• No results found

University of Groningen Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice Reijntjes, Daniël Onne Jilt

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice Reijntjes, Daniël Onne Jilt"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice

Reijntjes, Daniël Onne Jilt

DOI:

10.33612/diss.93524048

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Reijntjes, D. O. J. (2019). Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice. University of Groningen. https://doi.org/10.33612/diss.93524048

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Molecular composition and

function of the spiral ganglion

neuron peripheral synapse in mice

(3)

Experiments for this thesis were performed in collaboration with the university of Groningen, the University Medical Center Groningen, and the BCN graduate school.

This research was supported by the Heinsius-Houbolt fund and the foundation for the hearing impaired child.

© D.O.J. Reijntjes, Groningen 2019. All rights reserved. No part of this thesis may be reproduced without prior permission of the author and the publishers holding copy-rights of the published articles.

Cover design: D.O.J. Reijntjes Layout: D.O.J. Reijntjes

Printed by: Gildprint - www.gildeprint.nl ISBN printed version: 978-94-034-1702-8 ISBN electronic version: 978-94-034-1701-1

(4)

Molecular composition and

function of the spiral

ganglion neuron peripheral

synapse in mice

PhD thesis

to obtain the degree of PhD at the

University of Groningen

on the authority of the

Rector Magnificus prof. C. Wijmenga

and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Monday 9 September 2019 at 11.00 hours

by

Daniël Onne Jilt Reijntjes

born on the 10

th

of June 1990

in Groningen

(5)

Supervisor

Prof. P. van Dijk

Co-supervisor

Dr. S. J. Pyott

Assessment Committee

Prof. J. C. Billeter

Prof. J. M. J. Kremer

Prof. K. P. Steel

(6)

Table of contents

1 Introduction

Preface . . . 2

1.1. The perception of sound . . . 3

1.2. Anatomy of the auditory system . . . 4

1.2.1. The peripheral auditory system . . . 5

1.2.2. The sensory hair cells . . . 8

1.2.3. The spiral ganglion neurons . . . 12

1.2.4. The central auditory system . . . 13

1.3. Acquired hearing loss . . . 16

1.4. Molecular composition and function of the spiral ganglion neuron peripheral synapse . . . 18

1.5. This thesis . . . 18

2 The afferent signaling complex 21 2.1. Overview . . . 22

2.2. Glutamate receptors and the postsynaptic density . . . 24

2.2.1. AMPA receptors . . . 24

2.2.2. Kainate receptors . . . 25

2.2.3. NMDA receptors . . . 26

2.2.4. Metabotropic glutamate receptors . . . 29

2.2.5. The postsynaptic density . . . 30

2.3. Glutamate uptake by neighboring supporting cells . . . 31

2.4. Voltage-gated ion channels and ion transporters . . . 32

2.4.1. Voltage-gated sodium channels . . . 32

2.4.2. Voltage-gated potassium channels . . . 34

2.4.3. HCN channels . . . 36

2.4.4. Other voltage-gated ion channels and ion transporters . . . 36

2.5. Lateral efferent innervation of the type I spiral ganglion neurons . . . 38

2.5.1. Acetylcholine . . . 39

2.5.2. Dopamine . . . 40

2.5.3. GABA . . . 42

2.6. The afferent signaling complex . . . 45

2.6.1. Glutamatergic signalling . . . 45

2.6.2. Voltage-gated ion channels . . . 49

(7)

2.7. Conclusion . . . 51

3 KN a1channels shape peripheral auditory function 53 Abstract . . . 54

3.1. Introduction . . . 54

3.2. Materials & Methods . . . 56

3.2.1. Animals . . . 56

3.2.2. RNA isolation and sequence analysis . . . 56

3.2.3. Single molecule fluorescence in situ hybridization (smFISH) with RNAscope . . . 57

3.2.4. Measurement of auditory brainstem responses . . . 58

3.2.5. Histological assessment of the cochlear morphology . . . 59

3.2.6. Immunofluorescence, confocal microscopy and image analysis of isolated auditory sensory epithelia . . . 59

3.2.7. Patch clamp electrophysiology of isolated spiral ganglion neurons . . . 60

3.3. Results . . . 61

3.3.1. SLO channel transcripts encoding KN a1channels are expressed in the intact sensorineural structures and specifically spiral gan-glion neurons . . . 61

3.3.2. KN a1DKO mice have normal ABR thresholds but reduced wave I amplitudes . . . 64

3.3.3. Cochlear morphology, spiral ganglion cell density, and architec-ture of the afferent synapses are normal in KN a1DKO mice . . 68

3.3.4. Spiral ganglion neurons isolated from KN a1 DKO mice do not have Na+-sensitive outward K+ currents and display altered action potential waveforms . . . 71

