• No results found

University of Groningen Membrane fusion of influenza and chikungunya viruses Blijleven, Jelle

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Membrane fusion of influenza and chikungunya viruses Blijleven, Jelle"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Membrane fusion of influenza and chikungunya viruses

Blijleven, Jelle

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Blijleven, J. (2018). Membrane fusion of influenza and chikungunya viruses: Mechanisms inferred from

single-particle experiments. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

References

1. Buchmann JP, Holmes EC. Cell walls and the convergent evolution of the viral envelope Microbiol Mol Biol Rev 79 (2015). doi:10.1128/MMBR.00017-15.

2. Woudenberg T et al. Effectiveness of early measles, mumps, and rubella vaccination among 6-14-month-old in-fants during an epidemic in the netherlands: An observational cohort study J Infect Dis 215 (2017).

doi:10.1093/infdis/jiw586.

3. Deeks SG et al. The end of AIDS: HIV infection as a chronic disease Lancet 382 (2013). doi:10.1016/S0140-6736(13)61809-7.

4. WHO. Severe acute respiratory syndrome (SARS). Available at URL: http://www.who.int/csr/sars/en/. 5. WHO. Ebola virus disease. Available at URL: http://www.who.int/mediacentre/factsheets/fs103/en/. 6. Fredericks AC, Fernandez-Sesma A. The burden of dengue and chikungunya worldwide: Implications for the

southern united states and california Ann Glob Health 80 (2014). doi:10.1016/j.aogh.2015.02.006. 7. Graham BS. Advances in antiviral vaccine development Immunol Rev 255 (2013). doi:10.1111/imr.12098. 8. Palese P. Influenza: Old and new threats Nat Med 10 (2004). doi:10.1038/nm1141.

9. Kumar B et al. The emerging influenza virus threat: Status and new prospects for its therapy and control, Arch Virol 163 (2018). doi:10.1007/s00705-018-3708-y.

10. Killingley B, Nguyen-Van-Tam J. Routes of influenza transmission Influenza Other Respir Viruses 7 Suppl 2 (2013). doi:10.1111/irv.12080.

11. Esposito S. 100 years since the 1918 influenza pandemic Hum Vaccin Immunother 14 (2018). doi:10.1080/21645515.2018.1446591.

12. Petrova VN, Russell CA. The evolution of seasonal influenza viruses Nat Rev Microbiol 16 (2018). doi:10.1038/nrmicro.2017.118.

13. Sautto GA et al. Towards a universal influenza vaccine: Different approaches for one goal Virol J 15 (2018). doi:10.1186/s12985-017-0918-y.

14. Li TC et al. Clinical implications of antiviral resistance in influenza Viruses 7 (2015). doi:10.3390/v7092850. 15. Centers for Disease Control and Prevention (CDC). Geographic distribution of chikungunya virus. Available at

URL: https://www.cdc.gov/chikungunya/geo/index.html.

16. Tsetsarkin KA et al. A single mutation in chikungunya virus affects vector specificity and epidemic potential, PLoS Pathog 3 (2007). doi:10.1371/journal.ppat.0030201.

17. Kraemer MU et al. The global distribution of the arbovirus vectors aedes aegypti and ae. albopictus Elife 4 (2015). doi:10.7554/eLife.08347.

18. Paixao ES et al. Zika, chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases BMJ Glob Health 3 (2018). doi:10.1136/bmjgh-2017-000530.

19. Centers for Disease Control and Prevention (CDC). 3D influenza transparent key pieslice large . Available at URL: https://www.cdc.gov/flu/images/h1n1/3D_Influenza_transparent_key_pieslice_lrg.gif. 20. Noda T. Native morphology of influenza virions Front Microbiol 2 (2012). doi:10.3389/fmicb.2011.00269. 21. Voss JE et al. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography, Nature

468 (2010). doi:10.1038/nature09555.

22. Li L et al. Structural changes of envelope proteins during alphavirus fusion, Nature 468 (2010). doi:10.1038/na-ture09546.

23. Smith TJ et al. Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy, Proc Natl Acad Sci U S A 92 (1995). doi:10.1073/pnas.92.23.10648.

24. Ashbrook AW et al. Residue 82 of the chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice, J Virol 88 (2014). doi:10.1128/JVI.01672-14.

25. Jolly CL, Sattentau QJ. Attachment factors Adv Exp Med Biol 790 (2013). doi:10.1007/978-1-4614-7651-1_1. 26. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin, Annu

Rev Biochem 69 (2000). doi:10.1146/annurev.biochem.69.1.531.

27. van Duijl-Richter MKS et al. Early events in chikungunya virus infection - from virus cell binding to membrane fusion, Viruses 7 (2015). doi:10.3390/v7072792.

28. Chernomordik LV, Kozlov MM. Mechanics of membrane fusion, Nat Struct Mol Biol 15 (2008). doi:10.1038/nsmb.1455.

29. Sanchez-San Martin C et al. Dealing with low pH: Entry and exit of alphaviruses and flaviviruses, Trends Microbiol 17 (2009). doi:10.1016/j.tim.2009.08.002.

30. Otterstrom JJ et al. Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level, PNAS 111 (2014). doi:10.1073/pnas.1411755111.

(3)

31. Ivanovic T, Harrison SC. Distinct functional determinants of influenza hemagglutinin-mediated membrane fusion, eLife 4 (2015). doi:10.7554/eLife.11009.

32. Ivanovic T et al. Influenza virus membrane fusion by cooperative fold-back of stochastically induced hemaggluti-nin intermediates, eLife 2 (2013). doi:10.7554/eLife.00333.

33. Zhang Y, Dudko OK. Statistical mechanics of viral entry, Phys Rev Lett 114 (2015). doi:10.1103/PhysRevLett.114.018104.

34. Kim IS et al. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein, PNAS 114 (2017). doi:10.1073/pnas.1618883114.

35. Jahn R, Scheller RH. SNAREs — engines for membrane fusion, Nat Rev Mol Cell Biol 7 (2006). doi:10.1038/nrm2002.

36. Rizo J, Xu J. The synaptic vesicle release machinery, Annu Rev Biophys 44 (2015). doi:10.1146/annurev-biophys-060414-034057.

