• No results found

University of Groningen Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice Reijntjes, Daniël Onne Jilt

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice Reijntjes, Daniël Onne Jilt"

Copied!
31
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice

Reijntjes, Daniël Onne Jilt

DOI:

10.33612/diss.93524048

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Reijntjes, D. O. J. (2019). Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice. University of Groningen. https://doi.org/10.33612/diss.93524048

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

10. Cited references

Adamson, C.L., Reid, M.A., Davis, R.L., 2002a. Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel com-position of murine spiral ganglion neurons. J. Neurosci.

https://doi.org/22/4/1385 [pii]

Adamson, C.L., Reid, M.A., Mo, Z.L., Bowne-English, J., Davis, R.L., 2002b. Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J. Comp. Neurol.

https://doi.org/10.1002/cne.10244

Adler, D., Murdoch, D., others, 2018. rgl: 3D Visualization Using OpenGL.

Albuquerque, E.X., Pereira, E.F.R., Alkondon, M., Rogers, S.W., 2009. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiol. Rev. https://doi.org/10.1152/physrev.00015.2008

Allen, P.D., Ison, J.R., 2012. Kcna1 Gene Deletion Lowers the Behavioral Sensitivity of Mice to Small Changes in Sound Location and Increases Asynchronous Brain-stem Auditory Evoked Potentials But Does Not Affect Hearing Thresholds. J. Neurosci.

https://doi.org/10.1523/jneurosci.1958-11.2012

Anggono, V., Huganir, R.L., 2012. Regulation of AMPA receptor trafficking and synap-tic plassynap-ticity. Curr. Opin. Neurobiol.

https://doi.org/10.1016/j.conb.2011.12.006

Arnold, T., Oestreicher, E., Ehrenberger, K., Felix, D., 1998. GABA(A) receptor mod-ulates the activity of inner hair cell afferents in guinea pig cochlea. Hear. Res. https://doi.org/10.1016/S0378-5955(98)00144-0

Ashmore, J., Avan, P., Brownell, W.E., Dallos, P., Dierkes, K., Fettiplace, R., Grosh, K., Hackney, C.M., Hudspeth, A.J., Jülicher, F., Lindner, B., Martin, P., Meaud, J., Petit, C., Santos Sacchi, J.R., Canlon, B., 2010. The remarkable cochlear amplifier. Hear. Res.

https://doi.org/10.1016/j.heares.2010.05.001

Bainbridge, K.E., Wallhagen, M.I., 2014. Hearing Loss in an Aging American Popu-lation: Extent, Impact, and Management, SSRN.

https://doi.org/10.1146/annurev-publhealth-032013-182510

Bakondi, G., Pór, Á., Kovács, I., Szucs, G., Rusznák, Z., 2009. Hyperpolarization-activated, cyclic nucleotide-gated, cation non-selective channel subunit expres-sion pattern of guinea-pig spiral ganglion cells. Neuroscience.

https://doi.org/10.1016/j.neuroscience.2008.10.056

Bakondi, G., Pór, Á., Kovács, I., Szucs, G., Rusznák, Z., 2008. Voltage-gated K+

channel (Kv) subunit expression of the guinea pig spiral ganglion cells studied in a newly developed cochlear free-floating preparation. Brain Res.

(3)

https://doi.org/10.1016/j.brainres.2008.02.072

Bansal, V., Fisher, T.E., 2016. Na+-Activated K+ Channels in Rat Supraoptic

Neu-rones. J. Neuroendocrinol. https://doi.org/10.1111/jne.12394

Bao, J., 2005. Requirement of Nicotinic Acetylcholine Receptor Subunit 2 in the Maintenance of Spiral Ganglion Neurons during Aging. J. Neurosci.

https://doi.org/10.1523/jneurosci.5277-04.2005

Barbary, A. El, 1991. Auditory nerve of the normal and jaundiced rat. II. Frequency selectivity and two-tone rate suppression. Hear. Res.

https://doi.org/10.1016/0378-5955(91)90139-Z

Barbour, B., Häusser, M., 1997. Intersynaptic diffusion of neurotransmitter. Trends Neurosci.

https://doi.org/10.1016/S0166-2236(96)20050-5

Bartlett, T.E., Wang, Y.T., 2013. The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology.

https://doi.org/10.1016/j.neuropharm.2013.01.012

Beaulieu, J.-M., Gainetdinov, R.R., 2011. The Physiology, Signaling, and Pharmacol-ogy of Dopamine Receptors. Pharmacol. Rev.

https://doi.org/10.1124/pr.110.002642

Beisel, K.W., Rocha-Sanchez, S.M., Morris, K.A., Nie, L., Feng, F., Kachar, B., Yamoah, E.N., Fritzsch, B., 2005. Differential Expression of KCNQ4 in Inner Hair Cells and Sensory Neurons Is the Basis of Progressive High-Frequency Hearing Loss. J. Neurosci.

https://doi.org/10.1523/jneurosci.2110-05.2005

Benarroch, E.E., 2013. HCN channels. Neurology 80, 304 LP-310. https://doi.org/10.1212/WNL.0b013e31827dec42

Benarroch, E.E., 2012. GABAB receptors: Structure, functions, and clinical implica-tions. Neurology.

https://doi.org/10.1212/WNL.0b013e318247cd03

Berglund, A.M., Ryugo, D.K., 1987. Hair cell innervation by spiral ganglion neurons in the mouse. J. Comp. Neurol.

https://doi.org/10.1002/cne.902550408

Bettler, B., Kaupmann, K., Bowery, N., 1998. GABAB receptors: drugs meet clones. [Review] [35 refs]. Curr. Opin. Neurobiol.

Beurg, M., Fettiplace, R., Nam, J.H., Ricci, A.J., 2009. Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat. Neurosci. https://doi.org/10.1038/nn.2295

Bhattacharjee, A., Gan, L., Kaczmarek, L.K., 2002. Localization of the Slack potas-sium channel in the rat central nervous system. J. Comp. Neurol.

https://doi.org/10.1002/cne.10439

(4)

dorsal root ganglion neurones of rat. J. Physiol. https://doi.org/10.1111/j.1469-7793.1998.743bj.x

Boettcher, F.A., Mills, J.H., Norton, B.L., 2003. Age-related changes in auditory evoked potentials of gerbils. I. Response amplitudes. Hear. Res.

https://doi.org/10.1016/0378-5955(93)90029-z

Borg, E., Engström, B., Linde, G., Marklund, K., 1988. Eighth nerve fiber firing features in normal-hearing rabbits. Hear. Res.

https://doi.org/10.1016/0378-5955(88)90061-5

Bosher, S.K., Warren, R.L., 1968. Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proc. R. Soc. London. Ser. B. Biol. Sci.

https://doi.org/10.1098/rspb.1968.0066

Bowl, M.R., Brown, S.D.M., 2018. Genetic landscape of auditory dysfunction. Hum. Mol. Genet.

https://doi.org/10.1093/hmg/ddy158

Bowl, M.R., Simon, M.M., Ingham, N.J., Greenaway, S., Santos, L., Cater, H., Tay-lor, S., Mason, J., Kurbatova, N., Pearson, S., Bower, L.R., Clary, D.A., Meziane, H., Reilly, P., Minowa, O., Kelsey, L., Allen, S., Clementson-Mobbs, S., Codner, G., Fray, M., Gardiner, W., Joynson, R., Kenyon, J., Loeffler, J., Nell, B., Parker, A., Quwailid, D., Stewart, M., Walling, A., Zaman, R., Chen, C.K., Conte, N., Matthews, P., Relac, M., Tudose, I., Warren, J., Le Marchand, E., El Amri, A., El Fertak, L., Ennah, H., Ali-Hadji, D., Ayadi, A., Wattenhofer-Donze, M., Moulaert, D., Jacquot, S., André, P., Birling, M.C., Pavlovic, G., Lalanne, V., Lux, A., Riet, F., Mittelhaeuser, C., Bour, R., Guimond, A., Bam’Hamed, C., Leblanc, S., Vasseur, L., Selloum, M., Sorg, T., Ayabe, S., Furuse, T., Kaneda, H., Kobayashi, K., Masuya, H., Miura, I., Obata, Y., Suzuki, T., Tamura, M., Tanaka, N., Yamada, I., Yoshiki, A., Berberovic, Z., Bubshait, M., Cabezas, J., Carroll, T., Clark, G., Clarke, S., Creighton, A., Danisment, O., Eskandarian, M., Feugas, P., Gertsenstein, M., Guo, R., Hunter, J., Jacob, E., Lan, Q., Lau-rin, V., Law, N., MacMaster, S., Miller, D., Morikawa, L., Newbigging, S., Owen, C., Penton, P., Pereira, M., Qu, D., Shang, X., Sleep, G., Sohel, K., Tondat, S., Wang, Y., Vukobradovic, I., Zhu, Y., Chiani, F., Di Pietro, C., Di Segni, G., Er-makova, O., Ferrara, F., Fruscoloni, P., Gambadoro, A., Gastaldi, S., Golini, E., Sala, G. La, Mandillo, S., Marazziti, D., Massimi, M., Matteoni, R., Orsini, T., Pasquini, M., Raspa, M., Rauch, A., Rossi, G., Rossi, N., Putti, S., Scavizzi, F., Tocchini-Valentini, G.D., Beig, J., Bürger, A., Giesert, F., Graw, J., Kühn, R., Oritz, O., Schick, J., Seisenberger, C., Amarie, O., Garrett, L., Hölter, S.M., Zimprich, A., Aguilar-Pimentel, A., Beckers, J., Brommage, R., Calzada-Wack, J., Fuchs, H., Gailus-Durner, V., Lengger, C., Leuchtenberger, S., Maier, H., Marschall, S., Moreth, K., Neff, F., Östereicher, M.A., Rozman, J., Steinkamp,

(5)

