• No results found

Graphing formulas: unraveling experts’ recognition processes

N/A
N/A
Protected

Academic year: 2021

Share "Graphing formulas: unraveling experts’ recognition processes"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Peter M.G.M. Kop

a,∗

, Fred J.J.M. Janssen

a

, Paul H.M. Drijvers

b

, Jan H. van Driel

c

aIclon,LeidenUniversity,TheNetherlands

bFreudenthalInstitute,UtrechtUniversity,TheNetherlands

cMelbourneGraduateSchoolofEducation,TheUniversityofMelbourne,Australia

a rt i c l e i n f o

Articlehistory:

Received10June2016

Receivedinrevisedform12January2017 Accepted25January2017

Availableonline9February2017

Keywords:

Graphingformulas Experts’recognition Functionfamilies Prototypesandattributes

a b s t ra c t

Aninstantlygraphableformula(IGF)isaformulathatapersoncaninstantlyvisualize usingagraph.TheseIGFsarepersonalandserveasbuildingblocksforgraphingformulas byhand.Thequestionsaddressedinthispaperarewhatexperts’repertoiresofIGFsareand whatexpertsattendtowhilerecognizingtheseformulas.Threetasksweredesignedand administeredtofiveexperts.Thedataanalysis,whichwasbasedonBarsalouandSchwarz andHershkowitz,showedthatexperts’repertoiresofIGFscouldbedescribedusingfunction familiesthatreflectthebasicfunctionsinsecondaryschoolcurriculaandrevealedthat experts’recognitioncouldbedescribedintermsofprototype,attribute,andpart-whole reasoning.Wegivesuggestionsforteachinggraphingformulastostudents.

©2017ElsevierInc.Allrightsreserved.

1. Introduction

Algebraicconcepts,likefunctions,canbeexploredmoredeeplythroughlinkingdifferentrepresentations(Duval,2006;

Heid,Thomas,&Zbiek,2012).Graphsandalgebraicformulasareimportantrepresentationsoffunctions.Graphsseemtobe moreaccessiblethanformulas(Leinhardt,Zaslavsky,&Stein,1990;Moschkovich,Schoenfeld,&Arcavi,1993).Inaddition, graphsgivemoredirectinformationoncovariation,thatis,howthedependentvariablechangesasaresultofchangesof theindependentvariable(Carlson,Jacobs,Coe,Larsen,&Hsu,2002).Agraphshowsfeaturessuchassymmetry,intervals ofincreaseordecrease,turningpoints,andinfinitybehavior.Inthisway,itvisualizesthe“story”thatanalgebraicformula tells.Thereforegraphsareimportantinlearningalgebra,inparticularinlearningtoreadalgebraicformulas(Eisenberg&

Dreyfus,1994;Kieran,2006;Kilpatrick&Izsak,2008;NCTM,2000;Sfard&Linchevski,1994).

Studentshavedifficultiesinseeingafunctionbothasaninput-outputmachineandasanobject(Ayalon,Watson,&

Lerman,2015;Gray&Tall,1994;Oehrtman,Carlson,&Thompson,2008;Sfard,1991).Graphsappealtoagestalt-producing ability,andinthiswaycanhelptoconsolidatethefunctionalrelationshipintoagraphicalentity(Kieran,2006;Moschkovich etal.,1993).Graphsarealsoconsideredimportantinproblemsolving.Graphsareusedforunderstandingtheproblem situation,recordinginformation,exploring,andmonitoringandevaluatingresults(Polya,1945;Stylianou&Silver,2004).

So,theabilitytoswitchbetweenrepresentations,representationversatility,inparticularconversionsfromalgebraic formulastographs,isimportantinunderstandingalgebraandinproblemsolving(Duval,2006;NCTM,2000;Stylianou, 2011;Thomas,Wilson,Corballis,Lim,&Yoon,2010).

∗ Correspondingauthor.

E-mailaddress:koppmgm@iclon.leidenuniv.nl(P.M.G.M.Kop).

http://dx.doi.org/10.1016/j.jmathb.2017.01.002 0732-3123/©2017ElsevierInc.Allrightsreserved.

(2)

Inapreviousstudyaframeworkwasdevelopedtodescribestrategiesforgraphingformulaswithoutusingtechnology (Kop,Janssen,Drijvers,Veenman,&VanDriel,2015).Intheframework,itisindicatedhowrecognitionguidesheuristic search.Whenonehastographaformulatherearedifferentpossiblelevelsofrecognition:fromcompleterecognition(one immediatelyknowsthegraph)tonorecognitionatall(onedoesnotknowanythingaboutthegraph).Foreverylevelof recognitiontheframeworkprovidesstrongtoweakheuristics.

Forthetwohighestlevelsofrecognitionthegraphiscompletelyrecognizedortheformulaisrecognizedasamemberof afunctionfamilywhosegraphcharacteristicsareknown.Forinstance,atthehighestlevelofrecognitionthegraphofy=x2 isinstantlyrecognizedasaparabolawithminimum(0,0).Atthesecondlevelofrecognition,y=4·0.75x+3isrecognizedas amemberofthefamilyofdecreasingexponentialfunctions,andsothehorizontalasymptoteisreadfromtheformula.In thiswaythegraphcanbeinstantlyvisualized.Anotherexampleatthislevel:y=−x4+6x2isrecognizedasapolynomial functionofdegree4;becauseofthenegativeheadcoefficientitsgraphhasanM-shapeoran-shape;ashortinvestigation of,forinstance,thezeroeswillinstantlygivethegraph.

Atthesetwohighestlevelsofrecognitionintheframework,formulascanbeinstantlylinkedtographs.Therefore,these formulasaredefinedasinstantlygraphableformulas(IGF).AlargesetofIGFsisbeneficialtoproficiencyingraphingformulas.

Thecurrentstudywasfocusedonexperts’recognitionprocesseswhendealingwithIGFs.Forthisstudywedefinedanexpert asapersonwithatleastamaster’sdegreeinmathematicsandatleast10yearsofexperienceteachingatthesecondary orcollegelevel,withexperienceingraphingformulasbyhand.Althoughtheseexpertsareexpectedtobeabletoinstantly linkmanyformulastographs,theirrepertoiresofIGFsremainunknown.Inaddition,weinvestigatedwhatexpertsattend towhenrecognizingIGFs.ThisinformationmightgivesuggestionsforarepertoireofIGFsforstudentsandforafocusin teachingstudentsIGFs.

2. Theory

2.1. Cognitiveunitsasbuildingblocks

IGFscanbeseenasbuildingblocksinthinkingandreasoningwithandaboutformulasandgraphs.BarnardandTall(1997) introducedtheconceptof“cognitiveunit”,anelementofcognitiveknowledgethatcanbethefocusofattentionaltogether atonetime.Forexperts,well-connectedcognitiveunitscanbecompressedintoanewsinglecognitiveunitwhichcan beusedasjustonestepinathinkingprocess(Crowley&Tall,1999).Inthiswayexperts’knowledgeiswellorganizedin hierarchicalmentalnetworkswithcomplexcognitiveunits,whichcanbeenlistedwhennecessary(Campitelli&Gobet, 2010;Chi,Feltovich,&Glaser,1981;Chi,2011).

AsIGFsarecognitiveunitsingraphingformulas,theycanbecombined(addition,multiplication,chaining,etc.)andcan formnew,morecomplexIGFs.Forinstance,whendealingwithy=−x4+6x2,novicesmayrecognizetheIGFsy=−x4and y=6x2andhavetocombinethesetwoIGFstodrawagraph,whereasy=−x4+6x2isanIGFforexperts,whorecognizea 4thdegreepolynomialfunction.Forexperts,aformulalikey=x2−6x+5cantriggerothercognitiveunits,like“itsgraph isaparabolawithaminimumvalue”,andtheequivalentformulasy= (x−1)(x−5) andy= (x−3)2−4,whichcangive informationaboutthezeroesandtheminimumvalue,etc.Expertsareexpectedtohavemore,andmorecomplex,IGFsthan novices,whichgenerallyenablethemtographformulaswithfewerdemandsontheworkingmemory(Sweller,1994).