37. Scheller RH. In search of the molecular mechanism of intracellular membrane fusion and neurotransmitter re-lease, Nat Med 19 (2013). doi:10.1038/nm.3339.

38. Harrison SC. Viral membrane fusion, Virology 479 (2015). doi:10.1016/j.virol.2015.03.043.

39. Kielian M. Mechanisms of virus membrane fusion proteins, Annu Rev Virol 1 (2014). doi:10.1146/annurev-virol-ogy-031413-085521.

40. Martens S, McMahon HT. Mechanisms of membrane fusion: Disparate players and common principles, Nat Rev Mol Cell Biol 9 (2008). doi:10.1038/nrm2417.

41. Demonbreun AR et al. Membrane fusion in muscle development and repair, Semin Cell Dev Biol 45 (2015). doi:10.1016/j.semcdb.2015.10.026.

42. Podbilewicz B. Virus and cell fusion mechanisms, Annu Rev Cell Dev Biol 30 (2014). doi:10.1146/annurev-cellbio-101512-122422.

43. Roos WH et al. Physical virology, Nat Phys 6 (2010). doi:10.1038/NPHYS1797.

44. Horimoto T, Kawaoka Y. Influenza: Lessons from past pandemics, warnings from current incidents, Nat Rev Mi-crobiol 3 (2005). doi:10.1038/nrmicro1208.

45. Edinger TO et al. Entry of influenza A virus: Host factors and antiviral targets, J Gen Virol 95 (2014). doi:10.1099/vir.0.059477-0.

46. White JM, Whittaker GR. Fusion of enveloped viruses in endosomes, Traffic 17 (2016). doi:10.1111/tra.12389. 47. Cohen FS. How viruses invade cells, Biophys J 110 (2016). doi:10.1016/j.bpj.2016.02.006.

48. Ciechonska M, Duncan R. Reovirus FAST proteins: Virus-encoded cellular fusogens, Trends Microbiol 22 (2014). doi:10.1016/j.tim.2014.08.005.

49. Vanderlinden E, Naesens L. Emerging antiviral strategies to interfere with influenza virus entry, Med Res Rev 34 (2014). doi:10.1002/med.21289.

50. Vigant F et al. Broad-spectrum antivirals against viral fusion, Nat Rev Microbiol 13 (2015). doi:10.1038/nrmi-cro3475.

51. Varkouhi AK et al. Endosomal escape pathways for delivery of biologicals, J Controll Release 151 (2011). doi:10.1016/j.jconrel.2010.11.004.

52. Chernomordik LV, Kozlov MM. Protein-lipid interplay in fusion and fission of biological membranes, Annu Rev Biochem 72 (2003). doi:10.1146/annurev.biochem.72.121801.161504.

53. Nikolaus J et al. The pathway to membrane fusion through hemifusion, Curr Top Membr 68 (2011). doi:10.1016/B978-0-12-385891-7.00001-5.

54. Markvoort AJ, Marrink SJ. Lipid acrobatics in the membrane fusion arena, Curr Top Membr 68 (2011). doi:10.1016/B978-0-12-385891-7.00011-8.

55. Fuhrmans M et al. Mechanics of membrane fusion/pore formation, Chem Phys Lipids 185 (2015). doi:10.1016/j.chemphyslip.2014.07.010.

56. Aeffner S et al. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition, PNAS 109 (2012). doi:10.1073/pnas.1119442109.

57. Kasson PM, Pande VS. Control of membrane fusion mechanism by lipid composition: Predictions from ensemble molecular dynamics, PLOS Comput Biol 3 (2007). doi:10.1371/journal.pcbi.0030220.

58. Kawamoto S et al. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free en-ergy barriers along the stalk mechanism, J Chem Phys 143 (2015). doi:10.1063/1.4933087.

59. Lentz BR, Lee J. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: A mechanism in com-mon with viral fusion and secretory vesicle release? Mol Membr Biol 16 (1999).

60. Mirjanian D et al. Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion, J Phys Chem B 114 (2010). doi:10.1021/jp1055182.

61. Ryham RJ et al. Calculating transition energy barriers and characterizing activation states for steps of fusion, Bio-phys J 110 (2016). doi:10.1016/j.bpj.2016.01.013.

(4)

62. Smirnova YG et al. Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration, J Am Chem Soc 132 (2010). doi:10.1021/ja910050x.

63. Salditt T, Aeffner S. X-ray structural investigations of fusion intermediates: Lipid model systems and beyond, Semin Cell Dev Biol 60 (2016). doi:10.1016/j.semcdb.2016.06.014.

64. Nikolaus J et al. Direct visualization of large and protein-free hemifusion diaphragms, Biophys J 98 (2010). doi:10.1016/j.bpj.2009.11.042.

65. Zhao W et al. Hemi-fused structure mediates and controls fusion and fission in live cells, Nature 534 (2016). doi:10.1038/nature18598.

66. Chlanda P et al. The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the target membranes, Nat Microbiol 1 (2016). doi:10.1038/NMICROBIOL.2016.50.

67. Gui L et al. Visualization and sequencing of membrane remodeling leading to influenza virus fusion, J Virol 90 (2016). doi:10.1128/JVI.00240-16.

68. Oelkers M et al. SNARE-mediated membrane fusion trajectories derived from force-clamp experiments, PNAS 113 (2016). doi:10.1073/pnas.1615885113.

69. Otterstrom JJ, van Oijen AM. Visualization of membrane fusion, one particle at a time, Biochemistry 52 (2013). doi:10.1021/bi301573w.

70. Campelo F et al. Helfrich model of membrane bending: From gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers, Adv Colloid Interface Sci 208 (2014). doi:10.1016/j.cis.2014.01.018.

71. Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments, Z Naturforsch C 28 (1973). 72. Kuzmin PI et al. A quantitative model for membrane fusion based on low-energy intermediates, PNAS 98 (2001).

doi:10.1073/pnas.121191898.

73. Kozlovsky Y, Kozlov MM. Stalk model of membrane fusion: Solution of energy crisis, Biophys J 82 (2002). 74. Kozlovsky Y et al. Stalk phase formation: Effects of dehydration and saddle splay modulus, Biophys J 87 (2004).

doi:10.1529/biophysj.103.038075.