R., Stoeger, C., Treise, I., Stoeger, T., Yildrim, A.Ö., Eickelberg, O., Becker, L., Klopstock, T., Ollert, M., Busch, D.H., Schmidt-Weber, C., Bekeredjian, R., Zim-mer, A., Rathkolb, B., Wolf, E., Klingenspor, M., Tocchini-Valentini, G.P., Gao, X., Bradley, A., Skarnes, W.C., Moore, M., Beaudet, A.L., Justice, M.J., Seavitt, J., Dickinson, M.E., Wurst, W., De Angelis, M.H., Herault, Y., Wakana, S., Nutter, L.M.J., Flenniken, A.M., McKerlie, C., Murray, S.A., Svenson, K.L., Braun, R.E., West, D.B., Lloyd, K.C.K., Adams, D.J., White, J., Karp, N., Flicek, P., Smedley, D., Meehan, T.F., Parkinson, H.E., Teboul, L.M., Wells, S., Steel, K.P., Mallon, A.M., Brown, S.D.M., 2017. A large scale hearing loss screen reveals an exten-sive unexplored genetic landscape for auditory dysfunction. Nat. Commun. https://doi.org/10.1038/s41467-017-00595-4

Braude, J.P., Vijayakumar, S., Baumgarner, K., Laurine, R., Jones, T.A., Jones, S.M., Pyott, S.J., 2015. Deletion of Shank1 has minimal effects on the molecular com-position and function of glutamatergic afferent postsynapses in the mouse inner ear. Hear. Res.

https://doi.org/10.1016/j.heares.2015.01.008

Brown, M.C., 1987. Morphology of labeled afferent fibers in the guinea pig cochlea. J. Comp. Neurol.

https://doi.org/10.1002/cne.902600411

Brown, M.R., Kronengold, J., Gazula, V.R., Chen, Y., Strumbos, J.G., Sigworth, F.J., Navaratnam, D., Kaczmarek, L.K., 2010. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci. https://doi.org/10.1038/nn.2563

Browne, L., Smith, K.E., Jagger, D.J., 2017. Identification of Persistent and Resur-gent Sodium Currents in Spiral Ganglion Neurons Cultured from the Mouse Cochlea. eneuro.

https://doi.org/10.1523/eneuro.0303-17.2017

Burkard, R., Feldman, M., Voigt, H.F., 1990. Brainstem auditory-evoked response in the rat normative studies, with observations concerning the effects of ossicular disruption. Int. J. Audiol.

https://doi.org/10.3109/00206099009072847

Burkard, R., Shi, Y., Hecox, K.E., 2005. A comparison of maximum length and Leg-endre sequences for the derivation of brain-stem auditory-evoked responses at rapid rates of stimulation. J. Acoust. Soc. Am.

https://doi.org/10.1121/1.399413

Burkard, R., Voigt, H.F., 2005. Stimulus dependencies of the gerbil brain-stem auditory-evoked response (BAER). I: Effects of click level, rate, and polarity. J. Acoust. Soc. Am.

https://doi.org/10.1121/1.397746

Catterall, W.A., 2005. International Union of Pharmacology. XLVIII. Nomencla-ture and StrucNomencla-ture-Function Relationships of Voltage-Gated Calcium Channels.

(6)

Pharmacol. Rev.

https://doi.org/10.1124/pr.57.4.5

Cerda, O., Trimmer, J.S., 2010. Analysis and functional implications of phosphory-lation of neuronal voltage-gated potassium channels. Neurosci. Lett.

https://doi.org/10.1016/j.neulet.2010.06.064

Cervantes, B., Vega, R., Limón, A., Soto, E., 2013. Identity, expression and functional role of the sodium-activated potassium current in vestibular ganglion afferent neurons. Neuroscience.

https://doi.org/10.1016/j.neuroscience.2013.02.052

Chandrasekaran, A., Idelchik, M. del P.S., Melendez, J.A., 2017. Redox control of senescence and age-related disease. Redox Biol.

https://doi.org/10.1016/j.redox.2016.11.005

Chapochnikov, N.M., Takago, H., Huang, C.H., Pangršič, T., Khimich, D., Neef, J., Auge, E., Göttfert, F., Hell, S.W., Wichmann, C., Wolf, F., Moser, T., 2014. Uni-quantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. Neuron.

https://doi.org/10.1016/j.neuron.2014.08.003

Chater, T.E., Goda, Y., 2014. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci.

https://doi.org/10.3389/fncel.2014.00401

Chen, C., 1997. Hyperpolarization-activated current (I(h)) in primary auditory neu-rons. Hear. Res.

https://doi.org/10.1016/S0378-5955(97)00078-6

Chen, W.C., Davis, R.L., 2006. Voltage-gated and two-pore-domain potassium chan-nels in murine spiral ganglion neurons. Hear. Res.

https://doi.org/10.1016/j.heares.2006.09.002

Chen, W.C., Xue, H.Z., Hsu, Y.L., Liu, Q., Patel, S., Davis, R.L., 2011. Complex distribution patterns of voltage-gated calcium channel -subunits in the spiral ganglion. Hear. Res.

https://doi.org/10.1016/j.heares.2011.01.016

Chen, Z., Kujawa, S.G., Sewell, W.F., 2010. Functional Roles of High-Affinity Gluta-mate Transporters in Cochlear Afferent Synaptic Transmission in the Mouse. J. Neurophysiol.

https://doi.org/10.1152/jn.00018.2010

Chen, Z., Kujawa, S.G., Sewell, W.F., 2007. Auditory sensitivity regulation via rapid changes in expression of surface AMPA receptors. Nat. Neurosci.

https://doi.org/10.1038/nn1974

Chen, Z., Peppi, M., Kujawa, S.G., Sewell, W.F., 2009. Regulated Expression of Sur-face AMPA Receptors Reduces Excitotoxicity in Auditory Neurons. J. Neurophys-iol.

(7)

Ciuman, R.R., 2011. Auditory and vestibular hair cell stereocilia: relationship be-tween functionality and inner ear disease. J. Laryngol. Otol.

https://doi.org/10.1017/S0022215111001459

Collingridge, G.L., Olsen, R.W., Peters, J., Spedding, M., 2009. A nomenclature for ligand-gated ion channels. Neuropharmacology.

https://doi.org/10.1016/j.neuropharm.2008.06.063

Crozier, R.A., Davis, R.L., 2014. Unmasking of Spiral Ganglion Neuron Firing Dy-namics by Membrane Potential and Neurotrophin-3. J. Neurosci.

https://doi.org/10.1523/jneurosci.4552-13.2014

Dallos, P., 1986. Neurobiology of cochlear inner and outer hair cells: intracellular recordings. Hear. Res.

https://doi.org/10.1016/0378-5955(86)90095-X

Darrow, K.N., Maison, S.F., Liberman, M.C., 2007. Selective Removal of Lateral Olivocochlear Efferents Increases Vulnerability to Acute Acoustic Injury. J. Neu-rophysiol.

https://doi.org/10.1152/jn.00955.2006

Darrow, K.N., Maison, S.F., Liberman, M.C., 2006a. Cochlear efferent feedback bal-ances interaural sensitivity. Nat. Neurosci.

https://doi.org/10.1038/nn1807

Darrow, K.N., Simons, E.J., Dodds, L., Liberman, M.C., 2006b. Dopaminergic in-nervation of the mouse inner ear: Evidence for a separate cytochemical group of cochlear efferent fibers. J. Comp. Neurol.

https://doi.org/10.1002/cne.21050

Davies, C., Tingley, D., Kachar, B., Wenthold, R.J., Petralia, R.S., 2001. Distribution of members of the PSD-95 family of MAGUK proteins at the synaptic region of inner and outer hair cells of the guinea pig cochlea. Synapse.

https://doi.org/10.1002/syn.1048

Davis, R.L., Crozier, R.A., 2015. Dynamic firing properties of type I spiral ganglion neurons. Cell Tissue Res.

https://doi.org/10.1007/s00441-014-2071-x

Davis, R.L., Liu, Q., 2011. Complex primary afferents: What the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hear. Res.

https://doi.org/10.1016/j.heares.2011.01.014

Dobretsov, M., Stimers, J.J.R., 2005. Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci.

https://doi.org/10.2741/1704

Doleviczényi, Z., Halmos, G., Répássy, G., Vizi, E.S., Zelles, T., Lendvai, B., 2005. Cochlear dopamine release is modulated by group II metabotropic glutamate re-ceptors via GABAergic neurotransmission. Neurosci. Lett.

(8)

Dragulescu, A.A., Arendt, C., 2018. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files.

Durand, D., Pampillo, M., Caruso, C., Lasaga, M., 2008. Role of metabotropic gluta-mate receptors in the control of neuroendocrine function. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2008.06.022

Evely, K.M., Pryce, K.D., Bausch, A., Lukowski, R., Ruth, P., Haj-Dahmane, S., Bhat-tacharjee, A., 2017. Slack KNa channels influence dorsal horn synapses and nociceptive behavior. Mol. Pain.

https://doi.org/10.1177/1744806917714342

Eybalin, M., 1993. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol. Rev.

https://doi.org/10.1152/physrev.1993.73.2.309

Eybalin, M., Caicedo, A., Renard, N., Ruel, J., Puel, J.L., 2004. Transient Ca2+

-permeable AMPA receptors in postnatal rat primary auditory neurons. Eur. J. Neurosci.

https://doi.org/10.1111/j.1460-9568.2004.03772.x

Felix, D., Ehrenberger, K., 1992. The efferent modulation of mammalian inner hair cell afferents. Hear. Res.

https://doi.org/10.1016/0378-5955(92)90163-H

Fletcher, H., Munson, W.A., 1933. Loudness, Its Definition, Measurement and Cal-culation. Bell Syst. Tech. J.

https://doi.org/10.1002/j.1538-7305.1933.tb00403.x

Flores, E.N., Duggan, A., Madathany, T., Hogan, A.K., Márquez, F.G., Kumar, G., Seal, R.P., Edwards, R.H., Liberman, M.C., García-Añoveros, J., 2015. A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr. Biol.

https://doi.org/10.1016/j.cub.2015.01.009

Frank, T., Khimich, D., Neef, A., Moser, T., 2009. Mechanisms contributing to synap-tic Ca2+signals and their heterogeneity in hair cells. Proc. Natl. Acad. Sci.

https://doi.org/10.1073/pnas.0813213106

Friedman, R.A., Van Laer, L., Huentelman, M.J., Sheth, S.S., Van Eyken, E., Corn-eveaux, J.J., Tembe, W.D., Halperin, R.F., Thorburn, A.Q., Thys, S., Bonneux, S., Fransen, E., Huyghe, J., Pyykkö, I., Cremers, C.W.R.J., Kremer, H., Dhooge, I., Stephens, D., Orzan, E., Pfister, M., Bille, M., Parving, A., Sorri, M., Van De Heyning, P.H., Makmura, L., Ohmen, J.D., Linthicum, F.H., Fayad, J.N., Pear-son, J. V., Craig, D.W., Stephan, D.A., Van Camp, G., 2009. GRM7 variants confer susceptibility to age-related hearing impairment. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddn402

Froud, K.E., Wong, A.C.Y., Cederholm, J.M.E., Klugmann, M., Sandow, S.L., Julien, J.P., Ryan, A.F., Housley, G.D., 2015. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nat.