Thecurrentstudywasfocusedonrecognition:inparticular,whichformulasand/orfunctionfamilieswereinstantly recognizedbyexpertsandhowtherecognitionprocessescanbedescribed.

2.2. RecognitiondescribedusingBarsalou’smodelwithprototype,attribute,andpart-wholereasoning

Barsalou(1992)showedhowhumanknowledgeisorganizedincategoriesorconcepts.Peopleconstructthesecategories basedonattributes.Whenataskrequiresadistinctiontobedrawnbetweenexemplarsofacategory,peopleconstructnew attributesandinthiswaynewcategories(Barsalou,1992).Forinstance,fortheconceptbird,attributes(variables)likesize, color,andbeak,withseveralvalues,canbeusedtodistinguishdifferentexemplars.Categoriescanhavealargediversityof exemplars,buthaveagradedstructure(Eysenck&Keane,2000;Barsalou,2008).Someexemplarsinacategoryaremore centraltothatcategorythanothers;thesearecalledprototypes.Forinstance,arobinisconsideredamoretypicalexample ofabirdthan,forinstance,achickenorapenguin.Whendealingwithexemplarsofacategory,peopletendtoassociate prototypicalfeatureswiththeseexemplars(Barsalou,2008;Schwarz&Hershkowitz,1999).Thetendencytoreasonfrom prototypescanposeproblems.Sinceconceptformationisnotnecessarilydoneusingpuredefinitions,WatsonandMason (2005)emphasizedtheneedtogobeyondprototypesandtosearchfortheboundariesofaconcept.Inthiswayonebecomes awareofthedimensionsofpossiblevariationandineachdimensionoftherangeofpermissiblechange(Billsetal.,2006;

Sandefur,Mason,Stylianides,&Watson,2013;Watson&Mason,2005).Thepersonalexamplespace,thecollectionof examplesandtheinterconnectionbetweentheexamplesapersonhasathis/herdisposal(theaccessibleexamplespace), playamajorroleinhowapersonmakessenseofthetaskshe/sheisconfrontedwith(Watson&Mason,2005;Goldenberg

&Mason,2008).VinnerandDreyfus(1989)usedconceptimagetoemphasizethepersonalcharacterofpeople’smental networks.Theseconceptimagesdeterminewhataperson“sees”whendealingwithconceptsorcategories,andareusedin rapididentification.

(3)

theexemplar(s)withthesetofhighestfrequencyofattributevaluesinthecategoryorwiththehighestcorrelationwith otherexemplarsinthecategory(Barsalou,1992).Prototypesaretheexamplesthatareacquiredfirstandareusuallythe examplesthathavethelongestlistofattributes:thecriticalattributesofthecategoryandtheself-attributes(non-critical attributes)oftheexemplar(Schwarz&Hershkowitz,1999).Prototypesareusedasareferencepointforjudgingmembership ofthecategory:anexemplarisjudgedtobeamemberofacategoryifthereisagoodmatchbetweenitsattributesandthose ofthecategoryprototype(Barsalou,2008;Eysenck&Keane,2000).Whenaskedforaprototypeofacategory,itisexpected thatapersonwillnotuseadefinitionofprototypebutwilluseageneralideaaboutwhatprototypesare:namely,the mostcentralexemplar(s)ofacategoryfromhis/herpersonalperspective.Asaconsequence,whendealingwithacategory, theprototypesarethefirstexamplesthatcometoone’smindandarethenaturalexamplesthatareusedwithoutany explanation.Examplesinthedomainofgraphingformulasincludeprototypicalformulaslikey=x2andy=x3,withtheir prototypicalgraphs.Inthisstudyweusedthetermprototypereasoninginthisway.

Attributeunderstandingcanbedefinedastheabilitytorecognizetheattributesofafunctionacrossrepresentations (Schwarz&Hershkowitz,1999).Forinstance,fromtheformulay= (x−1)(x−5),itisconcludedthatitsgraphisaparabola, ithaszeroesatx=1andatx=5andasymmetryaxisatx=3.Theseattributesorpropertiesofthisfunctioncanberecognized inthegraphical,tabular,andalgebraicrepresentations.

Inhisproperty-orientedviewoffunctions,Slavit(1997)usedproperties(orattributes)likesymmetry,monotonicity, horizontalandslantasymptotes,intercepts(zeroes),extrema,andpointsofinflection.

Dependingonthetask,peopleconstructattributestobeabletodistinguishexemplars:inthisstudy,formulasandgraphs (Barsalou,1992).Todistinguishdifferentgraphsof4thdegreepolynomialfunctionsinFig.1,onecanuseattributeslike symmetry,infinitybehavior,numberofturningpoints,numberofzeroes,andlocationofzeroesrelativetothey-axis.When relatingformulasandgraphs,asingraphingformulas,onechoosesorcreatesattributestofocusonfeaturesofformulasand graphs.Wecallthisreasoningaboutattributesandtheirvaluesattributereasoning.

Part-wholereasoningreferstotheabilitytorecognizethatdifferentformulasordifferentgraphsrelatetothesameentity:

inthiscase,tothesamefunction.Inthegraphicalrepresentation,differentscalingcanresultindifferentpicturesofgraphs belongingtothesamefunction.Inthealgebraicrepresentation,formulamanipulationcanresultindifferentformulasofthe samefunction:forinstance,y=x2−4x,y=(x−2)2−4,andy=x(x−4).Fromthesedifferentformulasdifferentattributesof thegraphcanberead.Therefore,part-wholereasoningisimportantintherecognitionofIGFs.

Forattributereasoningandpart-wholereasoningonehastograspthestructureofaformula.Intheliteraturethisiscalled symbolsense(Arcavi,1994).Symbolsenseisaverygeneralnotionof“whenandhow”tousesymbolsandhasseveralaspects, suchastheabilitytoreadthroughalgebraicexpressions,toseetheexpressionasawholeratherthanaconcatenationof letters,andtorecognizeitsglobalcharacteristics(Arcavi,1994).PierceandStacey(2001)usedalgebraicinsighttocapture thesymbolsenseintransformationalactivitiesinthe“solving”phaseofproblemsolving(PierceandStacey,2001).The algebraicinsightisdividedintwoparts:algebraicexpectationandtheabilitytolinkrepresentations.Algebraicexpectation hastodowithrecognitionandidentificationofobjects,forms,keyfeatures,dominantterms,andmeaningsofsymbols (Kenney,2008;Pierce&Stacey,2001).Algebraicinsightisshownwhenapersonhasexpectationsaboutgraphsthatare linkedtofeaturesofthesymbolicrepresentationandwhenequivalentalgebraicexpressionsarerecognized(Ball,Stacey,&

Pierce,2003;PierceandStacey,2001,2004).

Thethreeaspectsprototype,attribute,andpart-wholereasoningfromSchwarzandHershkowitzcanbeusedtodescribe therecognitionprocessingraphingformulas.ABarsaloumodelforrecognizingIGFsisformulatedinFig.2.Inthecase ofgraphingformulas,itisdifficulttomentionallpossiblevalues.Forinstance,theattribute“zeroes”canhavevalueslike 0,1,2,3,toindicatethenumberofzeroes,butalsothelocationcanbeusedasvaluesofanattribute(forinstance,azeroat x=5).Forthesakeofreadability,thevaluesbelongingtotheattributesareomittedinFig.2.