75. Dror RO et al. Biomolecular simulation: A computational microscope for molecular biology, Annu Rev Biophys 41 (2012). doi:10.1146/annurev-biophys-042910-155245.

76. Ingolfsson HI et al. The power of coarse graining in biomolecular simulations, Wiley Interdiscip Rev Comput Mol Sci 4 (2014). doi:10.1002/wcms.1169.

77. Kasson PM et al. Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion, PNAS 103 (2006). doi:10.1073/pnas.0601597103.

78. Smirnova YG et al. Free-energy calculation methods for collective phenomena in membranes, J Phys D Appl Phys 48 (2015). doi:10.1088/0022-3727/48/34/343001.

79. Mori T et al. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms, Biochim Biophys Acta 1858 (2016). doi:10.1016/j.bbamem.2015.12.032. 80. Kozlov MM et al. Protein-driven membrane stresses in fusion and fission, Trends Biochem Sci 35 (2010).

doi:10.1016/j.tibs.2010.06.003.

81. Kozlov MM et al. Mechanisms shaping cell membranes, Curr Opin Cell Biol 29 (2014). doi:10.1016/j.ceb.2014.03.006.

82. Gerl MJ et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical mem-brane, J Cell Biol 196 (2012). doi:10.1083/jcb.201108175.

83. Reddy T et al. Nothing to sneeze at: A dynamic and integrative computational model of an influenza A virion, Structure 23 (2015). doi:10.1016/j.str.2014.12.019.

84. Sampaio JL et al. Membrane lipidome of an epithelial cell line, PNAS 108 (2011). doi:10.1073/pnas.1019267108. 85. Marrink SJ, Mark AE. The mechanism of vesicle fusion as revealed by molecular dynamics simulations, J Am

Chem Soc 125 (2003). doi:10.1021/ja036138+.

86. Tahir MA et al. Solvent-exposed lipid tail protrusions depend on lipid membrane composition and curvature, Bio-chim Biophys Acta 1858 (2016). doi:10.1016/j.bbamem.2016.01.026.

87. Risselada HJ et al. Expansion of the fusion stalk and its implication for biological membrane fusion, PNAS 111 (2014). doi:10.1073/pnas.1323221111.

88. Kozlovsky Y et al. Lipid intermediates in membrane fusion: Formation, structure, and decay of hemifusion dia-phragm, Biophys J 83 (2002).

89. Risselada HJ et al. Free energy landscape of rim-pore expansion in membrane fusion, Biophys J 107 (2014). doi:10.1016/j.bpj.2014.08.022.

90. Cohen FS, Melikyan GB. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement, J Membr Biol 199 (2004). doi:10.1007/s00232-004-0669-8.

91. Leikina E, Chernomordik LV. Reversible merger of membranes at the early stage of influenza hemagglutinin-me-diated fusion, Mol Biol Cell 11 (2000).

(5)

93. Skehel JJ, Wiley DC. Coiled coils in both intracellular vesicle and viral membrane fusion, Cell 95 (1998). doi:10.1016/S0092-8674(00)81710-9.

94. Lazarowitz SG et al. Influenza virus structural and nonstructural proteins in infected cells and their plasma mem-branes, Virology 46 (1971). doi:10.1016/0042-6822(71)90084-5.

95. Klenk HD et al. Activation of influenza A viruses by trypsin treatment, Virology 68 (1975). doi:10.1016/0042-6822(75)90284-6.

96. Carr CM, Kim PS. A spring-loaded mechanism for the conformational change of influenza hemagglutinin, Cell 73 (1993). doi:10.1016/0092-8674(93)90260-W.

97. Wilson IA et al. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution, Na-ture 289 (1981). doi:10.1038/289366a0.

98. Bullough PA et al. Structure of influenza haemagglutinin at the pH of membrane fusion, Nature 371 (1994). doi:10.1038/371037a0.

99. Chen J et al. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil, PNAS 96 (1999).

100. Weis W et al. Structure of the influenza virus hemagglutinin complexed with its receptor, sialic-acid, Nature 333 (1988). doi:10.1038/333426a0.

101. Nobusawa E et al. Comparison of complete amino-acid-sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses, Virology 182 (1991). doi:10.1016/0042-6822(91)90588-3. 102. Daniels RS et al. Fusion mutants of the influenza virus hemagglutinin glycoprotein, Cell 40 (1985).

doi:10.1016/0092-8674(85)90157-6.

103. Epand RM. Fusion peptides and the mechanism of viral fusion, Biochim Biophys Acta 1614 (2003). doi:10.1016/S0005-2736(03)00169-X.

104. Cross KJ et al. Composition and functions of the influenza fusion peptide, Protein Peptide Lett 16 (2009). 105. Sauter NK et al. Hemagglutinins from 2 influenza virus variants bind to sialic-acid derivatives with millimolar

dis-sociation constants: A 500-mhz proton nuclear magnetic-resonance study, Biochemistry 28 (1989). doi:10.1021/bi00447a018.

106. Ni F et al. Structural insights into the membrane fusion mechanism mediated by influenza virus hemagglutinin, Biochemistry 53 (2014). doi:10.1021/bi401525h.

107. Maeda T, Ohnishi S. Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes, FEBS Lett 122 (1980). doi:10.1016/0014-5793(80)80457-1.

108. Huang RTC et al. Influenza viruses cause hemolysis and fusion of cells, Virology 110 (1981). doi:10.1016/0042-6822(81)90030-1.

109. Lagache T et al. Stochastic model of acidification, activation of hemagglutinin and escape of influenza viruses from an endosome, Front Phys 5 (2017). doi:10.3389/fphy2017DOC25.

110. Ruigrok RWH et al. Conformational changes in the hemagglutinin of influenza virus which accompany heat-in-duced fusion of virus with liposomes, Virology 155 (1986). doi:10.1016/0042-6822(86)90210-2.

111. Carr CM et al. Influenza hemagglutinin is spring-loaded by a metastable native conformation, PNAS 94 (1997). doi:10.1073/pnas.94.26.14306.

112. White JM, Wilson IA. Anti-peptide antibodies detect steps in a protein conformational change - low-pH activa-tion of the influenza virus hemagglutinin, J Cell Biol 105 (1987). doi:10.1083/jcb.105.6.2887.

