpha 1b-adrenergic

receptor and plays a role in receptor endocytosis. J Biol Chem, 2003. 278(21): p. 19331-40.

266. Fan, G.H., et al., Identification of a motif in the carboxyl terminus of CXCR2 that is involved in

adaptin 2 binding and receptor internalization. Biochemistry, 2001. 40(3): p. 791-800.

267. Orsini, M.J., et al., Trafficking of the HIV coreceptor CXCR4. Role of arrestins and

identifi-cation of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem,

1999. 274(43): p. 31076-86.

268. Gabilondo, A.M., et al., A dileucine motif in the C terminus of the beta2-adrenergic receptor

is involved in receptor internalization. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12285-90.

269. Magalhaes, A.C., H. Dunn, and S.S. Ferguson, Regulation of GPCR activity, trafficking and

localization by GPCR-interacting proteins. Br J Pharmacol, 2012. 165(6): p. 1717-36.

270. Luttrell, L.M. and R.J. Lefkowitz, The role of beta-arrestins in the termination and

transduc-tion of G-protein-coupled receptor signals. J Cell Sci, 2002. 115(Pt 3): p. 455-65.

271. Oakley, R.H., et al., Molecular determinants underlying the formation of stable

intracellu-lar G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*. J Biol

Chem, 2001. 276(22): p. 19452-60.

272. Shenoy, S.K. and R.J. Lefkowitz, Trafficking patterns of beta-arrestin and G protein-coupled

receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem, 2003.

278(16): p. 14498-506.

273. Marchese, A. and J. Trejo, Ubiquitin-dependent regulation of G protein-coupled receptor

trafficking and signaling. Cell Signal, 2013. 25(3): p. 707-16.

274. Marchese, A., et al., G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol, 2008. 48: p. 601-29.

275. Hanyaloglu, A.C. and M. von Zastrow, Regulation of GPCRs by endocytic membrane

traffick-ing and its potential implications. Annu Rev Pharmacol Toxicol, 2008. 48: p. 537-68.

276. Luttrell, L.M. and D. Gesty-Palmer, Beyond desensitization: physiological relevance of

arres-tin-dependent signaling. Pharmacol Rev, 2010. 62(2): p. 305-30.

277. DeWire, S.M., et al., Beta-arrestins and cell signaling. Annu Rev Physiol, 2007. 69: p. 483-510.

278. Geras-Raaka, E., et al., Inhibition of constitutive signaling of Kaposi’s sarcoma-associated

herpesvirus G protein-coupled receptor by protein kinases in mammalian cells in culture. J

Exp Med, 1998. 187(5): p. 801-6.

279. Neel, N.F., et al., Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev, 2005. 16(6): p. 637-58.

280. Azzi, S.G., J., vGPCR, the great escape. Receptors & Clinical investigation, 2014. 1: p. 149-152. 281. Lagos, D., et al., Toll-like receptor 4 mediates innate immunity to Kaposi sarcoma herpesvirus.

Cell Host Microbe, 2008. 4(5): p. 470-83.

282. Heydorn, A., et al., A library of 7TM receptor C-terminal tails. Interactions with the proposed

post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem, 2004. 279(52): p. 54291-303.

283. Mokros, T., et al., Surface expression and endocytosis of the human

cytomegalovirus-encod-ed chemokine receptor US28 is regulatcytomegalovirus-encod-ed by agonist-independent phosphorylation. J Biol

Chem, 2002. 277(47): p. 45122-8.

284. Miller, W.E., et al., G-protein-coupled receptor (GPCR) kinase phosphorylation and

beta-ar-restin recruitment regulate the constitutive signaling activity of the human cytomegalovirus

Re

fer

(16)

US28 GPCR. J Biol Chem, 2003. 278(24): p. 21663-71.

285. Stropes, M.P., et al., The carboxy-terminal tail of human cytomegalovirus (HCMV) US28

regu-lates both chemokine-independent and chemokine-dependent signaling in HCMV-infected cells. J Virol, 2009. 83(19): p. 10016-27.

286. Droese, J., et al., HCMV-encoded chemokine receptor US28 employs multiple routes for

inter-nalization. Biochem Biophys Res Commun, 2004. 322(1): p. 42-9.

287. Fraile-Ramos, A., et al., Endocytosis of the viral chemokine receptor US28 does not require

beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic, 2003. 4(4): p.