3.4. Discussion . . . 76

4 Acquired hearing loss in KN a1knockout mice 81 Abstract . . . 82

4.1. Introduction . . . 82

4.2. Materials & Methods . . . 83

4.2.1. Animals . . . 84

4.2.2. Auditory brainstem responses . . . 84

4.2.3. Noise exposure . . . 84

4.2.4. Inner ear dissection and immunohistochemistry . . . 85

4.2.5. Image acquisition and analysis . . . 85

4.2.6. Statistics . . . 85

4.3. Results . . . 86

4.3.1. ABR wave I threshold responses in ageing KN a1DKO mice . . . 86

4.3.2. Outer hair cell survival in ageing mice . . . 86

4.3.3. ABR wave I amplitude slopes in ageing KN a1DKO mice . . . 87

4.3.4. ABR wave I latency slopes in ageing KN a1DKO mice . . . 90

4.3.5. Inner hair cell-spiral ganglion neuron synapse survival in KN a1 DKO mice . . . 90

(8)

4.3.6. ABR wave I threshold responses in KN a1DKO mice after noise

exposure . . . 91

4.3.7. Wave I amplitude slopes in KN a1DKO mice after noise exposure 93 4.3.8. Wave I latency slopes in KN a1 DKO and WT mice after noise exposure . . . 95

4.3.9. Synapse survival in KN a1DKO mice after noise exposure . . . . 96

4.4. Discussion . . . 97

4.4.1. Development of age-related and noise-induced hearing loss in KN a1DKO mice . . . 97

4.4.2. Mechanisms underlying increased vulnerability of KN a1 DKO mice to development of age-related hearing loss and noise-induced hearing loss . . . 100

5 Volume gradients of synaptic proteins 103 Abstract . . . 104

5.1. Introduction . . . 104

5.2. Materials & Methods . . . 107

5.2.1. Animals . . . 107

5.2.2. Immunohistochemistry . . . 107

5.2.3. Image acquisition and processing . . . 109

5.2.4. Volume quantification of pre- and postsynaptic proteins . . . 109

5.2.5. Data transformation and pillar-modiolar classification of synapses110 5.2.6. Statistics . . . 111

5.3. Results . . . 111

5.3.1. Pillar- and modiolar volume gradients in CBA/CaJ mice . . . 111

5.3.2. Volume gradients at the level of individual synapses in CBA/CaJ mice . . . 113

5.3.3. Pillar- and modiolar volume gradients in C57BL/6, and FVB/NJ mice . . . 115

5.3.4. Volume gradients at the synaptic level in C57BL/6 and FVB/NJ mice . . . 117

5.3.5. Volume gradients in postsynaptic density proteins in C57BL/6, and FVB/NJ mice . . . 117

5.3.6. Volume gradients in postsynaptic density proteins at the synap-tic level in C57BL/6, and FVB/NJ mice . . . 119

5.4. Discussion . . . 121

5.4.1. Opposing vs. concurrent synaptic volume gradients in mice . . . 122

5.4.2. Opposing vs. concurrent synaptic volume gradients in mammals 124 5.4.3. Implications . . . 125

6 General discussion 125 6.1. Molecular architecture and molecular processes of the SGN . . . 126

6.2. Novel protein expression and function . . . 126

6.3. Spiral ganglion neuron subgroup detection . . . 129

6.4. Conclusions . . . 130

(9)

7. Summary 135

8. Nederlandse samenvatting 136

9. Acknowledgements 139

10. Cited references 141

Referenties

GERELATEERDE DOCUMENTEN

Classic work suggests that acquired hearing loss can be divided into four different categories: sensory, neural, metabolic, and conductive (Schuknecht, 1964). These four categories

The spiral ganglion neurons (SGNs) are the first action potential generating neu- rons in the auditory pathway. The type I SGNs contact the sensory inner hair cells via their

As suggested in our review (chapter 2), many of these genes that are differen- tially expressed between these subgroups encode for proteins related: to 1) glutamate signalling such

Furthermore, this method can be used in the future to assess pre- and postsynaptic size gradients in knockout mice for our novel sodium-activated potassium channels. To summarize,

Het feit dat er vier groepen auditieve neuronen bestaan met een verschillende gevoeligheid voor gehoorschade betekent dat er niet alleen gekeken moet worden naar welke eiwitten

As doing a PhD often feels like an uphill battle where the hill gets steeper the closer you get to the end, the support of colleagues, family and friends is just as important to

Loss of GABAB receptors in cochlear neurons: Threshold elevation suggests modula- tion of outer hair cell function by type II afferent fibers... Dopaminergic Signaling in the

Molecular composition and function of the spiral ganglion neuron peripheral synapse in mice Reijntjes, Daniël Onne