(9)

Com-mun.

https://doi.org/10.1038/ncomms8115

Fryatt, A.G., Mulheran, M., Egerton, J., Gunthorpe, M.J., Grubb, B.D., 2011. Oto-trauma induces sodium channel plasticity in auditory afferent neurons. Mol. Cell. Neurosci.

https://doi.org/10.1016/j.mcn.2011.06.005

Fryatt, A.G., Vial, C., Mulheran, M., Gunthorpe, M.J., Grubb, B.D., 2009. Voltage-gated sodium channel expression in rat spiral ganglion neurons. Mol. Cell. Neu-rosci.

https://doi.org/10.1016/j.mcn.2009.09.001

Fujikawa, T., Petralia, R.S., Fitzgerald, T.S., Wang, Y.X., Millis, B., Morgado-Díaz, J.A., Kitamura, K., Kachar, B., 2014. Localization of kainate receptors in inner and outer hair cell synapses. Hear. Res.

https://doi.org/10.1016/j.heares.2014.05.001

Furman, A.C., Kujawa, S.G., Liberman, M.C., 2013. Noise-induced cochlear neu-ropathy is selective for fibers with low spontaneous rates. J. Neurophysiol. https://doi.org/10.1152/jn.00164.2013

Furness, D.N., Lawton, D.M., 2003. Comparative Distribution of Glutamate Trans-porters and Receptors in Relation to Afferent Innervation Density in the Mam-malian Cochlea. J. Neurosci.

https://doi.org/10.1523/jneurosci.23-36-11296.2003

Furness, D.N., Lehre, K.P., 1997. Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. Eur. J. Neurosci.

https://doi.org/10.1111/j.1460-9568.1997.tb00763.x

Gáborján, A., Lendvai, B., Vizi, E.S., 1999. Neurochemical evidence of dopamine re-lease by lateral olivocochlear efferents and its presynaptic modulation in guinea-pig cochlea. Neuroscience.

https://doi.org/10.1016/S0306-4522(98)00461-8

Gagov, H., Chichova, M., Mladenov, M., 2018. Endolymph composition: Paradigm or inevitability? Physiol. Res.

Gao, S.B., Wu, Y., Lü, C.X., Guo, Z.H., Li, C.H., Ding, J.P., 2008. Slack and Slick KNa channels are required for the depolarizing afterpotential of acutely isolated, medium diameter rat dorsal root ganglion neurons. Acta Pharmacol. Sin. https://doi.org/10.1111/j.1745-7254.2008.00842.x

Garrett, A.R., Robertson, D., Sellick, P.M., Mulders, W.H.A.M., 2011. The actions of dopamine receptors in the guinea pig cochlea. Audiol. Neurotol.

https://doi.org/10.1159/000316674

Gil-Loyzaga, P.E., 1995. Neurotransmitters of the olivocochlear lateral efferent sys-tem: With an emphasis on dopamine. Acta Otolaryngol.

(10)

Gilels, F., Paquette, S.T., Zhang, J., Rahman, I., White, P.M., 2013. Mutation of Foxo3 Causes Adult Onset Auditory Neuropathy and Alters Cochlear Synapse Architecture in Mice. J. Neurosci.

https://doi.org/10.1523/jneurosci.2529-13.2013

Glowatzki, E., Cheng, N., Hiel, H., Yi, E., Tanaka, K., Ellis-Davies, G.C., Rothstein, J.D., Bergles, D.E., 2006. The glutamate-aspartate transporter GLAST medi-ates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J. Neurosci.

Glowatzki, E., Fuchs, P.A., 2002. Transmitter release at the hair cell ribbon synapse. Nat. Neurosci.

https://doi.org/10.1038/nn796

Glowatzki, E., Fuchs, P.A., 2000. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science (80-. ).

https://doi.org/10.1126/science.288.5475.2366

Glowatzki, E., Grant, L., Fuchs, P., 2008. Hair cell afferent synapses. Curr. Opin. Neurobiol.

https://doi.org/10.1016/j.conb.2008.09.006

Golding, N.L., Oertel, D., 2012. Synaptic integration in dendrites: Exceptional need for speed. J. Physiol.

https://doi.org/10.1113/jphysiol.2012.229328

Goutman, J.D., Glowatzki, E., 2007. Time course and calcium dependence of trans-mitter release at a single ribbon synapse. Proc. Natl. Acad. Sci.

https://doi.org/10.1073/pnas.0705756104

Grant, L., Yi, E., Glowatzki, E., 2010. Two Modes of Release Shape the Postsynaptic Response at the Inner Hair Cell Ribbon Synapse. J. Neurosci.

https://doi.org/10.1523/jneurosci.4439-09.2010

Graydon, C.W., Cho, S., Diamond, J.S., Kachar, B., von Gersdorff, H., Grimes, W.N., 2014. Specialized Postsynaptic Morphology Enhances Neurotransmitter Dilu-tion and High-Frequency Signaling at an Auditory Synapse. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.4493-13.2014

Groff, J.A., Liberman, M.C., 2006. Modulation of Cochlear Afferent Response by the Lateral Olivocochlear System: Activation Via Electrical Stimulation of the Inferior Colliculus. J. Neurophysiol.

https://doi.org/10.1152/jn.00537.2003

Gururaj, S., Evely, K.M., Pryce, K.D., Li, J., Qu, J., Bhattacharjee, A., 2017. Pro-tein kinase A–induced internalization of Slack channels from the neuronal mem-brane occurs by adaptor protein-2/ clathrin–mediated endocytosis. J. Biol. Chem. https://doi.org/10.1074/jbc.M117.804716

Gururaj, S., Fleites, J., Bhattacharjee, A., 2016. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation. Neuropharmacology.

(11)

https://doi.org/10.1016/j.neuropharm.2015.12.016

Gutman, G.A., 2003. International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels. Pharmacol. Rev.

https://doi.org/10.1124/pr.55.4.9

Hakuba, N., Koga, K., Shudou, M., Watanabe, F., Mitani, A., Gyo, K., 2000. Hearing loss and glutamate efflux in the perilymph following transient ischemia in ger-bils. J. Comp. Neurol.

https://doi.org/10.1002/(SICI)1096-9861(20000306)418:2<217::AID-CNE7>3.0.CO;2-L

Hakuba, N., Matsubara, A., Hyodo, J., Taniguchi, M., Maetani, T., Shimizu, Y., Tsu-jiuchi, Y., Shudou, M., Gyo, K., 2003. AMPA/kainate-type glutamate receptor antagonist reduces progressive inner hair cell loss after transient cochlear is-chemia. Brain Res.

https://doi.org/10.1016/S0006-8993(03)02919-6

Halmos, G., Doleviczényi, Z., Répássy, G., Kittel, Á., Vizi, E.S., Lendvai, B., Zelles, T., 2005. D2 autoreceptor inhibition reveals oxygen-glucose deprivation-induced release of dopamine in guinea-pig cochlea. Neuroscience.

https://doi.org/10.1016/j.neuroscience.2005.01.023

Halonen, J., Hinton, A.S., Frisina, R.D., Ding, B., Zhu, X., Walton, J.P., 2016. Long-term treatment with aldosterone slows the progression of age-related hearing loss. Hear. Res.

https://doi.org/10.1016/j.heares.2016.05.001

Heil, P., Peterson, A.J., 2015. Basic response properties of auditory nerve fibers: a review. Cell Tissue Res.

https://doi.org/10.1007/s00441-015-2177-9

Hequembourg, S., Liberman, M.C., 2001. Spiral ligament pathology: A major aspect of age-related cochlear degeneration in C57BL/6 mice. JARO - J. Assoc. Res. Otolaryngol.

https://doi.org/10.1007/s101620010075

Hess, D., Nanou, E., El Manira, A., 2007. Characterization of Na + -Activated K + Currents in Larval Lamprey Spinal Cord Neurons . J. Neurophysiol.

https://doi.org/10.1152/jn.00742.2006

Hope, R.M., 2013. Rmisc: Rmisc: Ryan Miscellaneous.

Hossain, W.A., 2005. Where Is the Spike Generator of the Cochlear Nerve? Voltage-Gated Sodium Channels in the Mouse Cochlea. J. Neurosci.

https://doi.org/10.1523/jneurosci.0123-05.2005

Huang, F., Wang, X., Ostertag, E.M., Nuwal, T., Huang, B., Jan, Y.N., Basbaum, A.I., Jan, L.Y., 2013. TMEM16C facilitates Na + -activated K + currents in rat sensory neurons and regulates pain processing. Nat. Neurosci.

https://doi.org/10.1038/nn.3468

(12)

J.M., 2012. Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Dev.

https://doi.org/10.1186/1749-8104-7-38

Hudspeth, A.J., 2014. Integrating the active process of hair cells with cochlear func-tion. Nat. Rev. Neurosci.

https://doi.org/10.1038/nrn3786

Hudspeth, A.J., 2008. Making an Effort to Listen: Mechanical Amplification in the Ear. Neuron.

https://doi.org/10.1016/j.neuron.2008.07.012

Hudspeth, A.J., 1989. How the ear’s works work. Nature. https://doi.org/10.1038/341397a0

Huganir, R.L., Nicoll, R.A., 2013. AMPARs and synaptic plasticity: The last 25 years. Neuron.

https://doi.org/10.1016/j.neuron.2013.10.025

Inoue, T., Matsubara, A., Maruya, S. ichiro, Yamamoto, Y., Namba, A., Sasaki, A., Shinkawa, H., 2006. Localization of dopamine receptor subtypes in the rat spiral ganglion. Neurosci. Lett.