TheBarsaloumodelinFig.2showshowfunctionfamiliesareconstructedbyusingvaluesetsonasetofattributesand allowsadetaileddescriptionofhowformulascanbelinkedtographs,andsooftherecognitionofIGFs.Startingwitha formula(ontherightsideofFig.2),thereareseveralpossibilities:theformulacanbemanipulated(part-wholereasoning) intoanotherformula,theformulacanberecognizedasamemberofafunctionfamily,ortheformulacanberecognizedasa

(4)

Fig.2. IGFsintheformofaBarsaloumodelbasedonSchwarzandHershkowitz(1999).

prototypeofafunctionfamily.Itisthenpossiblethatthegraphisdirectlyknown,orthat,usingattributereasoning,agraph canbevisualized.

Someexamplescanillustratethisrecognitionprocess.InIGFy=4·3x+2theprototype3xcanberecognized(prototype reasoning),andviaatranslation(attributereasoning)thegraphcanbevisualized.InIGFy=−2x(x−3)(x−6),theprototype x3canberecognized,−x3asareversion(attributereasoning),andviazeroesatx=0,x=3,x=6(attributereasoning)the graphcanbevisualized.However,wheny=−2x(x−3)(x−6)isnotrecognizedasamemberofafunctionfamilyorprototype ofafunctionfamily,theformulaisnotanIGF(Kopetal.,2015).Inthiscasethegraphhastobeconstructedby,forinstance, reasoningaboutattributeslikeinfinitybehaviorandzeroes.If,whengraphingy=4x−2,theformulacanberewrittento y=4/x2(part-wholereasoning)andrecognizedasa1/x2(prototypereasoning),theformulaisanIGF.Butwhenfromthe formulay=4/x2itisreadthatithasaverticalasymptoteatx=0,andthatalloutcomesarepositiveandwhenx→±∞then y=0(infinitybehavior),thenwesaythatthegraphisconstructedthroughqualitativereasoning(Kopetal.,2015),andso theformulaisnotanIGF.

2.3. Globalandlocalperspectives

Covariationalreasoningisessentialforgraphingformulas.Incovariationalreasoning,oneisabletoimaginerunning throughallinput-outputpairssimultaneouslyandsotoreasonabouthowafunctionisactingonanentireintervalofinput values(Carlsonetal.,2002).InrecognizingIGFsonehastohaveapictureofthefunctionasanentity.Intheliteraturethis perspectiveofthefunction,seeingthefunctionasawhole,isalsoaddressedastheobjectorglobalperspective(Confrey

&Smith,1995;Even,1998;Gray&Tall,1994;Oehrtmanetal.,2008;Sfard,1991).Thereisalsoanotherperspectiveofthe function,namely,toseeafunctionasaninput-outputmachine.Thisperspectivehastodowiththefundamentalviewon functions(whatitmeansthatacertainy-valuebelongstoagivenx-value),andisaddressedasthepointwise,process, orcorrespondenceperspective.Switchingbetweenbothkindsofperspectiveisnecessaryforreasoningaboutfunctions.

Slavit(1997)spokeaboutthelocalandglobalnatureoffunctionalgrowthpropertiesinaddressingbothkindsofperspective (Slavit,1997).Theglobalgrowthpropertiesconcernattributeslikesymmetry,monotonicity,horizontalandslantasymptotes, integrability,andinvertibility,whereasthelocalpropertiesareaboutextrema,intercepts,cusps,andpointsofinflection.In anin-betweenclass,Slavitalsomentionedcontinuity,sign,differentiability,domain,andrange.Graphscanbedescribed

(5)

Fig.3.Anumberofthecardsusedintask1.

usingthesepropertiesorattributes.Beforethecurrentresearch,itwasunknownwhichattributesexpertsuseinrecognizing IGFs.

2.4. Researchquestions

Inthecurrentstudywefocusedonexperts’repertoiresofformulasthatcanbeinstantlyvisualizedusingagraph(IGFs) andontheirconceptimagesofIGFs,withattributes,prototypes,andpart-wholereasoning.Weexpectedthatexpertswould havelargerepertoiresofIGFsthatarestructuredincategories.However,wedidnotyetknowwhatanexpertrepertoireof IGFswouldbe.

Weexpectedexpertstobeabletomanipulatealgebraicformulas(part-wholereasoning),tousesymbolsenseandin particularalgebraicinsight,andtousesetsofattributeswithvaluesetstodistinguishdifferentgraphs.However,wedidnot knowwhichprototype,attribute,andpart-wholereasoningtheywoulduseinlinkingformulasandgraphsofIGFs.

Thisleadtothefollowingresearchquestions:

Canwedescribeexperts’repertoiresofinstantgraphableformulas(IGFs)usingcategoriesoffunctionfamilies?

WhatdoexpertsattendtowhenlinkingformulasandgraphsofIGFs,describedintermsofprototype,attribute,and part-wholereasoning?

3. Method

Thecurrentstudycanbecharacterizedasanexploratorystudy,inwhichweinvestigated“snapshots”ofexperts’concept imagesoffunctionfamilieswiththeiralgebraicformulasandgraphs.

3.1. Tasks

Threedifferenttasksweredevelopedtoelicittheexperts’repertoiresofIGFsandtoexploretheexperts’prototype, attribute,andpart-wholereasoning:acard-sortingtask,amatchingtask,andamultiplechoicetask.

Card-sortingtasksareoftenusedinelicitingstructuredknowledge(Chietal.,1981;Jonassen,Beissner,&Yacci,1993;de Jong&Ferguson-Hessler,1986;Goldenberg&Mason,2008;Sandefuretal.,2013).

Intask1,60formulasweregivenandtheparticipantswereaskedtocategorizethemaccordingtotheirgraph.After this,theywereaskedtogiveanameandaprototypicalformulaforeachoftheircategories.Westructuredthistaskby addinggraphstothecardsshowingtheformulas.Whensuchtasksaregivenwithoutstructuringbeforehand,gettinga completepictureorcomparingtheresultscanposeproblems,becauseofthedifferentcriteriathatcanbeusedtosortthe cards(Ruiz-Primo&Shavelson,1996).Becauseweaddfourgraphstothe60cardswithformulas,theparticipantswere explicitlycompelledtofocusonthegraphsoftheformulas.Wedidnotindicatewhetheraparticipantshoulddiscriminate betweenparabolaswithamaximumorminimumbecausethelevelofdetailcanbeanindicatorofexpertise.Fig.3shows 20cardsfromtask1.Mostoftheseformulas,butnotall,arerelatedtooneofthebasicfunctionfamilies,whicharestudied ingrades10–12:y=xn,y=ax,y=log2(x),y=1/x,y=√

x,y=ln(x),y=ex.Since,weusedthebasicfunctionsfromsecondary schoolcurricula,weexpectedthatmanyformulas,butnotall,wouldbeIGFsfortheexperts.Thiscategorizationtaskgave informationaboutdimensionsofvariationandtherangeofpermissiblechangeexpertsusedindiscriminatinggraphs.The namesgivenforthedifferentcategorieswiththeprototypesgaveinsightintothegraphfamiliesandthusintheattribute andvaluesetsexpertsused.

(6)

Fig.4.Somealternativesoftask2.

InTask2,thematchingtask,alistof40formulaswasgivenandtheparticipantswereaskedtoselectthecorrectalternative outof21alternatives:20graphsandonealternativestating“noneofthese”.Thislastalternativewasprovidedtodiscourage guessing.Inthistaskthefocuswasoninstantlinkingofformulastotheglobalshapeofgraphs.Thereforeastricttime limitwasusedtoencouragerecognitionandtodiscourageconstructionofagraph.Wechoseamatchingtaskwithmany alternativesratherthanagraphingtasktoindicatethelevelofdetailthatwasneeded:theexpertshadtorecognizethe globalshapeofthegraphofthegivenformula.

The formulas used in this task resembled the formulas used in the first task. The following are some exam- ples:y=2x(x−2)(x+4);y=6x2−2x4; y=e2x+1;y=x−4/x;y=4−2x+x/4; y=4/2x; y=√

x−6+2;y=ln(e2·x); y=2x−4; y=2(x−1)4−4;y=



8−x2;y=ln(4/x);y=9x/√3

x;y=ln(e2·x).EightofthealternativegraphsareshowninFig.4.