243-53.

288. Fraile-Ramos, A., et al., The human cytomegalovirus US28 protein is located in endocytic

vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell, 2001. 12(6): p.

1737-49.

289. Tschische, P., et al., The G-protein coupled receptor associated sorting protein GASP-1

regu-lates the signalling and trafficking of the viral chemokine receptor US28. Traffic, 2010. 11(5):

p. 660-74.

290. Fraile-Ramos, A., et al., Localization of HCMV UL33 and US27 in endocytic compartments

and viral membranes. Traffic, 2002. 3(3): p. 218-32.

291. Wagner, S., et al., The 7-transmembrane protein homologue UL78 of the human

cytomegalo-virus forms oligomers and traffics between the plasma membrane and different intracellular compartments. Arch Virol, 2012. 157(5): p. 935-49.

292. Niemann, I., A. Reichel, and T. Stamminger, Intracellular trafficking of the human

cytomeg-alovirus-encoded 7-trans-membrane protein homologs pUS27 and pUL78 during viral infec-tion: a comparative analysis. Viruses, 2014. 6(2): p. 661-82.

293. Stapleton, L.K., et al., Receptor chimeras demonstrate that the C-terminal domain of the

hu-man cytomegalovirus US27 gene product is necessary and sufficient for intracellular receptor localization. Virol J, 2012. 9: p. 42.

294. El-Asmar, L., et al., Evidence for negative binding cooperativity within CCR5-CCR2b

heterodi-mers. Mol Pharmacol, 2005. 67(2): p. 460-9.

295. Sohy, D., M. Parmentier, and J.Y. Springael, Allosteric transinhibition by specific antagonists in

CCR2/CXCR4 heterodimers. J Biol Chem, 2007. 282(41): p. 30062-9.

296. Sohy, D., et al., Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of

“selective” antagonists. J Biol Chem, 2009. 284(45): p. 31270-9.

297. Lee, S.P., et al., Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase

C-mediated calcium signal. J Biol Chem, 2004. 279(34): p. 35671-8.

298. Margeta-Mitrovic, M., Y.N. Jan, and L.Y. Jan, A trafficking checkpoint controls GABA(B)

recep-tor heterodimerization. Neuron, 2000. 27(1): p. 97-106.

299. Pagano, A., et al., C-terminal interaction is essential for surface trafficking but not for

hetero-meric assembly of GABA(b) receptors. J Neurosci, 2001. 21(4): p. 1189-202.

300. Terrillon, S. and M. Bouvier, Roles of G-protein-coupled receptor dimerization. EMBO Rep, 2004. 5(1): p. 30-4.

301. Prezeau, L., et al., Functional crosstalk between GPCRs: with or without oligomerization. Curr Opin Pharmacol, 2010. 10(1): p. 6-13.

302. Vischer, H.F., et al., G protein-coupled receptors: walking hand, talking

hand-in-hand? Br J Pharmacol, 2011. 163(2): p. 246-60.

303. Chabre, M., P. Deterre, and B. Antonny, The apparent cooperativity of some GPCRs does not

necessarily imply dimerization. Trends Pharmacol Sci, 2009. 30(4): p. 182-7.

304. Lupu-Meiri, M., et al., Constitutive signaling by Kaposi’s sarcoma-associated herpesvirus

G-protein-coupled receptor desensitizes calcium mobilization by other receptors. J Biol Chem,

2001. 276(10): p. 7122-8.

305. Vischer, H.F., et al., Viral hijacking of human receptors through heterodimerization. Biochem Biophys Res Commun, 2008. 377(1): p. 93-7.

Re

fer

(17)

306. Nijmeijer, S., et al., The Epstein-Barr virus-encoded G protein-coupled receptor BILF1

hetero-oligomerizes with human CXCR4, scavenges Galphai proteins, and constitutively impairs CXCR4 functioning. J Biol Chem, 2010. 285(38): p. 29632-41.

307. Bakker, R.A., et al., Constitutively active Gq/11-coupled receptors enable signaling by

co-expressed G(i/o)-coupled receptors. J Biol Chem, 2004. 279(7): p. 5152-61.

308. Arnolds, K.L., A.P. Lares, and J.V. Spencer, The US27 gene product of human cytomegalovirus

enhances signaling of host chemokine receptor CXCR4. Virology, 2013. 439(2): p. 122-31.