https://doi.org/10.1016/j.neulet.2006.01.063

Isaac, J.T.R., Ashby, M., McBain, C.J., 2007. The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity. Neuron.

https://doi.org/10.1016/j.neuron.2007.06.001

Ishiyama, A., Agena, J., Lopez, I., Tang, Y., 2001. Unbiased stereological quantifica-tion of neurons in the human spiral ganglion. Neurosci. Lett.

https://doi.org/10.1016/S0304-3940(01)01774-8

Ito, K., Dulon, D., 2013. Nonselective cation conductance activated by muscarinic and purinergic receptors in rat spiral ganglion neurons. Am. J. Physiol. Physiol. https://doi.org/10.1152/ajpcell.00364.2001

Jensen, A.A., Fahlke, C., Bjørn-Yoshimoto, W.E., Bunch, L., 2015. Excitatory amino acid transporters: Recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr. Opin. Pharmacol.

https://doi.org/10.1016/j.coph.2014.10.008

Jin, Z., Liang, G.H., Cooper, E.C., Järlebark, L., 2009. Expression and localization of K channels KCNQ2 and KCNQ3 in the mammalian cochlea. Audiol. Neurotol. https://doi.org/10.1159/000158538

Johnson, K.R., Tian, C., Gagnon, L.H., Jiang, H., Ding, D., Salvi, R., 2017. Effects of Cdh23 single nucleotide substitutions on age-related hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains. Sci. Rep.

https://doi.org/10.1038/srep44450

Johnson, K.R., Yu, H., Ding, D., Jiang, H., Gagnon, L.H., Salvi, R.J., 2010. Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear. Res.

(13)

https://doi.org/10.1016/j.heares.2010.05.002

Johnston, J., Forsythe, I.D., Kopp-Scheinpflug, C., 2010. Going native: Voltage-gated potassium channels controlling neuronal excitability, in: Journal of Physiology. https://doi.org/10.1113/jphysiol.2010.191973

Johnston, J., Griffin, S.J., Baker, C., Skrzypiec, A., Chernova, T., Forsythe, I.D., 2008. Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons. J. Physiol.

https://doi.org/10.1113/jphysiol.2008.153734

Jones, S., 2002. Auditory information processing in comatose patients: EPS to syn-thesised âœmusicalâ tones. Electroencephalogr. Clin. Neurophysiol.

https://doi.org/10.1016/s0013-4694(97)88082-4

Kaczmarek, L.K., 2013. Slack, Slick, and Sodium-Activated Potassium Channels. ISRN Neurosci. https://doi.org/10.1155/2013/354262

Kaczmarek, L.K., Bhattacharjee, A., Desai, R., Gan, L., Song, P., Von Hehn, C.A.A., Whim, M.D., Yang, B., 2005. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hear. Res. https://doi.org/10.1016/j.heares.2004.11.023

Kahana, Y., Nelson, P.A., 2006. Numerical modelling of the spatial acoustic response of the human pinna. J. Sound Vib.

https://doi.org/10.1016/j.jsv.2005.07.048

Kalluri, R., Monges-Hernandez, M., 2017. Spatial Gradients in the Size of Inner Hair Cell Ribbons Emerge Before the Onset of Hearing in Rats. JARO - J. Assoc. Res. Otolaryngol.

https://doi.org/10.1007/s10162-017-0620-1

Kane, K.L., Longo-Guess, C.M., Gagnon, L.H., Ding, D., Salvi, R.J., Johnson, K.R., 2012. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear. Res.

https://doi.org/10.1016/j.heares.2011.11.007

Kaplan, J.H., 2002. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. https://doi.org/10.1146/annurev.biochem.71.102201.141218

Khan, K.M., Drescher, M.J., Hatfield, J.S., Khan, A.M., Drescher, D.G., 2002. Mus-carinic receptor subtypes are differentially distributed in the rat cochlea. Neu-roscience.

https://doi.org/10.1016/S0306-4522(02)00020-9

Kim, K.X., Rutherford, M.A., 2016. Maturation of NaV and KV Channel Topogra-phies in the Auditory Nerve Spike Initiator before and after Developmental On-set of Hearing Function. J. Neurosci.

https://doi.org/10.1523/jneurosci.3437-15.2016

Kim, Y.-H., Holt, J.R., 2013. Functional contributions of HCN channels in the pri-mary auditory neurons of the mouse inner ear. J. Gen. Physiol.

(14)

https://doi.org/10.1085/jgp.201311019

Knipper, M., Köpschall, I., Rohbock, K., Köpke, A.K.E., Bonk, I., Zimmermann, U., Zenner, H.P., 1997. Transient expression of NMDA receptors during rearrange-ment of AMPA-receptor-expressing fibers in the developing inner ear. Cell Tissue Res.

https://doi.org/10.1007/s004410050729

Knipper, M., Van Dijk, P., Nunes, I., Rüttiger, L., Zimmermann, U., 2013. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog. Neurobiol.

https://doi.org/10.1016/j.pneurobio.2013.08.002

Kostandy, B.B., 2012. The role of glutamate in neuronal ischemic injury: The role of spark in fire. Neurol. Sci.

https://doi.org/10.1007/s10072-011-0828-5

Kruse, A.C., Kobilka, B.K., Gautam, D., Sexton, P.M., Christopoulos, A., Wess, J., 2014. Muscarinic acetylcholine receptors: Novel opportunities for drug develop-ment. Nat. Rev. Drug Discov.

https://doi.org/10.1038/nrd4295

Kujawa, S.G., Liberman, M.C., 2015. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear. Res.

https://doi.org/10.1016/j.heares.2015.02.009

Kujawa, S.G., Liberman, M.C., 2009. Adding Insult to Injury: Cochlear Nerve De-generation after “Temporary” Noise-Induced Hearing Loss. J. Neurosci. 29, 14077–14085.

https://doi.org/10.1523/JNEUROSCI.2845-09.2009

Kuriyama, H., Jenkins, O., Altschuler, R.A., 1994. Immunocytochemical localization of AMPA selective glutamate receptor subunits in the rat cochlea. Hear. Res. https://doi.org/10.1016/0378-5955(94)90114-7

Le Prell, C.G., Dolan, D.F., Hughes, L.F., Altschuler, R.A., Shore, S.E., Bledsoe, S.C.B., 2014. Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity. Neurosci. Lett. https://doi.org/10.1016/j.neulet.2014.08.040

Le Prell, C.G., Halsey, K., Hughes, L.F., Dolan, D.F., Bledsoe, S.C., 2005. Disruption of lateral olivocochlear neurons via a dopaminergic neurotoxin depresses sound-evoked auditory nerve activity. JARO - J. Assoc. Res. Otolaryngol.

https://doi.org/10.1007/s10162-004-5009-2

Lee, J.H., Sihn, C., Wang, W., Flores, C.M.P., Yamoah, E.N., 2016. in vitro functional assessment of adult spiral ganglion neurons (SGNs), in: Methods in Molecular Biology.

https://doi.org/10.1007/978-1-4939-3615-129

(15)

Trans-fer from Outer Hair Cells to Type II AfTrans-ferent Fibers in the Rat Cochlea. J. Neu-rosci.

https://doi.org/10.1523/jneurosci.6194-11.2012

Lei, D., Gao, X., Perez, P., Ohlemiller, K.K., Chen, C.C., Campbell, K.P., Hood, A.Y., Bao, J., 2011. Anti-epileptic drugs delay age-related loss of spiral ganglion neu-rons via T-type calcium channel. Hear. Res.

https://doi.org/10.1016/j.heares.2011.05.010

Lerma, J., 2003. Roles and rules of kainate receptors in synaptic transmission. Nat. Rev. Neurosci.

https://doi.org/10.1038/nrn1118

Lerma, J., Marques, J.M., 2013. Kainate receptors in health and disease. Neuron. https://doi.org/10.1016/j.neuron.2013.09.045

Li, H.S., Niedzielski, A.S., Beisel, K.W., Hiel, H., Wenthold, R.J., Morley, B.J., 1994. Identification of a glutamate / aspartate transporter in the rat cochlea. Hear. Res.

https://doi.org/10.1016/0378-5955(94)90029-9

Li, Y., Liu, H., Giffen, K.P., Chen, L., Beisel, K.W., He, D.Z.Z., 2018. Transcriptomes of cochlear inner and outer hair cells from adult mice. Sci. Data.

https://doi.org/10.1038/sdata.2018.199

Liberman, L.D., Liberman, M.C., 2016. Postnatal maturation of auditory-nerve het-erogeneity, as seen in spatial gradients of synapse morphology in the inner hair cell area. Hear. Res.

https://doi.org/10.1016/j.heares.2016.06.002

Liberman, L.D., Liberman, M.C., 2015. Dynamics of cochlear synaptopathy after acoustic overexposure. JARO - J. Assoc. Res. Otolaryngol.

https://doi.org/10.1007/s10162-015-0510-3

Liberman, L.D., Wang, H., Liberman, M.C., 2011. Opposing Gradients of Ribbon Size and AMPA Receptor Expression Underlie Sensitivity Differences among Cochlear-Nerve/Hair-Cell Synapses. J. Neurosci.

https://doi.org/10.1523/jneurosci.3389-10.2011

Liberman, M.C., 2017. Noise-induced and age-related hearing loss: new perspectives and potential therapies. F1000Research.

https://doi.org/10.12688/f1000research.11310.1

Liberman, M.C., 1990. Effects of chronic cochlear de-efferentation on auditory-nerve response. Hear. Res.

https://doi.org/10.1016/0378-5955(90)90105-X

Liberman, M.C., 1982. Single-neuron labeling in the cat auditory nerve. Science (80-. )(80-.

https://doi.org/10.1126/science.7079757

Liberman, M.C., 1980a. Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections. Hear. Res.