Task2wasalsodevelopedtoelicitparticipants’repertoiresofIGFs.Thereforesomefunctionswereaddedthatdonot belongtothefunctionfamiliesofbasicfunctions,forinstance,y=



8−x2,y=30/(x2−16),y=x−4/x,becausewewanted toinvestigatetheboundariesoftheexperts’repertoiresofIGFs.Becausetheformulasusedweresimilartothoseintask1, thistaskwasusedtovalidatetheresultsoftask1.When,forinstance,intask1nodistinctionwasmadebetweenincreasing anddecreasingparabola,butintask2thisdistinctionwasmade,itwasconcludedthattheparticipantcouldindeedmake suchadistinction.

Tasks3Aand3B,thinkingaloudmultiplechoicetasks,weredevelopedtoelicittheparticipants’prototype,attribute,and part-wholereasoningandinthiswaytogetmoredetailedknowledgeoftheparticipants’conceptimages.Theparticipants wereaskedtochoosethecorrectalternativeoutoffouralternatives.AsimilartaskwasusedbySchwarzandHershkowitz (1999)intheirstudyofconceptimagesoffunctions.Bothtasksconsistedofsixitems.Intask3Baformulawasgivenandthe expertshadtofindthecorrectgraph.Intask3Aagraphwasgivenandtheexpertshadtoprovideaformula.Ingeneral,tasks like3Aareconsideredtobemorechallenging.Butthisisnotclearwhendealingwiththefunctionfamiliesofwell-known basicfunctions.Inthiswaywegotmoredetailedinformationabouttheexperts’conceptimagesofIGFs.Threeexamplesof thistaskareshowninFig.5.

Theformulaswereagainchosenfromthesamesetoffunctionsasintasks1and2.Participantshadtoconsiderall alternativesbecausemorethanonealternativecouldbecorrect.

Intasks1and2thefocuswasonsketchesofgraphs;inthistask,moredetailedanswerswereneeded.Forinstance,in tasks1and2itwasnotnecessarytodistinguishy=−2x(x−2)(x−4)andy=−2x(x+3)(x+6),butintask3thisdistinction hadtobemade(seetask3A-4inFig.5).

3.2. Participants

Fivemathematicalexpertswereinvitedtoparticipateinthisstudy.WeassignedthelettersP,Q,R,S,andTtoourfive experts.Theexpertshaddifferentbackgrounds:twomathematicianswhohadbeenteachingcalculusandanalysistofirst- yearstudentsatuniversity(Q,R),oneauthorofamathematicstextbookseries,whohadbeenateacherinsecondaryschool (T),onemathteacherwhowasinvolvedintheNationalMathExamsandhadbeenasecondaryschoolteacher(S),andone mathteachereducatorinuniversity(P).AllhadaMaster’sdegreeinmathematicsandtwohadaPhDinmathematics(Q, R).Allofthemhadbeenworkingasateacheratuniversityorinsecondaryeducationformorethan20yearsandhadbeen graphingmanyformulaswithouttechnologyduringtheireducationandduringtheirwholeteachingcareer.Therefore,we consideredthemexpertsingraphingformulas.

(7)

Fig.5.Someexamplesoftask3:task3A-4,3A-6,3B-3.

3.3. Dataanddataanalysis

3.3.1. Datacollectionprocedure

Writteninstructionswerehandedoutforeverytask,togetherwithanindicationofthetimeneededtoperformthetask.

Fortask1,atimeindicationofmaximum40minwasgiven;fortasks2and3,20min.Foralltasks,thetimeneededwas recorded,asthetimerequiredtoperformataskcanbeanindicationofexpertise.Duringthetasksthefirstauthoronly emphasizedtheneedtokeeponthinkingaloudwhentheexpertsstoppedtalking.Aftereachtask,thefirstauthoraskedthe expertstolookbackandtodescribethestrategies,theyhadusedinthetask.Theinterviewswerevideotaped.

Intask1,thecard-sortingtask,60cardswerelaidonatableandtheparticipantscouldphysicallygrouptheformulas intodifferentcategories.Afterwards,thecategoriesweregluedonalargesheet.Theparticipantsthenwrotethecategory namesandtheprototypicalformulasforeachcategory.Intask2andtask3,theparticipantsfilledintheanswersonaform.

Duringtasks1and3theparticipantswereaskedtothinkaloud;thiswasvideotaped.Thinkingaloudisconsideredto givereliableinformationabouttheproblem-solvingactivitieswithoutdisturbingthethinkingprocess(Ericsson,2006).For task3thethinking-aloudprotocolsweretranscribedinordertoanalyzetheprototype,attribute,andpart-wholereasoning.

3.3.2. Dataanalysis

3.3.2.1. Task1.Theaimoftask1wastogatherinformationonwhichcategoriesexpertsuseintheirrepertoiresofIGFs.It wasexpectedthatexpertswouldusesalient,globalpropertiesofgraphs,likesymmetry,in/decreasing,verticalasymptotes, infinitybehavior,andnumberofturningpoints,tocategorizetheirIGFs.Basedonthesesalientproperties,thefirstauthor madeatheoretical,hypotheticalexperts’categorizationbeforethestartofthisstudy.Thecategorizationsofthefiveexperts werecomparedwitheachotherandwiththefirstauthor’scategorization.Basedonthesefindingsacommoncategorization wasconstructed.Thiswasdoneinseveralsteps.First,commonelementsinthecategoriesandprototypesintheexperts’

categorizationsandthefirstauthor’scategorizationweredetermined.Fromthesefindingsapreliminarycommonexpert categorizationwasformulated.Inthesecondstep,thelevelofdetailwasconsidered.Ahigherlevelofdetailmeantthat subcategorieswereused.Ifoneormoreexpertsusedahigherlevelofdetail,thenthislevelofdetailwasusedinthe(final) commonexpertcategorization.Inthelaststep,thedistancesbetweenindividualcategorizationsandthecommonexpert categorizationwerecalculated.Weconsideredwhethersmalladjustmentsinthecommonexpertcategorizationwould resultinalowerminimumofthetotalofalldistances.Whennoprogressioncouldbemade,thefinalcommonexpert categorizationwasfound.

Todeterminethedistancebetweenanindividualcategorizationandacommoncategorization,thefollowingprotocol wasused:

-Iftheindividualcategorizationhadthe“same”categorybutaformulawasnotmentionedordidnotbelongtothatcategory, thenthedistanceincreasedby+1

(8)

-Ifnosubcategoriesweremadeintheindividualcategorizationandthecommonexpertcategorizationmadeadistinction betweenincreasinganddecreasing,thenthedistanceincreasedby+2(forinstance,nosubcategoriesbetweenparabolas withmaximumandparabolaswithminimumgaveanincreaseofthedistanceby+2ifthecommonexpertcategorization madethisdistinction)

-Iftwocategoriesofthecommonexpertcategorizationweremergedintheindividualcategorization(otherthanthe distinctionbetweenincreasinganddecreasing),thenthedistanceincreasedby+4(forinstance,3rdand4thgradefunctions wereputtogetherinonecategory)

-Ifa completely newcategory, differentfromthecommon expertcategorization, wasformulated,then thedistance increasedby+6.

3.3.2.2. Task2.Inthistaskthenumbersofmistakesperexpertwerecounted.Themistakeswereindicatedinatablein ordertoseewhethertheyweremadeinparticularfunctionfamilies.

3.3.2.3. Task3.Toanalyzetheresultsoftask3,thetranscriptswerecutintofragmentswhichcontainedcrucialstepsof explanations:ideaunits.Ideaunitsareprimitiveelementsinthejustificationsofparticipants(Schwarz&Hershkowitz, 1999).TheseideaunitswereencodedusingtheelementsfromFig.2:prototype,attribute,orpart-wholereasoning.