113. Garcia NK et al. Dynamic changes during acid-induced activation of influenza hemagglutinin, Structure 23 (2015). doi:10.1016/j.str.2015.02.006.

114. Leikina E et al. Reversible stages of the low-pH-triggered conformational change in influenza virus hemaggluti-nin, EMBO J 21 (2002). doi:10.1093/emboj/cdf559.

115. Fontana J et al. Structural changes in influenza virus at low pH characterized by cryo-electron tomography, J Virol 86 (2012). doi:10.1128/JVI.06698-11.

116. Gething MJ et al. Studies on the mechanism of membrane fusion - site-specific mutagenesis of the hemaggluti-nin of influenza virus, J Cell Biol 102 (1986). doi:10.1083/jcb.102.1.11.

117. Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus, Annu Rev Biochem 56 (1987). doi:10.1146/annurev.biochem.56.1.365.

118. Thoennes S et al. Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion, Virology 370 (2008). doi:10.1016/j.virol.2007.08.035.

119. Lin X et al. Lowered pH leads to fusion peptide release and a highly dynamic intermediate of influenza hemagglu-tinin, J Phys Chem B 120 (2016). doi:10.1021/acs.jpcb.6b06775.

120. Zhou Y et al. Exploring the early stages of the pH-induced conformational change of influenza hemagglutinin, Proteins 82 (2014). doi:10.1002/prot.24606.

121. Di Lella S et al. Modulation of the pH stability of influenza virus hemagglutinin: A host cell adaptation strategy. Biophys J 110 (2016). doi:10.1016/j.bpj.2016.04.035.

(6)

122. Godley L et al. Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza he-magglutinin abolishes membrane fusion activity, Cell 68 (1992). doi:10.1016/0092-8674(92)90140-8. 123. Kemble GW et al. Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin, J

Virol 66 (1992).

124. Barbey-Martin C et al. An antibody that prevents the hemagglutinin low pH fusogenic transition, Virology 294 (2002). doi:10.1006/viro.2001.1320.

125. Bizebard T et al. Structure of influenza virus hemagglutinin complexed with a neutralizing antibody, Nature 376 (1995). doi:10.1038/376092a0.

126. Mair CM et al. A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the con-formational change mediating membrane fusion, J Virol 88 (2014). doi:10.1128/JVI.01704-14.

127. Wang W et al. Intermonomer interactions in hemagglutinin subunits HA1 and HA2 affecting hemagglutinin sta-bility and influenza virus infectivity, J Virol 89 (2015). doi:10.1128/JVI.00939-15.

128. Qiao H et al. Specific single or double proline substitutions in the "spring-loaded" coiled-coil region of the influ-enza hemagglutinin impair or abolish membrane fusion activity, J Cell Biol 141 (1998).

doi:10.1083/jcb.141.6.1335.

129. Stegmann T et al. The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion, J Biol Chem 266 (1991).

130. Tsurudome M et al. Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza-virus-induced membrane fusion, J Biol Chem 267 (1992).

131. Wild CT et al. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection, PNAS 91 (1994). doi:10.1073/pnas.91.21.9770.

132. Melikyan GB et al. Membrane-anchored inhibitory peptides capture human immunodeficiency virus type 1 gp41 conformations that engage the target membrane prior to fusion, J Virol 80 (2006). doi:10.1128/JV.80.7.3249-3258.2006.

133. Muñoz-Barroso I et al. Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore re-vealed by the inhibitory action of a synthetic peptide from gp41, J Cell Biol 140 (1998).

doi:10.1083/jcb.140.2.315.

134. Lee KK et al. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus, J Biol Chem 286 (2011). doi:10.1074/jbc.M111.254243.

135. Park HE et al. Leash in the groove mechanism of membrane fusion, Nat Struct Biol 10 (2003). doi:10.1038/nsb1012.

136. Borrego-Diaz E et al. Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement, Virology 316 (2003). doi:10.1016/j.virol.2003.07.006.

137. Stegmann T et al. Effects of low pH on influenza virus - activation and inactivation of the membrane fusion ca-pacity of the hemagglutinin, J Biol Chem 262 (1987).

138. Weber T et al. Evidence for H+-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane, J Biol Chem 269 (1994).

139. Wharton SA et al. Electron microscopy of antibody complexes of influenza virus hemagglutinin in the fusion pH conformation, EMBO J 14 (1995).

140. Huang Q et al. Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus he-magglutinin HA2 subunits, Proteins 74 (2009). doi:10.1002/prot.22157.

141. Calder LJ, Rosenthal PB. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion, Nat Struct Mol Biol 23 (2016). doi:10.1038/nsmb.3271.

142. Chen J et al. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation, Cell 95 (1998). doi:10.1016/S0092-8674(00)81771-7.

143. Seo J, Cohen C. Pitch diversity in alpha-helical coiled coils, Proteins 15 (1993). doi:10.1002/prot.340150302. 144. Chang D et al. Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin

and its fusion peptide complex, BMC Biol 6 (2008). doi:10.1186/1741-7007-6-2.

145. Lai AL, Freed JH. The interaction between influenza HA fusion peptide and transmembrane domain affects mem-brane structure, Biophys J 109 (2015). doi:10.1016/j.bpj.2015.10.044.

146. Lin X et al. Order and disorder control the functional rearrangement of influenza hemagglutinin, PNAS 111 (2014). doi:10.1073/pnas.1412849111.

147. Donten ML et al. pH-jump induced leucine zipper folding beyond the diffusion limit, J Phys Chem B 119 (2015). doi:10.1021/jp511539c.

148. Krumbiegel M et al. Kinetics of the low pH-induced conformational changes and fusogenic activity of influenza hemagglutinin, Biophys J 67 (1994).

(7)

149. Huang Q et al. Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: Stability and energetics of the hemagglutinin, Biochim Biophys Acta 1614 (2003).

doi:10.1016/S0005-2736(03)00158-5.

150. Boonstra S et al. Computation of hemagglutinin free energy difference by the confinement method J Phys Chem B 121 (2017). doi:10.1021/acs.jpcb.7b09699.

151. Marti DN et al. Fast folding of the HIV-1 and SIV gp41 six-helix bundles, J Mol Biol 336 (2004). doi:10.1016/j.jmb.2003.11.058.