(16)

https://doi.org/10.1016/0378-5955(80)90007-6

Liberman, M.C., 1980b. Efferent synapses in the inner hair cell area of the cat cochlea: An electron microscopic study of serial sections. Hear. Res.

https://doi.org/10.1016/0378-5955(80)90046-5

Liberman, M.C., 1978. Auditory-nerve response from cats raised in a low-noise cham-ber. J. Acoust. Soc. Am. 63, 442–455.

https://doi.org/10.1121/1.381736

Liberman, M.C., Kujawa, S.G., 2017. Cochlear synaptopathy in acquired sensorineu-ral hearing loss: Manifestations and mechanisms. Hear. Res.

https://doi.org/10.1016/j.heares.2017.01.003

Liberman, M.C., Liberman, L.D., Maison, S.F., 2014. Efferent Feedback Slows Cochlear Aging. J. Neurosci.

https://doi.org/10.1523/jneurosci.4923-13.2014

Lin, X., 1997. Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear. Res.

https://doi.org/10.1016/S0378-5955(97)00050-6

Lin, X., Chen, S., Chen, P., 2000. Activation of metabotropic GABA(B) receptors inhibited glutamate responses in spiral ganglion neurons of mice. Neuroreport. https://doi.org/10.1097/00001756-200004070-00012

Liu, C., Glowatzki, E., Fuchs, P.A., 2015. Unmyelinated type II afferent neurons report cochlear damage. Proc. Natl. Acad. Sci.

https://doi.org/10.1073/pnas.1515228112

Liu, H., Pecka, J.L., He, D.Z.Z., Zhang, Q., Beisel, K.W., Soukup, G.A., 2014. Charac-terization of Transcriptomes of Cochlear Inner and Outer Hair Cells. J. Neurosci. https://doi.org/10.1523/jneurosci.1690-14.2014

Liu, Q., Lee, E., Davis, R.L., 2014. Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels. Neuroscience. https://doi.org/10.1016/j.neuroscience.2013.10.065

Liu, Q., Manis, P.B., Davis, R.L., 2014. Ih and HCN channels in murine spiral gan-glion neurons: Tonotopic variation, local heterogeneity, and kinetic model. JARO - J. Assoc. Res. Otolaryngol.

https://doi.org/10.1007/s10162-014-0446-z

Liu, S., Li, S., Zhu, H., Cheng, S., Zheng, Q.Y., 2012. A mutation in the cdh23 gene causes age-related hearing loss in Cdh23nmf308/nmf308mice. Gene.

https://doi.org/10.1016/j.gene.2012.01.084

Lopez-Poveda, E.A., 2018. Olivocochlear efferents in animals and humans: From anatomy to clinical relevance. Front. Neurol.

https://doi.org/10.3389/fneur.2018.00197

Lopez, I., Ishiyama, G., Acuna, D., Ishiyama, A., Baloh, R.W., 2003. Immunolocaliza-tion of voltage-gated calcium channel 1 subunits in the chinchilla cochlea. Cell Tissue Res.

(17)

https://doi.org/10.1007/s00441-003-0759-4

Lu, C.C., Appler, J.M., Houseman, E.A., Goodrich, L. V., 2011. Developmental Profil-ing of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly. J. Neurosci.

https://doi.org/10.1523/jneurosci.2358-11.2011

Lu, R., Bausch, a. E., Kallenborn-Gerhardt, W., Stoetzer, C., Debruin, N., Ruth, P., Geisslinger, G., Leffler, a., Lukowski, R., Schmidtko, a., 2015. Slack Channels Expressed in Sensory Neurons Control Neuropathic Pain in Mice. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2423-14.2015

Lu, Y., 2014. Metabotropic glutamate receptors in auditory processing. Neuroscience. https://doi.org/10.1016/j.neuroscience.2014.05.057

Luo, L., Brumm, D., Ryan, A.F., 1995. Distribution of non-NMDA glutamate receptor mRNAs in the developing rat cochlea. J. Comp. Neurol.

https://doi.org/10.1002/cne.903610303

Lv, P., Kim, H.J., Lee, J.-H., Sihn, C.-R., Fathabad Gharaie, S., Mousavi-Nik, A., Wang, W., Wang, H.-G., Gratton, M.A., Doyle, K.J., Zhang, X.-D., Chiamvimon-vat, N., Yamoah, E.N., 2014. Genetic, Cellular, and Functional Evidence for Ca2+

Inflow through Cav1.2 and Cav1.3 Channels in Murine Spiral Ganglion Neurons. J. Neurosci.

https://doi.org/10.1523/JNEUROSCI.5416-13.2014

Lv, P., Sihn, C.-R., Wang, W., Shen, H., Kim, H.J., Rocha-Sanchez, S.M., Yamoah, E.N., 2012. Posthearing Ca2+Currents and Their Roles in Shaping the Different

Modes of Firing of Spiral Ganglion Neurons. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.2097-12.2012

Lv, P., Wei, D., Yamoah, E.N., 2010. Kv7-type channel currents in spiral ganglion neurons: Involvement in sensorineural hearing loss. J. Biol. Chem.

https://doi.org/10.1074/jbc.M110.136192

Lv, P., Yamoah, E.N., Rodriguez-Contreras, A., Kim, H.J., Zhu, J., 2008. Effects of Strontium on the Permeation and Gating Phenotype of Calcium Channels in Hair Cells. J. Neurophysiol.

https://doi.org/10.1152/jn.90473.2008

Magee, J.C., Johnston, D., 2005. Plasticity of dendritic function. Curr. Opin. Neuro-biol.

https://doi.org/10.1016/j.conb.2005.05.013

Maison, S.F., Adams, J.C., Liberman, M.C., 2003. Olivocochlear innervation in the mouse: Immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J. Comp. Neurol.

https://doi.org/10.1002/cne.10490

Maison, S.F., Casanova, E., Holstein, G.R., Bettler, B., Liberman, M.C., 2009. Loss of GABAB receptors in cochlear neurons: Threshold elevation suggests modula-tion of outer hair cell funcmodula-tion by type II afferent fibers. JARO - J. Assoc. Res.

(18)

Otolaryngol.

https://doi.org/10.1007/s10162-008-0138-7

Maison, S.F., Liu, X.-P., Eatock, R.A., Sibley, D.R., Grandy, D.K., Liberman, M.C., 2012. Dopaminergic Signaling in the Cochlea: Receptor Expression Patterns and Deletion Phenotypes. J. Neurosci.

https://doi.org/10.1523/JNEUROSCI.4720-11.2012

Maison, S.F., Liu, X.P., Vetter, D.E., Eatock, R.A., Nathanson, N.M., Wess, J., Liber-man, M.C., 2010. Muscarinic Signaling in the Cochlea: Presynaptic and Postsy-naptic Effects on Efferent Feedback and Afferent Excitability. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.5080-09.2010

Maison, S.F., Rosahl, T.W., Homanics, G.E., Liberman, M.C., 2006. Functional Role of GABAergic Innervation of the Cochlea: Phenotypic Analysis of Mice Lacking GABAA Receptor Subunits 1, 2, 5, 6, beta2, beta3, or . J. Neurosci.

https://doi.org/10.1523/jneurosci.2395-06.2006

Malgrange, B., Rigo, J.M., Lefebvre, P.P., Coucke, P., Goffin, F., Xhauflaire, G., Belachew, S., Van De Water, T.R., Moonen, G., 1997. Diazepam-insensitive GABA(A) receptors on postnatal spiral ganglion neurones in culture. Neuroreport.

https://doi.org/10.1097/00001756-199702100-00003

Malinow, R., Malenka, R.C., 2002. AMPA receptor trafficking and synaptic plasticity. Ann Rev Neurosci.

https://doi.org/10.1146/annurev.neuro.25.112701.142758

Marcotti, W., Johnson, S.L., Rüsch, A., Kros, C.J., 2003. Sodium and calcium cur-rents shape action potentials in immature mouse inner hair cells. J. Physiol. https://doi.org/10.1113/jphysiol.2003.043612

Martinez-Espinosa, P.L., Wu, J., Yang, C., Gonzalez-Perez, V., Zhou, H., Liang, H., Xia, X.M., Lingle, C.J., 2015. Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons. Elife. https://doi.org/10.7554/eLife.10013

Martinez-Monedero, R., Vyas, P., Weisz, C., Fuchs, P.A., Liu, C., Glowatzki, E., 2016. GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Rib-bonless Afferent Contacts on Rat Cochlear Hair Cells. eNeuro.

https://doi.org/10.1523/eneuro.0078-16.2016

Mason, M.J., 2016. Structure and function of the mammalian middle ear. II: Infer-ring function from structure. J. Anat.

https://doi.org/10.1111/joa.12316

Matsubara, A., Laake, J.H., Davanger, S., Usami, S., Ottersen, O.P., 1996. Organi-zation of AMPA receptor subunits at a glutamate synapse: A quantitative im-munogold analysis of hair cell synapses in the rat organ of Corti. J. Neurosci. McLean, W.J., Smith, K.A., Glowatzki, E., Pyott, S.J., 2009. Distribution of the

Na,K-ATPase subunit in the rat spiral ganglion and organ of corti. JARO - J. Assoc. Res. Otolaryngol.

(19)

https://doi.org/10.1007/s10162-008-0152-9

Melyan, Z., 2004. Metabotropic Regulation of Intrinsic Excitability by Synaptic Acti-vation of Kainate Receptors. J. Neurosci.

https://doi.org/10.1523/jneurosci.5356-03.2004

Melyan, Z., Wheal, H. V., Lancaster, B., 2002. Metabotropic-mediated kainate recep-tor regulation of IsAHPand excitability in pyramidal cells. Neuron.

https://doi.org/10.1016/S0896-6273(02)00624-4

Merchan-Perez, A., Liberman, M.C., 1996. Ultrastructural differences among affer-ent synapses on cochlear hair cells: Correlations with spontaneous discharge rate. J. Comp. Neurol.

https://doi.org/10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.3.CO;2-P

Meredith, A., 2015. Genetic Methods for Studying Ion Channel Function in Physiol-ogy and Disease, in: Handbook of Ion Channels.

https://doi.org/10.1201/b18027-16

Meyer, A.C., Frank, T., Khimich, D., Hoch, G., Riedel, D., Chapochnikov, N.M., Yarin, Y.M., Harke, B., Hell, S.W., Egner, A., Moser, T., 2009. Tuning of synapse num-ber, structure and function in the cochlea. Nat. Neurosci.

https://doi.org/10.1038/nn.2293

Meyer, A.C., Moser, T., 2010. Structure and function of cochlear afferent innervation. Curr. Opin. Otolaryngol. Head Neck Surg.

https://doi.org/10.1097/MOO.0b013e32833e0586

Micheyl, C., Delhommeau, K., Perrot, X., Oxenham, A.J., 2006. Influence of musical and psychoacoustical training on pitch discrimination. Hear. Res.

https://doi.org/10.1016/j.heares.2006.05.004

Mo, Z.L., Adamson, C.L., Davis, R.L., 2002. Dendrotoxin-sensitive K+currents

con-tribute to accomodation in murine spiral ganglion neurons. J. Physiol. https://doi.org/10.1113/jphysiol.2002.017202

Moore, E.J., Hall, D.B., Narahashi, T., 1996. Sodium and potassium currents of type I spiral ganglion cells from rat. Acta Otolaryngol.

https://doi.org/10.3109/00016489609137888

Morley, B.J., Li, H.S., Hiel, H., Drescher, D.G., Elgoyhen, A.B., 1998. Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. Mol. Brain Res.

https://doi.org/10.1016/S0169-328X(97)00272-6

Morton-Jones, R.T., Cannell, M.B., Housley, G.D., 2008. Ca2+entry via AMPA-type

glutamate receptors triggers Ca2+-induced Ca2+ release from ryanodine

recep-tors in rat spiral ganglion neurons. Cell Calcium. https://doi.org/10.1016/j.ceca.2007.07.003

Moser, T., Predoehl, F., Starr, A., 2013. Review of hair cell synapse defects in sen-sorineural hearing impairment. Otol. Neurotol.