Sinceprototypesarethenaturalexamplesofcategoriesthatcanbeusedwithoutanyexplanation,graphsandformulas thataparticipantusedasthestartofareasoningprocesswereconsideredprototypesfortheexpert.Ifnoprototypereasoning wasusedorfunctionfamilywasmentioned,wesaidthattheformulawasnotanIGF,andthatthegraphwasconstructed.

Thefragmentsoftheprotocolswereencodedasfollows:

-pr(prototypereasoning):onlyaprototypicalexemplarwasmentioned;forinstance,“itlookslikealog”,“itisanxinthe power6”,“itisanexpo”,“itisanoscillation”.Ifafunctionfamilywasmentioned,likein“itisanexponentialfunction”or

“4thdegreepolynomial”,thiswasconsideredprototypereasoning

-att(attributereasoning):anattributewasmentioned;forinstance,“thisonehasaverticalasymptoteatx=0”,“itisalways positive”,“itgoestominusinfinity”.

-pw(part-wholereasoning):theformulawasmanipulatedtoanequivalentformula,forinstance,y=4x−2toy=4/x2 -con(construction):nofunctionfamilyorprototypewasmentioned,theformulawasnotanIGF:thegraphwasconstructed

through,forinstance,attributereasoningorcalculatingpoints.

WegivetwoexamplesoftheencodinginFig.6.

4. Results

4.1. Resultsoftask1

Theexperts’andauthors’categorizationsareshowninAppendixA.Theexpertsshowedagreatdealofagreementintheir choicesofcategories,namesofthesecategories,andprototypesofthecategories.OnlyexpertSusedadifferentapproachin hiscategorizationofpolynomialfunctions.Hebasedhiscategorizationonthenumberofturningpoints.Theotherexperts allusedthedegreeofpolynomialfunctions.The4thdegreepolynomialfunctionsweredividedintographswithaW-form, aM-form,andaV-form(orastheexpertsmentioned,“increasingordecreasing”).Nolargedifferenceswerefoundon exponentialfunctionsandlogarithmicfunctions,althoughsomeexperts(PandR)madenodistinctionbetween“normal”

and“reversed”graphs(forinstance,y=exversusy=e−xandy=ln(x)versusy=−ln(x)).Allexpertsagreedonlinearbroken functionsandsquare-rootfunctions.Moredifferenceswerefoundinthecategoriesofpowerfunctions,whereonlyexpert Qmadedistinctionsbasedondomainand/oronconcavity.

Intheconstructionofthecommonexpertcategorization,thedistancesbetweenindividualcategorizationsandthe commonexpertcategorizationwerecalculated.ThefinalcommonexpertcategorizationisshowninTable1.

Thefollowingdistancesfromthefinalcategorizationwerefound:11,3,19,20,and15(forP,Q,R,S,andT,respectively).

Theexpertsneededanaverageof18min:23,20,11,14,and21min(forP,Q,R,S,andT,respectively).

Forthistasktheexpertsusedalotofpart-wholereasoninginordertocategorize,forinstance,thefollowingformulas correctly:ln(e2x),(1−x)(2+x)+x2,ln(1/x),x(x−1)/(x+1)(x−1),(2x13)

5

.

Fromtheinterviewsandobservationsweknowthattheexpertsfirstmadeaglobalcategorization.Latertheylookedin greaterdetailandusedmoreattributestodiscriminatebetweentheformulas.Theexpertsdescribedtheirstrategyas“from simpletomorecomplex”(expertP),“ImadeapreliminarycategorizationbasedonthefunctionfamilieswithwhichIwas broughtup:withpolynomial,exponential,logarithmic,power,broken,androotfunctionsandonlyafterthisIdidfocus onthegraphs.”(expertQ),and“someIseeatfirstsight,othersonlywithsecondthoughts,likex−4/x”(expertR).Most oftheformulasinthistaskcouldbeconsideredIGFsandtheexpertsdidnotconsiderthistaskdifficult:“notadailytask andnicetodo,butnotdifficult”(expertT).Someexpertsmentionedthe“things”theycouldinstantlyseefromtheformula, likedefinitiondomain,asymptotes,singularities,even/oddfunctions,infinitybehavior.Someexpertsindicatedthatamore

(9)

Fig.6.Examplesoftheencodingoffragmentsofprotocolsoftask3.

Table1

Commonexpertcategorization.

Categories:

Linear

x+5(4x),ln(e2x),(1x)(2+x)+x2 Parabola

parabolawithmax:x(9x),−(x3)2+2,(x+5)(3x),2x3(x+2)(x2),−(x1)2+2(x1)+6;

parabolawithmin:x27(x5),(6x)2,x2+(−x+1)2 3rddegreeoscillation

(x27)(x5),2(x3)2(x+3),2x3+4x216x,x39x,e3ln(x) 4thdegree

W-shape:x416x2+28,(x27)2;(6edegreeW-shape:3(x46)(x28));

M-shape:−3(x24)(x26),2x3(6x);V-shape:(x+3)49,x2(9+x2) Exponential

increasing:4−3+x,2.(

2)x;decreasing:18·0.3x,26x,8e−x,10−2x+5,8/3x; reversedexponential:62x;100ex

Logarithmic

inceasing:ln(e2·x),1+2log(x),ln(x)+ln(2);decreasing:−ln(x),ln(1/x) distractor:1/ln(x)

Hyperbola

hyperbola:x(x1)/(x+1)(x1),(4x+2)/x,15/(x+1)

powerfunctionswithnegativeoddpower:8x−3;withnegativeevenpower:2/x4,3x−2 slantasymptote:x4/x;twoverticalasymptotes(x21)−1,2/x3/(x1)

‘Roots’

increasing x-like’:3

x+6,2

x6;(100x)12;decreasing x-like’:4

10x,(2x)12+2 halfacircle:



8x2;V-shape:



8+x2 powerfunctions

exponent13-like’<1:23 x,83

x4/2x;exponent13-like’>1:(2x13)

5

;exponent‘112-like’:2x x

(10)

Table2 Resultsoftask2.

Participant Numbermistakes Mistakes

P 3 (4x+1)/(x+2);7x

x;10/x3

Q 1 (4x+1)/(x+2)

R 1 (4x+1)/(x+2)

S 0

T 5 6x22x4;2x−4;42x+x/4;(4x+1)/(x+2);5x7

Table3

Timeneededfortask3Aand3B,thetotalnumberofmistakes,andthenumberofIGFsandconstructions.

Participants Time3A Time3B Numberofmistakes NumberofIGFs Numberofconstructions

P 4:54min 7:44min 0 10 2

Q 4:16min 2:13min 0 11 1

R 3:56min 6:27min 0 9 3

S 4:02min 2:44min 0 6 6

T 6:16min 2:46min 0 9 3

detailedcategorizationwouldbepossible,butnotwithoutcalculations:“InthenextstepIwouldhavetomakecalculations;

Iwouldnottrustmyselftosaymoreaboutthiscategorizationoffthetopofmyhead”(expertQ).

4.2. Resultsoftask2

Theresultsoftask2(seeTable2)showedthatthreeoutofthefiveexpertsmadenomistakesoronlyonemistake.Most mistakesweremadewiththeformulay=(4x+1)/(x+2).Fourofourexpertsselectedthealternativewiththeincreasing hyperbola.Fromtheotheralternativesitcouldhavebeenconcludedthatadistinctionhadtobemadebetweenanincreasing andadecreasinghyperbola.Sinceastricttimelimitofonly30sforoneformulawasusedandallexpertsfinishedthistask easilywithinthistimelimit,itwasconcludedthatalltheformulasthatdidnotbelongtothealternative“noneofthese”

couldbeconsideredIGFsfortheexperts.