152. Jiao J et al. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition, PNAS 112 (2015). doi:10.1073/pnas.1424995112.

153. Feng Li et al. Energetics and dynamics of SNAREpin folding across lipid bilayers, Nat Struct Mol Biol 14 (2007). doi:10.1038/nsmb1310.

154. Gao Y et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages, Science 337 (2012). doi:10.1126/science.1224492.

155. Apellaniz B et al. The three lives of viral fusion peptides, Chem Phys Lipids 181 (2014). doi:10.1016/j.chem-physlip.2014.03.003.

156. Kasson PM et al. Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails, PLOS Comput Biol 6 (2010). doi:10.1371/journal.pcbi.1000829.

157. Larsson P, Kasson PM. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models, PLOS Comput Biol 9 (2013). doi:10.1371/journal.pcbi.1002950.

158. Lorieau JL et al. The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:Water interface, PNAS 107 (2010). doi:10.1073/pnas.1006142107.

159. Ghosh U et al. Closed and semiclosed interhelical structures in membrane vs closed and open structures in de-tergent for the influenza virus hemagglutinin fusion peptide and correlation of hydrophobic surface area with fusion catalysis, J Am Chem Soc 137 (2015). doi:10.1021/jacs.5b04578.

160. Smrt ST et al. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by in-ducing membrane curvature, J Biol Chem 290 (2015). doi:10.1074/jbc.M114.611657.

161. Risselada HJ et al. Line-tension controlled mechanism for influenza fusion, PLOS ONE 7 (2012). doi:10.1371/jour-nal.pone.0038302.

162. Fuhrmans M, Marrink SJ. Molecular view of the role of fusion peptides in promoting positive membrane curva-ture, J Am Chem Soc 134 (2012). doi:10.1021/ja207290b.

163. Han X et al. Membrane structure and fusion-triggering conformational change of the fusion domain from influ-enza hemagglutinin, Nat Struct Biol 8 (2001). doi:10.1038/90434.

164. D'Agostino M et al. Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition, EMBO Rep 17 (2016). doi:10.15252/embr.201642209.

165. Leikina E et al. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion, J Biol Chem 279 (2004). doi:10.1074/jbc.M401883200.

166. Kemble GW et al. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion, Cell 76 (1994). doi:10.1016/0092-8674(94)90344-1.

167. Melikyan GB et al. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes, J Cell Biol 131 (1995). doi:10.1083/jcb.131.3.679.

168. Armstrong RT et al. The transmembrane domain of influenza hemagglutinin exhibits a stringent length require-ment to support the hemifusion to fusion transition, J Cell Biol 151 (2000). doi:10.1083/jcb.151.2.425. 169. Stegmann T et al. Kinetics of pH-dependent fusion between influenza virus and liposomes, Biochemistry 24

(1985). doi:10.1021/bi00334a006.

170. Bundo-Morita K et al. Estimation by radiation inactivation of the size of functional units governing sendai and influenza virus fusion, Biochemistry 26 (1987). doi:10.1021/bi00393a040.

171. Hoekstra D et al. Characterization of the fusogenic properties of sendai virus - kinetics of fusion with erythrocyte membranes, Biochemistry 24 (1985). doi:10.1021/bi00339a005.

172. Morris SJ et al. Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells - measurement by dequenching of fluorescence, J Biol Chem 264 (1989).

173. Stegmann T et al. Intermediates in influenza induced membrane fusion, EMBO J 9 (1990).

174. Ramalho-Santos J et al. A common mechanism for influenza virus fusion activity and inactivation, Biochemistry 32 (1993). doi:10.1021/bi00062a006.

175. Niles WD, Cohen FS. Single event recording shows that docking onto receptor alters the kinetics of membrane fusion mediated by influenza hemagglutinin, Biophys J 65 (1993).

176. Ellens H et al. Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes - role of hemagglutinin surface density, Biochemistry 29 (1990). doi:10.1021/bi00493a027.

(8)

177. Melikyan GB et al. The fusion kinetics of influenza hemagglutinin expressing cells to planar bilayer membranes is affected by ha density and host-cell surface, J Gen Physiol 106 (1995). doi:10.1085/jgp.106.5.783.

178. Markovic I et al. Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines, J Cell Biol 155 (2001). doi:10.1083/jcb.200103005.

179. Dobay MP et al. How many trimers? modeling influenza virus fusion yields a minimum aggregate size of six tri-mers, three of which are fusogenic, Mol Biosyst 7 (2011). doi:10.1039/c1mb05060e.

180. Bentz J. Minimal aggregate size and minimal fusion unit for the first fusion pore of influenza hemagglutinin-me-diated membrane fusion, Biophys J 78 (2000).

181. Danieli T et al. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers, J Cell Biol 133 (1996). doi:10.1083/jcb.133.3.559.

182. Blumenthal R et al. Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events, J Cell Biol 135 (1996). doi:10.1083/jcb.135.1.63.

183. Günther-Ausborn S et al. Role of hemagglutinin surface density in the initial stages of influenza virus fusion: Lack of evidence for cooperativity, J Virol 74 (2000). doi:10.1128/JVI.74.6.2714-2720.2000.

184. Schreiber S et al. Stochastic simulation of hemagglutinin-mediated fusion pore formation, Biophys J 81 (2001). 185. Lakadamyali M et al. Visualizing infection of individual influenza viruses, PNAS 100 (2003).

doi:10.1073/pnas.0832269100.

186. Brandenburg B, Zhuang X. Virus trafficking - learning from single-virus tracking, Nat Rev Microbiol 5 (2007). doi:10.1038/nrmicro1615.

187. Hamilton BS et al. Influenza virus-mediated membrane fusion: Determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion, Viruses 4 (2012). doi:10.3390/v4071144.

188. Floyd DL et al. Single-particle kinetics of influenza virus membrane fusion, PNAS 105 (2008). doi:10.1073/pnas.0807771105.

189. Costello DA et al. Influenza virus-membrane fusion triggered by proton uncaging for single particle studies of fusion kinetics, Anal Chem 84 (2012). doi:10.1021/ac3006473.

190. Wessels L et al. Rapid membrane fusion of individual virus particles with supported lipid bilayers, Biophys J 93 (2007). doi:10.1529/biophysj.106.097485.