(20)

https://doi.org/10.1097/MAO.0b013e3182814d4a

Müller, M., Von Hünerbein, K., Hoidis, S., Smolders, J.W.T., 2005. A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear. Res. 202, 63–73. https://doi.org/10.1016/j.heares.2004.08.011

Murashita, H., Tabuchi, K., Sakai, S., Uemaetomari, I., Tsuji, S., Hara, A., 2007. The effect of a GABAA agonist muscimol on acoustic injury of the mouse cochlea. Neurosci. Lett.

https://doi.org/10.1016/j.neulet.2007.02.060

Nakagawa, T., Yamashita, M., Hisashi, K., Usami, S.I., Kakazu, Y., Shibata, S., Nakashima, T., Koike, K., Kubo, K., Komune, S., 2005. GABA-induced response in spiral ganglion cells acutely isolated from guinea pig cochlea. Neurosci. Res. https://doi.org/10.1016/j.neures.2005.08.011

Nave, K.-A., Werner, H.B., 2014. Myelination of the Nervous System: Mechanisms and Functions. Annu. Rev. Cell Dev. Biol.

https://doi.org/10.1146/annurev-cellbio-100913-013101

Nayagam, B.A., Muniak, M.A., Ryugo, D.K., 2011. The spiral ganglion: Connecting the peripheral and central auditory systems. Hear. Res.

https://doi.org/10.1016/j.heares.2011.04.003

Ng, C.-W., Navarro, X., Engle, J.R., Recanzone, G.H., 2015. Age-related changes of auditory brainstem responses in nonhuman primates. J. Neurophysiol.

https://doi.org/10.1152/jn.00663.2014

Nicoletti, F., Bockaert, J., Collingridge, G.L., Conn, P.J., Ferraguti, F., Schoepp, D.D., Wroblewski, J.T., Pin, J.P., 2011. Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology.

https://doi.org/10.1016/j.neuropharm.2010.10.022

Niedzielski, A., Wenthold, R., 1995. Expression of AMPA, kainate, and NMDA re-ceptor subunits in cochlear and vestibular ganglia. J. Neurosci.

https://doi.org/10.1523/jneurosci.15-03-02338.1995

Niswender, C.M., Conn, P.J., 2010. Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Disease. Annu. Rev. Pharmacol. Toxicol.

https://doi.org/10.1146/annurev.pharmtox.011008.145533

Niu, X., Bogdanovic, N., Canlon, B., 2004. The distribution and the modulation of tyrosine hydroxylase immunoreactivity in the lateral olivocochlear system of the guinea-pig. Neuroscience.

https://doi.org/10.1016/j.neuroscience.2004.02.023

Niu, X., Canlon, B., 2006. The signal transduction pathway for the dopamine D1 receptor in the guinea-pig cochlea. Neuroscience.

https://doi.org/10.1016/j.neuroscience.2005.10.044

Niu, X., Zhang, Y., Zhang, Q., Xu, X., Han, P., Cheng, Y., Gao, Y., Zhang, R., Yang, Y., Chen, Z., Hu, J., Chen, Y., Xu, M., 2016. The relationship between hearing loss and vestibular dysfunction in patients with sudden sensorineural hearing loss.

(21)

Acta Otolaryngol.

https://doi.org/10.3109/00016489.2015.1110750

Nouvian, R., Beutner, D., Parsons, T.D., Moser, T., 2006. Structure and function of the hair cell ribbon synapse. J. Membr. Biol.

https://doi.org/10.1007/s00232-005-0854-4

Nouvian, R., Eybalin, M., Puel, J.L., 2015. Cochlear efferents in developing adult and pathological conditions. Cell Tissue Res.

https://doi.org/10.1007/s00441-015-2158-z

Nuwer, M.O., Picchione, K.E., Bhattacharjee, A., 2010. PKA-Induced Internalization of Slack KNa Channels Produces Dorsal Root Ganglion Neuron Hyperexcitabil-ity. J. Neurosci.

https://doi.org/10.1523/jneurosci.3150-10.2010

O’Brien, J.E., Meisler, M.H., 2013. Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front. Genet.

https://doi.org/10.3389/fgene.2013.00213

Oak, M.H., Yi, E., 2014. Voltage-gated K+channels contributing to temporal

preci-sion at the inner hair cell-auditory afferent nerve fiber synapses in the mam-malian cochlea. Arch. Pharm. Res.

https://doi.org/10.1007/s12272-014-0411-8

Oestreicher, E., Arnold, W., Ehrenberger, K., Felix, D., 1997. Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs. Hear. Res.

https://doi.org/10.1016/S0378-5955(97)00023-3

Ohlemiller, K.K., Echteler, S.M., 1990. Functional correlates of characteristic fre-quency in single cochlear nerve fibers of the Mongolian gerbil. J. Comp. Physiol. A.

https://doi.org/10.1007/BF00192568

Ohlemiller, K.K., Echteler, S.M., Siegel, J.H., 2005. Factors that influence rate-versus-intensity relations in single cochlear nerve fibers of the gerbil. J. Acoust. Soc. Am.

https://doi.org/10.1121/1.401298

Ohn, T.-L., Rutherford, M.A., Jing, Z., Jung, S., Duque-Afonso, C.J., Hoch, G., Picher, M.M., Scharinger, A., Strenzke, N., Moser, T., 2016. Hair cells use active zones with different voltage dependence of Ca 2+ influx to decompose sounds into com-plementary neural codes. Proc. Natl. Acad. Sci.

https://doi.org/10.1073/pnas.1605737113

Okabe, S., 2007. Molecular anatomy of the postsynaptic density. Mol. Cell. Neurosci. https://doi.org/10.1016/j.mcn.2007.01.006

Oliver, D., Taberner, A.M., Thurm, H., Sausbier, M., Arntz, C., Ruth, P., Fakler, B., Liberman, M.C., 2006. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J. Neurosci.

(22)

https://doi.org/10.1523/JNEUROSCI.1047-06.2006

Ollsen RW, Sieghart W, 2008. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev.

https://doi.org/10.1124/pr.108.00505.receptors

Osborne, M.P., Comis, S.D., 1990. High resolution scanning electron microscopy of stereocilia in the cochlea of normal, postmortem, and drugtreated guinea pigs. J. Electron Microsc. Tech.

https://doi.org/10.1002/jemt.1060150305

Ottersen, O.P., Takumi, Y., Matsubara, A., Landsend, A.S., Laake, J.H., Usami, S. ichi, 1998. Molecular organization of a type of peripheral glutamate synapse: The afferent synapses of hair cells in the inner ear. Prog. Neurobiol.

https://doi.org/10.1016/S0301-0082(97)00054-3

Pangršič, T., Lasarow, L., Reuter, K., Takago, H., Schwander, M., Riedel, D., Frank, T., Tarantino, L.M., Bailey, J.S., Strenzke, N., Brose, N., Müller, U., Reisinger, E., Moser, T., 2010. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat. Neurosci.

https://doi.org/10.1038/nn.2578

Pangršič, T., Reisinger, E., Moser, T., 2012. Otoferlin: A multi-C 2 domain protein essential for hearing. Trends Neurosci.

https://doi.org/10.1016/j.tins.2012.08.002

Pangršič, T., Singer, J.H., Koschak, A., 2018. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol. Rev. https://doi.org/10.1152/physrev.00030.2017

Paquette, S.T., Gilels, F., White, P.M., 2016. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse. Sci. Rep.

https://doi.org/10.1038/srep25056

Peppi, M., Landa, M., Sewell, W.F., 2012. Cochlear kainate receptors. JARO - J. Assoc. Res. Otolaryngol.

https://doi.org/10.1007/s10162-011-0309-9

Petitpré, C., Wu, H., Sharma, A., Tokarska, A., Fontanet, P., Wang, Y., Helmbacher, F., Yackle, K., Silberberg, G., Hadjab, S., Lallemend, F., 2018. Neuronal het-erogeneity and stereotyped connectivity in the auditory afferent system. Nat. Commun.

https://doi.org/10.1038/s41467-018-06033-3

Popa, R., Anniko, M., Arnold, W., Oestreicher, E., 2000. and subunits of acetyl-choline receptors in the human inner ear. Acta Otolaryngol.

https://doi.org/10.1080/000164800750045974

Pujol, R., Puel, J.L., 1999. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: A review of recent findings, in: Annals of the New York

(23)

Academy of Sciences.

https://doi.org/10.1111/j.1749-6632.1999.tb08646.x

Pyott, S.J., Duncan, R.K., 2016. BK Channels in the Vertebrate Inner Ear, in: Inter-national Review of Neurobiology.

https://doi.org/10.1016/bs.irn.2016.03.016

Pyott, S.J., Meredith, A.L., Fodor, A. a, Vázquez, A.E., Yamoah, E.N., Aldrich, R.W., 2007. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits. J Biol Chem.