Fromtheobservationsandinterviewswelearnedthatallexpertsfirstexaminedthe20graphalternativesandhada globalviewoftheformulastogetanimpressionofwhichaspectswouldplayaroleinthistaskandwhattheyhadtofocus on.Allexpertsreadalmostallgraphsbymentioningafunctionfamilythatfittedthegraph.Whenperformingthistask,they usedpart-wholereasoningifnecessary,recognizedafunctionfamilyandusedattributereasoningtodiscriminatebetween differentoptionsofthesamefunctionfamily.Forinstance,y=4x−5y=3e−0,5x+4−4,y=4/2xwereallrecognizedasmembers oftheexponentialfunctionfamily,attributereasoning,likeinfinitybehaviorandreversingaprototypicalgraphwasused tochoosethecorrectalternative.

4.3. Resultsoftask3

Intask3theprotocolswereanalyzedusingprototype,attribute,andpart-wholereasoning.Fromtheencodedprotocols, wefoundthatexpertsoftenstartedwithprototypesoffunctionfamilies,followedbyattributereasoning.

Wegivefourexamples(pr=prototype;att=attributereasoning;pw=part-wholereasoning):

Example1(:expertQintask3A-4(3rddegreepolynomialinFig.5)). Somethingwithahigherdegree(pr),decreasing(att), let’ssee;thisissomethingthatincreases(att),zeroesindeedat0,2,and4(att),thatlooksreliable;andthisat0,3,and6, andthatwillbepossible(att);andthisoneincreases,oh,noitdecreasestoo(att);wouldbeapossiblealternative;andthis onenot,ithasitszeroesonthewrongside(att).

Example2(:expertQintask3A-6(4thdegreepolynomialinFig.5)). Let’ssee,4thdegree(pr),downwards(att);A.thisone hasnooscillations,andisonlytranslated(att);B.ispossible,wherearethezeroes?,factorizinggivesme−x2+9(pw),so zeroesatx=3andx=−3(att);C.isnotpossible,becausewhenIdividedbyx2(pw)thennoextrazeroes;d.whenIdivided byx3(pw),itgavemeonlyonemorezero;soithastobeB

Example3(:expertSintask3B-3(exponentialfunctioninFig.5)). 100−50·0.75xisanexponential;function(pr)withy=100 asahorizontalasymptote(att);thatleavesB.andC.;itis100minus....,soitcomesfrombeneaththeasymptote(att),soit hastobeC.

Example4(:expertTintask3B-2(Indicatewhichgraph(s)canfity=−x(x−2)(x−4))). Thisisapolynomialfunctionofdegree 3(pr)andthosegraphsalllookofdegree3(pr);itis−x3(att),sothatmeansthesealternativesarenotpossible(indicatedA.

andB.);thesetwoarepossiblebutitisonlythisone(C.)becauseD.hasnotthecorrectzeroes(att).

Expertsmadenomistakesinthistaskandworkedfast:seeTable3.However,notallformulascouldbeconsideredIGFs fortheexperts,assomegraphshadtobeconstructedbyreasoningaboutattributes.Inparticular,thegraphofthelogistic functiony=500/(2+3·0,75x)(task3B-4)hadtobeconstructedbyallourexpertsandtheformulay=6x−2(task3B-5)was

(11)

ofapolynomialfunctionofdegree3respectivelydegree4.InFig.7itisindicatedwhichexpertsstartedintask3Atheir thinkingaloudwithmentioningaprototypeofafunctionfamily.Theotherexpertsworkedfromthealternativeformulas tothegraph.

Fromtheprotocolsweseethattheyexpertsusedprototypicalformulasandprototypicalgraphsofbasicfunctions.

Theyusedprototypesofexponential,logarithmic,even,andpolynomialofdegree2,3and4functions.Also,y=



a−x2 (half acircle)wasconsidereda functionfamily.OnlyexpertQusedy=1/x2 asafunctionfamily. Attributesthat were usedtodiscriminatebetweendifferentalternativeswere:increasing/decreasingofgraphlinkedtopositive/negativehead coefficient,infinitybehaviorandhorizontalasymptote,translations,verticalasymptote,numberofzeroesandlocationof zeroes,reversingagraph,positive/negativeoutcomes,domain,andpointofinflection.

ExpertSseemedtousealotofconstructions,perhapsbecauseaprototypeorfunctionfamilywasnotmentioned.From theprotocolsandresultsoftheothertasksitwasconcludedthatthesefunctionfamilieswereimplicitlyusedbythisexpert.

Fromobservationsandinterviewswelearntthattheexpertsthoughtthefunctionsusedintask3Awere“easier”than thoseusedintask3Bbecausetheyonlyrequiredsimpletransformations.Anotherreasonforthedifferencesbetweentask 3Aand3Bwastheamountofvisualinformationintask3B:“fourformulasandonegraphiseasiertodealwiththanfour graphsandoneformula”(expertQ).ExpertPmentionedthatingeneral“itismoredifficulttothinkfromthegraphthan tothinktothegraph”.Nevertheless,allexpertsindicatedthatbothtasksrequiredthesameknowledgeelements:namely, linkingvisualfeaturesofthegraphsandfeaturesoftheformulas.

5. Conclusionsanddiscussion

5.1. Conclusions

Thefirstaimofthecurrentresearchwastodescribeexperts’repertoiresofIGFs.Wehypothesizedthatexpertswould usecategoriestoorganizetheirknowledgeofgraphsandformulas.Theexperts’resultsintask1showedthatthecategories theyconstructedwereverysimilarandalsothatthecategorydescriptionsweresimilar.Thesedescriptionswereclosely relatedtothefunctionfamiliesofbasicfunctionsthataretaughtinsecondaryschool:linearfunctions,polynomialfunctions, exponentialandlogarithmicfunctions,brokenfunctions,andpowerfunctions.OnlyexpertSuseddescriptionscontaining numbersofturningpointsforthepolynomialfunctions.Thereforeacommoncategorizationcouldbeconstructed.Thedis- tancesbetweentheindividualcategorizationsandthefinalcategorizationvariedfrom3to20.Manyofthesedifferences couldbeexplainedbytheabsenceofsubcategories.Forinstance,someoftheexpertsdidnotdistinguishbetweenincreas- inganddecreasingexponentialgraphsorbetweenparabolawithamaximumorwithaminimum.However,theexperts’

performancesintask2confirmedthattheycouldrecognizethesedifferencesbetweensubcategoriesastheymadealmost nomistakesinthistask.

Thetimetheexpertsneededtoperformthiscategorizationtaskvariedfrom11to23min.Whentakingabout20min tocategorize60cards,theexpertsneededonly20spercardtoread,torecognize,tocomparewithothers,andtogroup formulaswithsimilargraphs.Thismeantthattherewasalmostnotimefortheconstructionofnew,unknowngraphs.

Someoftheformulas,likey=1/ln(x),y=(x2−1)−1,y=x−4/x,y=2/x−3/(x−1)werecategorizedinacategorywithasingle formula,oftenwithamentionofsomeattributes,butwithoutagraph.Therefore,itwasconcludedthattheexpertsused thefunctionfamiliesofthebasicfunctionsfromsecondaryschooltoorganizetheircategoriesofIGFs:linearfunctions;2nd, 3rdand4thdegreepolynomial,exponential,logarithmicandrootfunctionswith,ineveryfunctionfamily,adistinction betweenincreasinganddecreasing;brokenlinearfunction;powerfunctionsxn,withnodd/even,andn=p/qwithp>q, p<q.Thisshouldcomeasnosurprise,sinceweusedpredominantlyformulasofbasicfunctionsfromthesecondaryschool curricula.Theexpertswerebroughtupwiththesecategories,astheyindicatedintheinterviews.Theyshowedthroughtheir highproficiencythattheyhadtrulyinternalizedthiscategorizationofbasicfunctions.Theformulasseemedtobecomplex enoughtocapturetheproficiencyoftheexperts,assomeformulascouldnotbeinstantlyvisualizedorwerenotcorrectly categorized.