191. Yang S et al. HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains, Nat Chem Biol 11 (2015). doi:10.1038/NCHEMBIO.1800.

192. Kapanidis AN et al. Alternating-laser excitation of single molecules, Acc Chem Res 38 (2005). doi:10.1021/ar0401348.

193. Floyd DL et al. Analysis of kinetic intermediates in single-particle dwell-time distributions, Biophys J 99 (2010). doi:10.1016/j.bpj.2010.04.049.

194. Costello DA et al. Variations in pH sensitivity, acid stability, and fusogenicity of three influenza virus H3 subtypes, J Virol 89 (2015). doi:10.1128/JVI.01927-14.

195. Dudko OK. Decoding the mechanical fingerprints of biomolecules, Q Rev Biophys 49 (2015). doi:10.1017/S0033583515000220.

196. Doms RW et al. Membrane fusion activity of the influenza virus hemagglutinin: The low pH-induced conforma-tional change, J Biol Chem 260 (1985).

197. Brandenberg OF et al. The HIV-1 entry process: A stoichiometric view, Trends Microbiol 23 (2015). doi:10.1016/j.tim.2015.09.003.

198. White JM et al. Structures and mechanisms of viral membrane fusion proteins: Multiple variations on a common theme, Crit Rev Biochem Mol Biol 43 (2008). doi:10.1080/10409230802058320.

199. Schoch C, Blumenthal R. Role of the fusion peptide sequence in initial stages of influenza hemagglutinin-induced cell fusion, J Biol Chem 268 (1993).

200. Batishchev OV et al. pH-dependent formation and disintegration of the influenza A virus protein scaffold to pro-vide tension for membrane fusion, J Virol 90 (2016). doi:10.1128/JVI.01539-15.

201. Treanor JJ. Prospects for broadly protective influenza vaccines, Vaccine 33 (2015). doi:10.1016/j.vac-cine.2015.08.053.

202. Krammer F. The quest for a universal flu vaccine: Headless HA 2.0, Cell Host Microbe 18 (2015). doi:10.1016/j.chom.2015.10.003.

203. Stegmann T et al. Effects of low ph on influenza virus - activation and inactivation of the membrane fusion ca-pacity of the hemagglutinin, J Biol Chem 262 (1987).

204. Puri A et al. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 sub-types - effects of acid pretreatment, J Virol 64 (1990).

205. Tatulian SA, Tamm LK. Reversible pH-dependent conformational change of reconstituted influenza hemaggluti-nin, J Mol Biol 260 (1996). doi:10.1006/jmbi.1996.0402.

(9)

206. Russier M et al. Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein, PNAS 113 (2016). doi:10.1073/pnas.1524384113.

207. Chao LH et al. Sequential conformational rearrangements in flavivirus membrane fusion, eLife 3 (2014). doi:10.7554/eLife.04389.

208. Chlanda P, Zimmerberg J. Protein-lipid interactions critical to replication of the influenza A virus, FEBS Lett 590 (2016). doi:10.1002/1873-3468.12118.

209. Garcia NK, Lee KK. Dynamic viral glycoprotein machines: Approaches for probing transient states that drive membrane fusion, Viruses-Basel 8 (2016). doi:10.3390/v8010015.

210. Englander SW et al. Protein folding—How and why: By hydrogen exchange, fragment separation, and mass spec-trometry, Annu Rev Biophys 45 (2016). doi:10.1146/annurev-biophys-062215-011121.

211. Munro JB et al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions, Sci-ence 346 (2014). doi:10.1126/sciSci-ence.1254426.

212. Woodside MT, Block SM. Reconstructing folding energy landscapes by single-molecule force spectroscopy, Annu Rev Biophys 43 (2014). doi:10.1146/annurev-biophys-051013-022754.

213. Herrmann A, Sieben C. Single-virus force spectroscopy unravels molecular details of virus infection, Integr Biol 7 (2015). doi:10.1039/c5ib00041f.

214. Shroff H et al. Biocompatible force sensor with optical readout and dimensions of 6 nm3, Nano Lett 5 (2005). doi:10.1021/nl050875h.

215. Ovchinnikov V et al. A simplified confinement method for calculating absolute free energies and free energy and entropy differences, J Phys Chem B 117 (2013). doi:10.1021/jp3080578.

216. Valsson O et al. Enhancing important fluctuations: Rare events and metadynamics from a conceptual viewpoint, Annu Rev Phys Chem 67 (2016). doi:10.1146/annurev-physchem-040215-112229.

217. Perez A et al. Advances in free-energy-based simulations of protein folding and ligand binding, Curr Opin Struct Biol 36 (2016). doi:10.1016/j.sbi.2015.12.002.

218. Blijleven JS et al. Mechanisms of influenza viral membrane fusion, Semin Cell Dev Biol 60 (2016). doi:10.1016/j.semcdb.2016.07.007.

219. Boonstra S. Computational studies of influenza hemagglutinin, Dissertation University of Groningen: Groningen (2017). Available at URL: https://hdl.handle.net/11370/0f95f54b-1333-41ca-b5fc-d56a473fcd6c.

220. Costello DA et al. Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers, Biomaterials 34 (2013). doi:10.1016/j.biomaterials.2013.06.034.

221. Ekiert DC et al. A highly conserved neutralizing epitope on group 2 influenza A viruses, Science 333 (2011). doi:10.1126/science.1204839.

222. Brandenburg B et al. Mechanisms of hemagglutinin targeted influenza virus neutralization, PLoS One 8 (2013). doi:10.1371/journal.pone.0080034.

223. Hsu H et al. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level, Sci Rep 6 (2016). doi:10.1038/srep35537.

224. Leung JY et al. Replication of alphaviruses: A review on the entry process of alphaviruses into cells, Adv Virol 2011 (2011). doi:10.1155/2011/249640.

225. Powers AM et al. Evolutionary relationships and systematics of the alphaviruses, J Virol 75 (2001). doi:10.1128/JVI.75.21.10118-10131.2001.

226. Enserink M. Infectious diseases. chikungunya: No longer a third world disease, Science 318 (2007). doi:10.1126/science.318.5858.1860.

227. Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus, Nat Rev Microbiol 8 (2010). doi:10.1038/nrmicro2368.

228. Tomasello D, Schlagenhauf P. Chikungunya and dengue autochthonous cases in europe, 2007-2012, Travel Med Infect Dis 11 (2013). doi:10.1016/j.tmaid.2013.07.006.

229. Enserink M. Infectious diseases. crippling virus set to conquer western hemisphere, Science 344 (2014). doi:10.1126/science.344.6185.678.

230. Fischer M et al. Notes from the field: Chikungunya virus spreads in the americas - caribbean and south america, 2013-2014, MMWR Morb Mortal Wkly Rep 63 (2014).

231. Centers for Disease Control and Prevention (CDC). CHIKUNGUNYA information for vector control programs. Available at URL: http://www.cdc.gov/chikungunya/pdfs/CHIKV_VectorControl.pdf.

232. Sourisseau M et al. Characterization of reemerging chikungunya virus, PLoS Pathog 3 (2007). doi:10.1371/jour-nal.ppat.0030089.

233. Burt FJ et al. Chikungunya: A re-emerging virus, Lancet 379 (2012). doi:10.1016/S0140-6736(11)60281-X. 234. Kucharz EJ, Cebula-Byrska I. Chikungunya fever, Eur J Intern Med 23 (2012). doi:10.1016/j.ejim.2012.01.009. 235. Thiberville SD et al. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy, Antiviral Res

(10)

236. Kielian M et al. Alphavirus entry and membrane fusion, Viruses 2 (2010). doi:10.3390/v2040796.

237. Strauss JH, Strauss EG. The alphaviruses: Gene expression, replication, and evolution, Microbiol Rev 58 (1994). 238. Vancini R et al. Alphavirus genome delivery occurs directly at the plasma membrane in a time- and

temperature-dependent process, J Virol 87 (2013). doi:10.1128/JVI.03412-12.

239. Lescar J et al. The fusion glycoprotein shell of semliki forest virus: An icosahedral assembly primed for fusogenic activation at endosomal pH, Cell 105 (2001). doi:10.1016/S0092-8674(01)00303-8.

240. Wahlberg JM et al. The heterodimeric association between the membrane proteins of semliki forest virus changes its sensitivity to low pH during virus maturation, J Virol 63 (1989).

241. Wahlberg JM, Garoff H. Membrane fusion process of semliki forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells, J Cell Biol 116 (1992).

242. Gibbons DL et al. Multistep regulation of membrane insertion of the fusion peptide of semliki forest virus, J Virol 78 (2004).

243. Sanchez-San Martin C et al. A stable prefusion intermediate of the alphavirus fusion protein reveals critical fea-tures of class II membrane fusion, Cell Host Microbe 4 (2008). doi:10.1016/j.chom.2008.10.012.

244. Wengler G et al. During entry of alphaviruses, the E1 glycoprotein molecules probably form two separate popu-lations that generate either a fusion pore or ion-permeable pores, J Gen Virol 85 (2004).

245. Harrison SC. Viral membrane fusion, Nat Struct Mol Biol 15 (2008). doi:10.1038/nsmb.1456.

246. Lu YE et al. The cholesterol requirement for sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence, J Virol 73 (1999).

247. Nieva JL et al. Membrane fusion of semliki forest virus requires sphingolipids in the target membrane, EMBO J 13 (1994).

248. Smit JM et al. Low-pH-dependent fusion of sindbis virus with receptor-free cholesterol- and sphingolipid-con-taining liposomes, J Virol 73 (1999).

249. White J, Helenius A. pH-dependent fusion between the semliki forest virus membrane and liposomes, Proc Natl Acad Sci U S A 77 (1980).

250. Bron R et al. Membrane fusion of semliki forest virus in a model system: Correlation between fusion kinetics and structural changes in the envelope glycoprotein, EMBO J 12 (1993).

251. Glomb-Reinmund S, Kielian M. The role of low pH and disulfide shuffling in the entry and fusion of semliki forest virus and sindbis virus, Virology 248 (1998). doi:10.1006/viro.1998.9275.

252. Bernard E et al. Endocytosis of chikungunya virus into mammalian cells: Role of clathrin and early endosomal compartments, PLoS One 5 (2010). doi:10.1371/journal.pone.0011479.

253. Gay B et al. pH-dependent entry of chikungunya virus into aedes albopictus cells, Infect Genet Evol 12 (2012). doi:10.1016/j.meegid.2012.02.003.

254. Sanchez-San Martin C et al. Cross-inhibition of chikungunya virus fusion and infection by alphavirus E1 domain III proteins, J Virol 87 (2013). doi:10.1128/JVI.00814-13.

255. Tsetsarkin KA et al. Chikungunya virus adaptation to aedes albopictus mosquitoes does not correlate with acqui-sition of cholesterol dependence or decreased pH threshold for fusion reaction, Virol J 8 (2011).

doi:10.1186/1743-422X-8-376.

256. Brandenberg OF et al. Different infectivity of HIV-1 strains is linked to number of envelope trimers required for entry, PLoS Pathog 11 (2015). doi:10.1371/journal.ppat.1004595.

257. Pal R et al. Pyrene phospholipid as a biological fluorescent probe for studying fusion of virus membrane with lip-osomes, Biochemistry 27 (1988).

258. Waarts BL et al. Reversible acid-induced inactivation of the membrane fusion protein of semliki forest virus, J Virol 79 (2005). doi:10.1128/JVI.79.12.7942-7948.2005.

259. Hinterdorfer P et al. Reconstitution of membrane fusion sites. A total internal reflection fluorescence microscopy study of influenza hemagglutinin-mediated membrane fusion, J Biol Chem 269 (1994).

260. Imai M et al. Membrane fusion by single influenza hemagglutinin trimers: Kinetic evidence from image analysis of hemagglutinin-reconstituted vesicles, J Biol Chem 281 (2006). doi:10.1074/jbc.M600902200.

261. Melikyan GB et al. Imaging individual retroviral fusion events: From hemifusion to pore formation and growth, Proc Natl Acad Sci U S A 102 (2005). doi:10.1073/pnas.0501864102.

262. Niles WD, Cohen FS. Fusion of influenza virions with a planar lipid membrane detected by video fluorescence microscopy, J Gen Physiol 97 (1991).