https://doi.org/10.1074/jbc.M608726200

Qiu, X., Müller, U., 2018. Mechanically Gated Ion Channels in Mammalian Hair Cells. Front. Cell. Neurosci.

https://doi.org/10.3389/fncel.2018.00100

R Core Team, 2018. R: A Language and Environment for Statistical Computing. Rask-Andersen, H., Li, H., Löwenheim, H., Müller, M., Pfaller, K., Schrott-Fischer,

A., Glueckert, R., 2017. Supernumerary human hair cells—signs of regeneration or impaired development? A field emission scanning electron microscopy study. Ups. J. Med. Sci.

https://doi.org/10.1080/03009734.2016.1271843

Rattay, F., Potrusil, T., Wenger, C., Wise, A.K., Glueckert, R., Schrott-Fischer, A., 2013. Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons. PLoS One.

https://doi.org/10.1371/journal.pone.0079256

Rebillard, G., Ruel, J., Nouvian, R., Saleh, H., Pujol, R., Dehnes, Y., Raymond, J., Puel, J.L., Devau, G., 2003. Glutamate transporters in the guinea-pig cochlea: Partial mRNA sequences, cellular expression and functional implications. Eur. J. Neurosci.

https://doi.org/10.1046/j.1460-9568.2003.02429.x

Reijntjes, D.O.J., Lee, J.H., Park, S., Schubert, N.M.A., van Tuinen, M., Vijayaku-mar, S., Jones, T.A., Jones, S.M., Gratton, M.A., Xia, X.-M., Yamoah, E.N., Py-ott, S.J., 2019. Sodium-activated potassium channels shape peripheral auditory function and activity of the primary auditory neurons in mice. Sci. Rep. 9, 2573. https://doi.org/10.1038/s41598-019-39119-z

Reijntjes, D.O.J., Pyott, S.J., 2016. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear. Res. https://doi.org/10.1016/j.heares.2016.03.011

Reijntjes, D.O.J., Schubert, N.M.A., Pietrus-Rajman, A., Van Dijk, P., Pyott, S.J., 2018. Changes in spontaneous movement in response to silent gaps are not ro-bust enough to indicate the perception of tinnitus in mice. PLoS One.

https://doi.org/10.1371/journal.pone.0202882

Reinhard, L., Tidow, H., Clausen, M.J., Nissen, P., 2013. Na+,K+-ATPase as a

(24)

Sci.

https://doi.org/10.1007/s00018-012-1039-9

Rodriguez-Contreras, A., Yamoah, E.N., 2001. Direct measurement of single-channel Ca2+ currents in bullfrog hair cells reveals two distinct channel subtypes. J.

Physiol.

https://doi.org/10.1111/j.1469-7793.2001.00669.x

Roehm, P.C., Xu, N., Woodson, E.A., Green, S.H., Hansen, M.R., 2008. Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Mol. Cell. Neurosci. https://doi.org/10.1016/j.mcn.2007.10.014

Rome, C., Luo, D., Dulon, D., 1999. Muscarinic receptor-mediated calcium signaling in spiral ganglion neurons of the mammalian cochlea. Brain Res.

https://doi.org/10.1016/S0006-8993(99)02034-X

Ruel, J., Bobbin, R.P., Vidal, D., Pujol, R., Puel, J.L., 2000. The selective AMPA recep-tor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea. Neuropharmacology.

https://doi.org/10.1016/S0028-3908(00)00069-1

Ruel, J., Chen, C., Pujol, R., Bobbin, R.P., Puel, J.L., 1999. AMPA-preferring gluta-mate receptors in cochlear physiology of adult guinea-pig. J. Physiol.

https://doi.org/10.1111/j.1469-7793.1999.0667p.x

Ruel, J., Eybalin, M., Leger, C.L., Nouvian, R., Puel, J.-L., Bendris, R., Chabbert, C., Mersel, M., Bourien, J., 2008. Salicylate Enables Cochlear Arachidonic-Acid-Sensitive NMDA Receptor Responses. J. Neurosci.

https://doi.org/10.1523/jneurosci.5335-07.2008

Ruel, J., Nouvian, R., Gervais d’Aldin, C., Pujol, R., Eybalin, M., Puel, J.L., 2001. Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur. J. Neurosci.

https://doi.org/10.1046/j.0953-816X.2001.01721.x

Ruel, J., Wang, J., Demêmes, D., Gobaille, S., Puel, J.L., Rebillard, G., 2006. Dopamine transporter is essential for the maintenance of spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation. J. Neurochem. https://doi.org/10.1111/j.1471-4159.2006.03722.x

Ruel, J., Wang, J., Rebillard, G., Eybalin, M., Lloyd, R., Pujol, R., Puel, J.L., 2007. Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hear. Res.

https://doi.org/10.1016/j.heares.2006.08.017

Rusznák, Z., Szucs, G., 2009. Spiral ganglion neurones: An overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch. Eur. J. Physiol. https://doi.org/10.1007/s00424-008-0586-2

Ryan, A.F., Brumm, D., Kraft, M., 1991. Occurrence and distribution of non-NMDA glutamate receptor mrnas in the cochlea. Neuroreport.

(25)

https://doi.org/10.1097/00001756-199111000-00002

Sadeghi, S.G., Pyott, S.J., Yu, Z., Glowatzki, E., 2014. Glutamatergic Signaling at the Vestibular Hair Cell Calyx Synapse. J. Neurosci.

https://doi.org/10.1523/jneurosci.0369-13.2014

Safieddine, S., Bartolami, S., Wenthold, R.J., Eybalin, M., 1996. Pre- and postsynap-tic M3 muscarinic receptor mRNAs in the rodent peripheral auditory system. Mol. Brain Res.

https://doi.org/10.1016/S0169-328X(96)00047-2

Safieddine, S., El-Amraoui, A., Petit, C., 2012. The Auditory Hair Cell Ribbon Synapse: From Assembly to Function. Annu. Rev. Neurosci.

https://doi.org/10.1146/annurev-neuro-061010-113705

Safieddine, S., Eybalin, M., 1992. Triple Immunofluorescence Evidence for the Coex-istence of Acetylcholine, Enkephalins and Calcitonin Gene-related Peptide Within Efferent (Olivocochlear) Neurons of Rats and Guinea-pigs. Eur. J. Neurosci. https://doi.org/10.1111/j.1460-9568.1992.tb00124.x

Sakai, S., Tabuchi, K., Murashita, H., Hara, A., 2008. Activation of the GABAA Receptor Ameliorates the Cochlear Excitotoxicity Caused by Kainic Acid in the Guinea Pig. Tohoku J. Exp. Med.

https://doi.org/10.1620/tjem.215.279

Salkoff, L., Butler, A., Ferreira, G., Santi, C., Wei, A., 2006. High-conductance potas-sium channels of the SLO family. Nat. Rev. Neurosci.

https://doi.org/10.1038/nrn1992

Sanchez, J.T., Ghelani, S., Otto-Meyer, S., 2015. From development to disease: Di-verse functions of NMDA-type glutamate receptors in the lower auditory path-way. Neuroscience.

https://doi.org/10.1016/j.neuroscience.2014.11.027

Santi, C.M., Martínez-López, P., de la Vega-Beltrán, J.L., Butler, A., Alisio, A., Darszon, A., Salkoff, L., 2010. The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett.

https://doi.org/10.1016/j.febslet.2010.02.005

Santos-Sacchi, J., 1993. Voltage-dependent ionic conductances of type I spiral gan-glion cells from the guinea pig inner ear. J. Neurosci.

https://doi.org/10.1523/jneurosci.13-08-03599.1993

Sattler, R., Rothstein, J.D., 2006. Regulation and dysregulation of glutamate trans-porters. Handb. Exp. Pharmacol.

https://doi.org/10.1007/3-540-29784-7-14

Scheffer, D., Sage, C., Corey, D.P., Pingault, V., 2007. Gene expression profiling iden-tifies Hes6 as a transcriptional target of ATOH1 in cochlear hair cells. FEBS Lett.

https://doi.org/10.1016/j.febslet.2007.08.059

(26)

esti-mating spiral ganglion populations in mice. Hear. Res. https://doi.org/10.1016/j.heares.2013.07.007

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: An open-source platform for biological-image analysis. Nat. Methods.

https://doi.org/10.1038/nmeth.2019

Schmiedt, R.A., 1989. Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: Comparisons to cat data. Hear. Res.

https://doi.org/10.1016/0378-5955(89)90115-9

Schreiber, M., Wei, A., Yuan, A., Gaut, J., Saito, M., Salkoff, L., 1998. Slo3, a novel pH-sensitive K+channel from mammalian spermatocytes. J. Biol. Chem.

https://doi.org/10.1074/jbc.273.6.3509

Schuknecht, H., 1978. Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope.

https://doi.org/10.1002/lary.25219

Schuknecht, H.F., 1964. Further Observations on the Pathology of Presbycusis. Arch. Otolaryngol.

https://doi.org/10.1001/archotol.1964.00750040381003

Schuknecht, H.F., Gacek, M.R., 1993. Cochlear pathology in presbycusis. Ann. Otol. Rhinol. Laryngol.

Sergeyenko, Y., Lall, K., Liberman, M.C., Kujawa, S.G., 2013. Age-Related Cochlear Synaptopathy: An Early-Onset Contributor to Auditory Functional Decline 33, 13686–13694.

https://doi.org/10.1523/JNEUROSCI.1783-13.2013

Shannon, R. V., 2012. Advances in auditory prostheses. Curr. Opin. Neurol. https://doi.org/10.1097/WCO.0b013e32834ef878

Shen, H., Lin, Z., Lei, D., Han, J., Ohlemiller, K.K., Bao, J., 2011. Old mice lacking high-affinity nicotine receptors resist acoustic trauma. Hear. Res.

https://doi.org/10.1016/j.heares.2011.01.009

Sheng, M., Hoogenraad, C.C., 2007. The Postsynaptic Architecture of Excitatory Synapses: A More Quantitative View. Annu. Rev. Biochem.

https://doi.org/10.1146/annurev.biochem.76.060805.160029

Sheng, M., Kim, E., 2000. The Shank family of scaffold proteins. J. Cell Sci.