(12)

ThesecondaimofthecurrentstudywastodescribewhatexpertsattendtowhenlinkingformulastographsofIGFs.The recognitionprocesswhenworkingfromformulastographscanbewelldescribedusingtheBarsaloumodelofFig.2.Itis showninTable3thatinrecognizingIGFs,theexpertsoftenstartedwithprototypes.Thisprototypereasoningwas,when necessary,followedbyattributereasoning.Forinstance,y=−2x(x−3)(x−6)isrecognizedasaprototypical“x3”,whichis

“reversed”andhaszeroesat0,3,and6;y=log2(x+3)asalogtranslatedtotheleft;y=−(x+2)4+16asan“x4”,reversedand translated;y=



6−x2as“half-a-circle”.TheseexampleswereinlinewiththefindingsofSchwarzandHershkowitz(1999), whofoundthatproficientstudentsusedprototypesasleversforhandlingotherexamplesandshowedgreaterunderstanding of(critical)attributes.

Theexpertsalsorecognizedprototypicalgraphsforwell-knownfunctionfamilies,astheyshowedintask2andtask3A.

Forwell-knownfunctionfamiliesthereseemedtobelittledifferencebetweenworkingfromformulatographandworking fromgraphtoformula.WhenworkingwithIGFs,theexperts’conceptimagesthatweretriggeredbythegivenformulaor givengraph,seemedtocontainequivalentformula(s),graph(s),attributesofgraphsandofformulas,functionfamilywith prototypes,formulasofotherfunctionsinthisfunctionfamily.

Inordertoelicitexperts’attributereasoning,allattributestheexpertsusedintask3weregathered:translationtothe right/leftandabove/below,stretchinghorizontalorvertical,reversion(oftenindicatedbyreasoningaboutnegativehead coefficient),infinitybehavior(withhorizontalasymptotes),increasing/decreasing,numberandlocationofturningpoints, locationandnumberofzeroes,positive/negative,domain,pointofinflection,andverticalasymptotes.

Particularattributesseemedtobelinkedtoparticularfunctionfamilies.Asshownintask3,theseconnectionscould workbothways:fromfunctionfamiliestosalientattributesofgraphsandfromgraphswithsalientattributestofunction families.Thesesalientattributesofafunctionfamilyarecharacteristicofthemembersandprototypesofthefunctionfamily.

Forinstance,averticalasymptotewasdirectlylinkedtologarithmicfunctionsorbrokenfunctions.And,whenconfronted withpowerfunctionswithn=p/q,someinstantlystartedwithafocusondomainandconcavity.Forthedifferentfunction familiesinourresearch,theexpertsusedsalientattributes:limiteddomainwaslinkedtorootfunctions,powerfunctionsand logarithmicfunctions;verticalasymptoteswerelinkedtologarithmicfunctionsandbrokenfunctions;horizontalasymptotes werelinkedtoexponentialfunctionsandbrokenfunctions;symmetrywaslinkedtoevenpolynomialfunctions.

Expertsusedattributesappropriatetothetasks.Forinstance,whentheyhadtolinkformulastoglobalgraphs(tasks1 and2),theypaidnoattentiontothefactor7iny=7x√

x,ortothefactor3andterm1iny=4−x+3+1.Butwhenparameters influencedtheglobalshapeofthegraph,theseparametersweregivenampleattention.Forinstance,theminussignsof theheadcoefficientiny=−x4+9x2andiny=2√

8−xwhichreversedtheprototypicalgraphsweredirectlynoticedand mentioned.Whenmoredetailedgraphswererequested,asintask3,theexpertsagainonlyusedthoseattributesthatwere neededforthetask.Forinstance,theydidnotmentionanythingaboutthefactor0.1iny=0.1·x2orabouttheterm12inthe formulay=x6+12,becausethesewerepositivenumbers.Butwhenthetaskdemandedit,theexpertsquicklynoticedthe attributesandvaluesneededtographtheformulas.Forinstance,theexpertsinstantlyrecognizedthedifferentlocationsof thezeroesiny=x(3−x)(x−6)andy=−2x(x+3)(x+6).Thesefindingsshowthattheexpertsworkedefficientlyanddidnot payattentionto“whatisnormal”(Chietal.,1981;Chi,2011).

Theexpertssometimeshadtoshowtheirabilitiesinalgebraicmanipulation.Asexpected,theyhadnoproblemswiththis aspectofpart-wholereasoning:thiswasshownin,forinstance,y=6x−2(intask3B),andy=8x−3,y=x(x−1)/((x+1)(x−1)), andy=(1−x)(2+x)+x2(intask1).

Theseresultsshowthatexperts’processesof recognitionof IGFscanbedescribed usingthemodelin Fig.2:with prototypes,supportedbyattributeandpart-wholereasoning.

5.2. Discussionandimplications

5.2.1. ABarsaloumodelforrecognitionofIGFs

Thecurrentfindingshighlightthetwohighestlevelsofrecognitionoftheframeworkforstrategiesingraphingformulas (Kopetal.,2015).WedefinedformulasattheselevelsasIGFs,instantlygraphableformulas.Wedescribedtheexperts’

repertoiresofIGFsanddescribedwhatexpertsattendedtoinrecognizingIGFs.Weshowedthattheexpertsusedprototypes andattributereasoninginrecognizingIGFsandfoundhowparticularattributeandvaluesetswerelinkedtoparticular functionfamilies.Forinstance,givenalogarithmicformulasuchasy=log3(2x+4)−3,aprototypey=log3(x)ory=log(x) wasinstantlyidentifiedandattributereasoning(translation,domainx>−2,and/orverticalasymptoteatx=−2)resultedin agraph.Wealsofoundthatforfunctionfamiliesofbasicfunctions,theexpertscouldeasilyworkfromgraphtoaformula.

Givenagraph,theyinstantlyrecognizedafunctionfamilythatfittedthegraph.Forinstance,agraphwithattributeslike domainx>a,averticalasymptoteatx=aandconcavedownwasinstantlyidentifiedasalogarithmicfunction.Thisimplies thattheBarsaloumodelbasedonSchwarzandHershkowitzinFig.2canbeexpandedwithlinkagesbetweenattributeand valuesets,prototypesandfunctionfamiliesandwithlinkagesfromgraphtoattributes,prototypes,andfunctionfamilies.In Fig.8,forsomeofthefunctionfamiliesintheexperts’categorizations(logarithmic,polynomialwithdegree2,exponential, andbrokenfunctions),aprototypeisdescribedusingattributesandvalues;forotherexamplarsofthefunctionfamilysalient attributesareindicated.

(13)

Fig.8. ABarsaloumodelbasedonSchwarzandHershkowitzwithfunctionfamiliesandtheirsalientattributes.

5.2.2. Globalpropertiesingraphingformulas

Theexpertsinourstudyfocusedonattributesandvaluesthatinfluencedtheglobalshapeofthegraph.Forinstance, aparameterthatreversedtheprototypicalgraphofy=x4wasgivenampleattention,like−2iny=−2x4,butaparameter thatresultedinonlyasmallchangeoftheprototypicalgraphwasnotmentioned,suchas0.1iny=0.1x4.Intheirattribute reasoning,theexpertsfocusedonattributesandvaluesthatgaveagreatdealofinformationaboutthewholegraph.These attributescanbeconsideredtheglobalgrowthpropertiesofSlavit’sclassificationoffunctionproperties(Slavit,1997).

Startingwiththeseglobalpropertiesisconsideredtobemoreefficientingraphingformulasthanusinglocalproperties (Even,1998;Slavit,1997).

InthecurrentstudywefoundthattheexpertsusedasetofattributesandvaluesthatdifferfromSlavit’sglobalproperties, partlybecauseSlavit’sfocuswasmoreonthefunctionconcept,whereasourfocuswasontherelationbetweenformulaand graph.SeveralglobalpropertiesSlavitused,suchasintegrabilityandinvertibility,werenotmentionedatallbyourexperts.