309. Tadagaki, K., et al., Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host

CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood, 2012. 119(21): p. 4908-18.

310. Tadagaki, K., K. Yamanishi, and Y. Mori, Reciprocal roles of cellular chemokine receptors and

human herpesvirus 7-encoded chemokine receptors, U12 and U51. J Gen Virol, 2007. 88(Pt

5): p. 1423-8.

311. Lemmon, M.A. and J. Schlessinger, Cell signaling by receptor tyrosine kinases. Cell, 2010.

141(7): p. 1117-34.

312. Daub, H., et al., Role of transactivation of the EGF receptor in signalling by G-protein-coupled

receptors. Nature, 1996. 379(6565): p. 557-60.

313. Delcourt, N., J. Bockaert, and P. Marin, GPCR-jacking: from a new route in RTK signalling to a

new concept in GPCR activation. Trends Pharmacol Sci, 2007. 28(12): p. 602-7.

314. Wetzker, R. and F.D. Bohmer, Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol, 2003. 4(8): p. 651-7.

315. Oligny-Longpre, G., et al., Engagement of beta-arrestin by transactivated insulin-like growth

factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. Proc

Natl Acad Sci U S A, 2012. 109(17): p. E1028-37.

316. Tu, H., et al., GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor

transactivation. J Neurosci, 2010. 30(2): p. 749-59.

317. Mira, E., et al., A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep, 2001. 2(2): p. 151-6.

318. Toman, R.E., et al., Differential transactivation of sphingosine-1-phosphate receptors

modu-lates NGF-induced neurite extension. J Cell Biol, 2004. 166(3): p. 381-92.

319. Hobson, J.P., et al., Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell

motility. Science, 2001. 291(5509): p. 1800-3.

320. El-Shewy, H.M., et al., Insulin-like growth factors mediate heterotrimeric G

protein-depen-dent ERK1/2 activation by transactivating sphingosine 1-phosphate receptors. J Biol Chem,

2006. 281(42): p. 31399-407.

321. Akekawatchai, C., et al., Transactivation of CXCR4 by the insulin-like growth factor-1 receptor

(IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem, 2005. 280(48): p.

39701-8.

322. Delcourt, N., et al., PACAP type I receptor transactivation is essential for IGF-1 receptor

sig-nalling and antiapoptotic activity in neurons. EMBO J, 2007. 26(6): p. 1542-51.

323. Alderton, F., et al., Tethering of the platelet-derived growth factor beta receptor to

G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. J Biol Chem, 2001. 276(30): p. 28578-85.

324. Waters, C., et al., Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via

PDGF beta receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle cells. J Biol Chem, 2003. 278(8): p. 6282-90.

325. Arasteh, K. and A. Hannah, The role of vascular endothelial growth factor (VEGF) in

AIDS-related Kaposi’s sarcoma. Oncologist, 2000. 5 Suppl 1: p. 28-31.

326. Bais, C., et al., Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor

immor-talizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell, 2003.

3(2): p. 131-43.

327. Catrina, S.B., et al., Insulin-like growth factor-I receptor activity is essential for Kaposi’s

sar-Re

fer

(18)

coma growth and survival. Br J Cancer, 2005. 92(8): p. 1467-74.

328. Rossi, G., et al., Expression and molecular analysis of c-kit and PDGFRs in Kaposi’s sarcoma

of different stages and epidemiological settings. Histopathology, 2009. 54(5): p. 619-22.

329. Jensen, K.K., et al., The human herpes virus 8-encoded chemokine receptor is required for

angioproliferation in a murine model of Kaposi’s sarcoma. J Immunol, 2005. 174(6): p.

3686-94.

330. Sharma-Walia, N., et al., Kaposi’s sarcoma associated herpes virus (KSHV) induced COX-2: a

key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog,

2010. 6(2): p. e1000777.

331. Bongers, G., et al., A role for the epidermal growth factor receptor signaling in development

of intestinal serrated polyps in mice and humans. Gastroenterology, 2012. 143(3): p. 730-40.

332. Maussang, D., et al., Herpesvirus-encoded G protein-coupled receptors as modulators of

cel-lular function. Mol Pharmacol, 2009. 76(4): p. 692-701.