Shrestha, B.R., Chia, C., Wu, L., Kujawa, S.G., Liberman, M.C., Goodrich, L. V., 2018. Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. Cell.

https://doi.org/10.1016/j.cell.2018.07.007

Sigel, E., Steinmann, M.E., 2012. Structure, function, and modulation of GABAA receptors. J. Biol. Chem.

https://doi.org/10.1074/jbc.R112.386664

(27)

de-fective hearing. Ann. Otol. Rhinol. Laryngol. https://doi.org/10.1177/000348944705600310

Simms, B.A., Zamponi, G.W., 2014. Neuronal voltage-gated calcium channels: Struc-ture, function, and dysfunction. Neuron.

https://doi.org/10.1016/j.neuron.2014.03.016

Smith, K.E., Browne, L., McAlpine, D., Selwood, D.L., Jagger, D.J., 2015. Phos-phoinositide Modulation of Heteromeric Kv1 Channels Adjusts Output of Spiral Ganglion Neurons from Hearing Mice. J. Neurosci.

https://doi.org/10.1523/jneurosci.0496-15.2015

Sobkowicz, H., Rose, J., Scott, G., Slapnick, S., 2018. Ribbon synapses in the devel-oping intact and cultured organ of Corti in the mouse. J. Neurosci.

https://doi.org/10.1523/jneurosci.02-07-00942.1982

Spoendlin, H., 1985. Anatomy of Cochlear Innervation. Am. J. Otolaryngol. Neck Med. Surg.

https://doi.org/10.1016/S0196-0709(85)80026-0

Stevens, G., Flaxman, S., Brunskill, E., Mascarenhas, M., Mathers, C.D., Finucane, M., 2011. Global and regional hearing impairment prevalence: An analysis of 42 studies in 29 countries. Eur. J. Public Health.

https://doi.org/10.1093/eurpub/ckr176

Stölting, G., Fischer, M., Fahlke, C., 2014. CLC channel function and dysfunction in health and disease. Front. Physiol.

https://doi.org/10.3389/fphys.2014.00378

Sun, S., Babola, T., Pregernig, G., So, K.S., Nguyen, M., Su, S.S.M., Palermo, A.T., Bergles, D.E., Burns, J.C., Müller, U., 2018. Hair Cell Mechanotransduction Regulates Spontaneous Activity and Spiral Ganglion Subtype Specification in the Auditory System. Cell.

https://doi.org/10.1016/j.cell.2018.07.008

Sun, W., Salvi, R.J., 2001. Dopamine modulates sodium currents in cochlear spiral ganglion neurons. Neuroreport.

https://doi.org/10.1097/00001756-200103260-00037

Taberner, A.M., Liberman, M.C., 2004. Response Properties of Single Auditory Nerve Fibers in the Mouse. J. Neurophysiol.

https://doi.org/10.1152/jn.00574.2004

Takeda, S., Mannström, P., Dash-Wagh, S., Yoshida, T., Ulfendahl, M., 2017. Effects of Aging and Noise Exposure on Auditory Brainstem Responses and Number of Presynaptic Ribbons in Inner Hair Cells of C57BL/6J Mice. Neurophysiology. https://doi.org/10.1007/s11062-018-9691-9

Tamsett, T.J., Picchione, K.E., Bhattacharjee, A., 2009. NAD+ Activates KNa Chan-nels in Dorsal Root Ganglion Neurons. J. Neurosci.

https://doi.org/10.1523/jneurosci.0859-09.2009

(28)

hear-ing loss: GABA, nicotinic acetylcholine and NMDA receptor expression changes in spiral ganglion neurons of the mouse. Neuroscience.

https://doi.org/10.1016/j.neuroscience.2013.11.058

Thévenaz, P., Unser, M., 2007. User-Friendly Semiautomated Assembly of Accurate Image Mosaics in Microscopy. Microsc. Res. Tech. 70, 135–146.

Toesca, A., 1996. Central and peripheral myelin in the rat cochlear and vestibular nerves. Neurosci. Lett.

https://doi.org/10.1016/S0304-3940(96)13273-0

Tomasello, D.L., Hurley, E., Wrabetz, L., Bhattacharjee, A., 2017. Slick (Kcnt2) sodium-activated potassium channels limit peptidergic nociceptor excitability and hyperalgesia. J. Exp. Neurosci.

https://doi.org/10.1177/1179069517726996

Torre, P., Fowler, C.G., 2000. Age-related changes in auditory function of rhesus monkeys (Macaca mulatta). Hear. Res.

https://doi.org/10.1016/S0378-5955(00)00025-3

Traynelis, S.., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., Dingledine, R., 2010. Glutatamate Recep-tor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. https://doi.org/10.1124/pr.109.002451.405

Tritsch, N.X., Bergles, D.E., 2010. Developmental Regulation of Spontaneous Activ-ity in the Mammalian Cochlea. J. Neurosci.

https://doi.org/10.1523/jneurosci.3875-09.2010

Tritsch, N.X., Yi, E., Gale, J.E., Glowatzki, E., Bergles, D.E., 2007. The origin of spontaneous activity in the developing auditory system. Nature.

https://doi.org/10.1038/nature06233

Tsuji, J., Liberman, M.C., 1997. Intracellular labeling of auditory nerve fibers in guinea pig: Central and peripheral projections. J. Comp. Neurol.

https://doi.org/10.1002/(SICI)1096-9861(19970505)381:2<188::AID-CNE6>3.0.CO;2-Tu, N.C., Friedman, R.A., 2018. Age-related hearing loss: Unraveling the pieces.

Laryngoscope Investig. Otolaryngol. https://doi.org/10.1002/lio2.134

Usami, S.I., Matsubara, A., Fujita, S., Shinkawa, H., Hayashi, M., 1995. NMDA (NMDAR1)and AMPA-type (GluR2/3) receptor subunits are expressed in the in-ner ear. Neuroreport.

https://doi.org/10.1097/00001756-199505300-00022

Valdés-Baizabal, C., Soto, E., Vega, R., 2015. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat. PLoS One. https://doi.org/10.1371/journal.pone.0120808

Vermiglio, A.J., Soli, S.D., Freed, D.J., Fisher, L.M., 2012. The Relationship between High-Frequency Pure-Tone Hearing Loss, Hearing in Noise Test (HINT)

(29)

Thresh-olds, and the Articulation Index. J. Am. Acad. Audiol. https://doi.org/10.3766/jaaa.23.10.4

Viana, L.M., O’Malley, J.T., Burgess, B.J., Jones, D.D., Oliveira, C.A.C.P., Santos, F., Merchant, S.N., Liberman, L.D., Liberman, M.C., 2015. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear. Res.

https://doi.org/10.1016/j.heares.2015.04.014

Wang, K., Wang, F., Bao, J.P., Xie, Z.Y., Chen, L., Zhou, B.Y., Xie, X.H., Wu, X.T., 2017. Tumor necrosis factor modulates sodium-activated potassium channel SLICK in rat dorsal horn neurons via p38 MAPK activation pathway. J. Pain Res.

https://doi.org/10.2147/JPR.S132185

Wang, L., Li, J., Yu, L., Li, X., 2014. Regulation of dopamine D2 receptors in the guinea pig cochlea. Acta Otolaryngol.

https://doi.org/10.3109/00016489.2014.899712

Wang, W., Kim, H.J., Lee, J.H., Wong, V., Sihn, C.R., Lv, P., Perez Flores, M.C., Mousavi-Nik, A., Doyle, K.J., Xu, Y., Yamoah, E.N., 2014. Functional signifi-cance of K+channel -subunit KCNE3 in auditory neurons. J. Biol. Chem.

https://doi.org/10.1074/jbc.M113.545236

Wang, W., Kim, H.J., Lv, P., Tempel, B.L., Yamoah, E.N., 2013. Association of Kv1 Family of K+channels and their Functional Blueprint in the Properties of

Audi-tory Neurons as Revealed by Genetic and Functional Analyses. J. Neurophysiol. https://doi.org/10.1152/jn.00290.2013

Wang, Y., Hirose, K., Liberman, M.C., 2002. Dynamics of noise-induced cellular in-jury and repair in the mouse cochlea. JARO - J. Assoc. Res. Otolaryngol. https://doi.org/10.1007/s101620020028

Wangemann, P., 2002. K+cycling and the endocochlear potential. Hear. Res.

https://doi.org/10.1016/S0378-5955(02)00279-4

Warr, W.B., Guinan, J.J., 1997. Efferent innervation of the organ of corti: two sepa-rate systems. Brain Res.

https://doi.org/10.1016/0006-8993(79)91104-1

Wess, J., 1996. Molecular Biology of Muscarinic Acetylcholine Receptors. Crit. Rev. Neurobiol.

https://doi.org/10.1615/critrevneurobiol.v10.i1.40

WHO, 2008. The global burden of disease 2004. Updat. World Heal. Organ. 146. https://doi.org/10.1038/npp.2011.85

Wichmann, C., Moser, T., 2015. Relating structure and function of inner hair cell ribbon synapses. Cell Tissue Res.

https://doi.org/10.1007/s00441-014-2102-7

Wickham, H., François, R., Henry, L., Müller, K., 2018. dplyr: A Grammar of Data Manipulation.

Referenties

GERELATEERDE DOCUMENTEN

The presence of C1q, and especially of C4 and C3 (which bind covalently to the surfaces on which they are activated) bound to the microparticle surface suggested that

Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice Reijntjes, Daniël Onne

Classic work suggests that acquired hearing loss can be divided into four different categories: sensory, neural, metabolic, and conductive (Schuknecht, 1964). These four categories

The spiral ganglion neurons (SGNs) are the first action potential generating neu- rons in the auditory pathway. The type I SGNs contact the sensory inner hair cells via their

As suggested in our review (chapter 2), many of these genes that are differen- tially expressed between these subgroups encode for proteins related: to 1) glutamate signalling such

Furthermore, this method can be used in the future to assess pre- and postsynaptic size gradients in knockout mice for our novel sodium-activated potassium channels. To summarize,

Het feit dat er vier groepen auditieve neuronen bestaan met een verschillende gevoeligheid voor gehoorschade betekent dat er niet alleen gekeken moet worden naar welke eiwitten

As doing a PhD often feels like an uphill battle where the hill gets steeper the closer you get to the end, the support of colleagues, family and friends is just as important to