Basedonthecurrentresults,wesuggestthatrelevantglobalpropertiesforrecognizingIGFsmaybesymmetry,infinity behavior(includinghorizontalandslantasymptotes),verticalasymptotes,domain,increasing/decreasingonintervals,sign (reverse),andconcavity.Forlocalproperties,wesuggestzeroes,turningpoints,pointsofinflection,andindividualpoints.

5.2.3. Suggestionsforfurtherresearchandteaching

Indiscussingtheirideasaboutgraphsandformulas,theexpertsusedanamplerepertoireofdescriptions:“avalley”,“it goesintherightdirection‘,“ithastogodownwards’,”itrunsflat”,“tailsgotominusinfinity”,“thisonehasnooscillations”,

(14)

“areversed....”,“itgoestoinfinity”,“itgoesup”,“itcomesfrombelow”,“ininfinityitis...”,“thisoneisonlypositive”,“log totheright”,“anoscillationdownwards”,“a−x3”.

Thesedescriptionsshowthattheexpertsoftendidnotusetheformalmathattribute/propertyconcepts,butusedboth picturesofthewholegraphandactionlanguagesuchas“it(thegraph)runs...”.Peopletalkubiquitouslyaboutabstract conceptsusingconcretemetaphors(Barsalou,2008).Metonymiesandmetaphorsarenecessaryforefficientcommunication andinthelearningofmathematicalconcepts(Presmeg,1998;Zandieh&Knapp,2006).Furtherresearchisnecessarytofind outhowtheseexperts’metonymiesandmetaphorscanbehelpfulintheefficientteachingofgraphingformulas.

ArepertoireofIGFsisnecessaryforgraphingformulas.EisenbergandDreyfus(1994)wroteabouttheneedforarepertoire ofbasicfunctionsandknowledgeofthecharacteristicsoftherepresentationsofthesefunctions.Slavit(1997)speaksabout

“propertynoticing”,theabilitytorecognizeandanalyzefunctionsbyidentifyingthepresenceorabsenceoftheseproperties andtheneedfora“library”offunctionalproperties.Ourfindingsshowhowexpertsusedprototypeandattributereasoning forgraphingformulasandsogiveanimpressionofanexpert“library”ofproperties.Fig.8,aBarsaloumodelbasedonSchwarz andHershkowitz,showshowforIFGsthesefunctionfamilies,prototypes,attributes,andpart-wholereasoningareintegrated intheexperts’conceptimages.Ourfindingsmaybehelpfultofurtherdescribetherecognitionandidentificationofobjects, forms,keyfeatures,anddominanttermsusedinPierceandStacey’salgebraicinsight(PierceandStacey,2001;Kenney, 2008).NotonlyingraphingformulasbutalsowhenusingCASorgraphicalcalculatorsoneneedsthisalgebraicinsight.For instance,Heidetal.(2012)showedhowsolvingtheequationln(x)=5sin(x)requiredknowledgeofthecharacteristicsof functionfamiliesofbothformulasy=ln(x)andy=5sin(x)andtheabilitytolinkthegraphimagestotheformulas(Zbiek&

Heid,2011).

Theresultsofthisstudycanberelevantforteachingalgebraandinparticularfunctions.Studentscontinuetoexperience difficultieswithseeingtherelationshipbetweenalgebraicandgraphicalrepresentations,althoughgraphingtechnologycan supportstudents’understandinginlinkingrepresentationsoffunctions(Kieran,2006;Ruthven,Deaney,&Hennessy,2009).

Inordertofurtherimproveeducation,wefirstneedadomain-specificknowledgebase(DeCorte,2010).Expertiseresearch canprovidesuchaknowledgebase(DeCorte,2010;Campitelli&Gobet,2010;Stylianou&Silver,2004).Thecurrentfindings showwhatknowledgeexpertsusedinrecognizingIGFs:theyusedthebasicfunctionstoorganizethefunctionfamilies,used prototypestohandleotherexemplarsoffunctionfamilies,andusedprototypesandattributestolinkgraphsandformulas offunctionfamilies.Insecondaryschoolcurriculamuch attentionispaidtobasicfunctions,inparticulartolinearand quadraticfunctions.Ourstudysuggeststhatonlylearningandpracticingbasicfunctionsisnotenoughtobecomeproficient inlinkingtheformulasandgraphsoffunctions.Studentsneedtoknowhowtohandleparametersinformulasandneed opportunitiestointegratetheirknowledgeofprototypesandattributesoffunctionfamiliesintowell-connectedhierarchical mentalnetworks.Besidessuchaknowledge-baseforrecognition,studentsneedheuristicmethods,likesplittingformulas andqualitativereasoning,whenrecognitionfallsshort(Kopetal.,2015).

Forgraphingformulasonehastobeableto“read”algebraicformulas.Furtherresearchisnecessarytoinvestigatewhether graphingformulasindeedimprovesymbolsense,inparticularalgebraicinsightandhowgraphingformulascanbeeffectively andefficientlytaughttostudents.

AppendixA.

Fiveexperts’categorizationsandtheresearcher’scategorizationwithcategorynamesandprototypes.

P.23:22min Q.20:28min R.11:25min S.14:25min T.21:00min Researcher’s

categorization Linear:ax+b Straightlines:ax+b Linear:ax+b Linear

y=x

Linearfunctions Linear

Increasing/decreasing Degree2:ax2+bx+c Parabolawithmax:

−x2

Parabolawithmin:x2

Degree2:ax2+bx+c 1turningpoint y=x2

Degree2 Parabolawithmaxand withmin

Polynomials:



n k=0akxk(defined ondomain)

Degree3(odd):x3 Degree3:

ax3+bx2+cx+d

2turningpoints:

y=x33x

Degree3 Degree3increasing

Degree4,decreasing:

−x2(x21) Degree4,increasing:

x2(x21)

Degree4:ax4+bx3..etc 3turningpoints:

y=(x21)2 5turningpoints y=x2(x21)(x22)

Degree4,with W-shape Degree4without W-shape

Degree4with W-shape M-shape V-shape

Degree6withW-shape (ax+b)k/(cx+d)n Hyperbola:1/x

Quotientfunctionswith morethan1vertical asymptote:

y=1/(x21)

Brokenfunctions Verticalandhorizontal asymptotes

y=1/x

Verticaleandslant asymptotesy=x4/x 2verticalasymptotes:

y=1/(x21)

Linearbroken:

y=(ax+b)/(cx+d)

Hyperbolaand Powerfunctionwith highernegativeodd exponent

2verticalasymptotes Slantasymptote

Referenties

GERELATEERDE DOCUMENTEN

The Group has been formally established in October 2002 in the context of the Community action programme to combat discrimination, in order to provide an independent analysis of

13: ‘(1) Without prejudice to the other provisions of this Treaty and within the limits of the powers conferred by it upon the Community, the Council, acting unanimously on a

Second, the Flemish Decreet houdende evenredige participatie op de arbeidsmarkt of 8 May 2002, the Dekret bezüglich der Sicherung der Gleichbehandlung auf dem Arbeitsmarkt adopted

Finnish legislation contained anti-discriminatory provisions even before the implementation of the Council Directive 2000/78/EC started in 2001. The provisions of the Penal Code

The principle is that of the freedom of proof (eyewitness accounts, bailiff’s report, memos, internal documents, testing 66 , etc). Penal law is only concerned with cases of

The option of mediation is provided for in section 78 of the Act, both in proceedings before the Equality Tribunal and the Labour Court. The Equality Tribunal established

Article 3(2)(d) explicitly states that the Decree shall be without prejudice to the provisions already in force concerning marital status and the benefits dependent thereon,

We selected the gated experts network, for its nice properties of non—linear gate and experts, soft—partitioning the input space and adaptive noise levels (variances) of the