333. Vanarsdall, A.L., et al., PDGF receptor-alpha does not promote HCMV entry into epithelial

and endothelial cells but increased quantities stimulate entry by an abnormal pathway. PLoS

Pathog, 2012. 8(9): p. e1002905.

334. Isaacson, M.K., A.L. Feire, and T. Compton, Epidermal growth factor receptor is not required

for human cytomegalovirus entry or signaling. J Virol, 2007. 81(12): p. 6241-7.

335. Tobin, A.B., G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol, 2008. 153 Suppl 1: p. S167-76.

336. Marchese, A., Endocytic trafficking of chemokine receptors. Curr Opin Cell Biol, 2014. 27: p. 72-7.

337. Chiou, C.J., et al., Patterns of gene expression and a transactivation function exhibited by

the vGCR (ORF74) chemokine receptor protein of Kaposi’s sarcoma-associated herpesvirus. J

Virol, 2002. 76(7): p. 3421-39.

338. Scholten, D.J., et al., Pharmacological characterization of a small-molecule agonist for the

chemokine receptor CXCR3. Br J Pharmacol, 2012. 166(3): p. 898-911.

339. Guo, W., et al., Dopamine D2 receptors form higher order oligomers at physiological

expres-sion levels. EMBO J, 2008. 27(17): p. 2293-304.

340. Ballesteros, J.A. and H. Weinstein, Integrated methods for the construction of three

dimen-sional models and computational probing of structure-function relations in G-protein cou-pled receptors. Methods in Neuroscience, 1995. 25: p. 366-428.

341. Lan, T.H., S. Kuravi, and N.A. Lambert, Internalization dissociates beta2-adrenergic receptors. PLoS One, 2011. 6(2): p. e17361.

342. Lan, T.H., et al., Sensitive and high resolution localization and tracking of membrane proteins

in live cells with BRET. Traffic, 2012. 13(11): p. 1450-6.

343. Shukla, A.K., et al., Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor

phosphopeptide. Nature, 2013. 497(7447): p. 137-41.

344. Bhave, G., et al., cAMP-dependent protein kinase regulates desensitization of the capsaicin

receptor (VR1) by direct phosphorylation. Neuron, 2002. 35(4): p. 721-31.

345. Maciejewski, P.M., et al., Mutation of serine 90 to glutamic acid mimics phosphorylation of

bovine prolactin. J Biol Chem, 1995. 270(46): p. 27661-5.

346. Molecular Operating Environment

(MOE). 2012, Chemical Computing Group Inc.: 1010 Sher-booke St. West, Suite #910, Montreal, QC H3A 2R7, Canada.

347. London, N., et al., Rosetta FlexPepDock web server--high resolution modeling of

peptide-protein interactions. Nucleic Acids Res, 2011. 39(Web Server issue): p. W249-53.

348. Raveh, B., N. London, and O. Schueler-Furman, Sub-angstrom modeling of complexes

be-tween flexible peptides and globular proteins. Proteins, 2010. 78(9): p. 2029-40.

349. Cheng, Y. and W.H. Prusoff, Relationship between the inhibition constant (K1) and the

con-centration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.

Biochem Pharmacol, 1973. 22(23): p. 3099-108.

Re

fer

Referenties

GERELATEERDE DOCUMENTEN

Our study reports that the zebrafish chemokine Cxcl18b, a reliable marker of inflammation, displays expression patterns and chemotactic properties towards

Since the angiogenesis response to mycobacterial infection was found to coincide with local induction of vegfaa 25 and mammalian CXCR4 has been linked to a transcriptional

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

This CCL4-dependence indicates a slightly different CCR5 receptor binding pocket for compound 26b compared to TAK-779, since TAK- 779 displays a negative allosteric modulation

Plasma lipid levels in MX1cre 1 LRP flox/flox mice were comparable with those of LRP flox/flox and wild type control mice, and cholesterol was contained mainly in the high

Ot the well known nsk factois toi thiombosis piotem S deticiency is one of the most difficult to diagnose with ceitamty Rehable estimates tor the pievalence of piotem S deticiency m

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

December 1871 (11): Die Gemeinden und Gutsbezirke der Rheinprovinz und ihrer Bevölkerung: nebst einem Anhange, betreffend die Hohenzollerschen Lande.. Berlin,