263. Hoekstra D et al. Fluorescence method for measuring the kinetics of fusion between biological membranes, Bio-chemistry 23 (1984).

264. Kielian MC, Helenius A. Role of cholesterol in fusion of semliki forest virus with membranes, J Virol 52 (1984). 265. Klimjack MR et al. Membrane and protein interactions of a soluble form of the semliki forest virus fusion protein,

J Virol 68 (1994).

(11)

267. Umashankar M et al. Differential cholesterol binding by class II fusion proteins determines membrane fusion properties, J Virol 82 (2008). doi:10.1128/JVI.00975-08.

268. Wahlberg JM et al. Membrane fusion of semliki forest virus involves homotrimers of the fusion protein, J Virol 66 (1992).

269. Chatterjee PK et al. Novel mutations that control the sphingolipid and cholesterol dependence of the semliki for-est virus fusion protein, J Virol 76 (2002).

270. Waarts BL et al. Sphingolipid and cholesterol dependence of alphavirus membrane fusion. lack of correlation with lipid raft formation in target liposomes, J Biol Chem 277 (2002). doi:10.1074/jbc.M206998200.

271. Ahn A et al. The fusion peptide of semliki forest virus associates with sterol-rich membrane domains, J Virol 76 (2002).

272. Moesby L et al. Sphingolipids activate membrane fusion of semliki forest virus in a stereospecific manner, Bio-chemistry 34 (1995).

273. Samsonov AV et al. Effects of membrane potential and sphingolipid structures on fusion of semliki forest virus, J Virol 76 (2002).

274. Gibbons DL et al. Conformational change and protein-protein interactions of the fusion protein of semliki forest virus, Nature 427 (2004). doi:10.1038/nature02239.

275. Ross RW. A laboratory technique for studying the insect transmission of animal viruses, employing a bat-wing membrane, demonstrated with two african viruses, J Hyg (Lond) 54 (1956).

276. Bottcher CSF. A rapid and sensitive submicro phosphorus determination, Ann Chim Acta 24 (1961). doi:10.1016/0003-2670(61)80041-X.

277. Laine R et al. Chemical composition of semliki forest virus, Intervirology 1 (1973).

278. van der Schaar HM et al. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking J Virol 81 (2007). doi:10.1128/JVI.00300-07.

279. Kolter T, Sandhoff K. Lysosomal degradation of membrane lipids, FEBS Lett 584 (2010). doi:10.1016/j.feb-slet.2009.10.021.

280. van Meer G et al. Membrane lipids: Where they are and how they behave, Nat Rev Mol Cell Biol 9 (2008). doi:10.1038/nrm2330.

281. Thompson BS et al. A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes PLoS Pathog 5 (2009). doi:10.1371/journal.ppat.1000453.

282. Nollert P et al. Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces, Biophys J 69 (1995). doi:10.1016/S0006-3495(95)80014-7.

283. Bonizzoni M et al. The invasive mosquito species aedes albopictus: Current knowledge and future perspectives Trends Parasitol 29 (2013). doi:10.1016/j.pt.2013.07.003.

284. Reiter P et al. Aedes albopictus as an epidemic vector of chikungunya virus: Another emerging problem? Lancet Infect Dis 6 (2006). doi:10.1016/S1473-3099(06)70531-X.

285. Weaver SC, Forrester NL. Chikungunya: Evolutionary history and recent epidemic spread, Antiviral Res 120 (2015). doi:10.1016/j.antiviral.2015.04.016.

286. Jose J et al. A structural and functional perspective of alphavirus replication and assembly, Future Microbiol 4 (2009). doi:10.2217/fmb.09.59.

287. Hoornweg TE et al. Dynamics of chikungunya virus cell entry unraveled by single-virus tracking in living cells J Virol 90 (2016). doi:10.1128/JVI.03184-15.

288. van Duijl-Richter MK et al. Chikungunya virus fusion properties elucidated by single-particle and bulk ap-proaches, J Gen Virol 96 (2015). doi:10.1099/vir.0.000144.

289. Cao S, Zhang W. Characterization of an early-stage fusion intermediate of sindbis virus using cryoelectron mi-croscopy, Proc Natl Acad Sci U S A 110 (2013). doi:10.1073/pnas.1301911110.

290. Zheng Y et al. The domain I-domain III linker plays an important role in the fusogenic conformational change of the alphavirus membrane fusion protein, J Virol 85 (2011). doi:10.1128/JVI.00596-11.

291. Clayton AM. Monoclonal antibodies as prophylactic and therapeutic agents against chikungunya virus J Infect Dis 214 (2016). doi:10.1093/infdis/jiw324.

292. Pal P et al. Development of a highly protective combination monoclonal antibody therapy against chikungunya virus, PLoS Pathog 9 (2013). doi:10.1371/journal.ppat.1003312.

293. Pal P et al. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes, J Virol 88 (2014). doi:10.1128/JVI.01032-14.

294. Sun S et al. Structural analyses at pseudo atomic resolution of chikungunya virus and antibodies show mecha-nisms of neutralization, Elife 2 (2013). doi:10.7554/eLife.00435.

295. Kielian M, Helenius A. pH-induced alterations in the fusogenic spike protein of semliki forest virus. The Journal of Cell Biology 101 (1985).

(12)

296. Selvarajah S et al. A neutralizing monoclonal antibody targeting the acid-sensitive region in chikungunya virus E2 protects from disease, PLoS Negl Trop Dis 7 (2013). doi:10.1371/journal.pntd.0002423.

297. Smith SA et al. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with thera-peutic activity against chikungunya virus, Cell Host Microbe 18 (2015). doi:10.1016/j.chom.2015.06.009. 298. Fox JM et al. Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress Cell

163 (2015). doi:10.1016/j.cell.2015.10.050.

299. Jin J et al. Neutralizing monoclonal antibodies block chikungunya virus entry and release by targeting an epitope critical to viral pathogenesis Cell Rep 13 (2015). doi:10.1016/j.celrep.2015.11.043.

300. Kaufmann B et al. Neutralization of west nile virus by cross-linking of its surface proteins with fab fragments of the human monoclonal antibody CR4354 Proc Natl Acad Sci U S A 107 (2010). doi:10.1073/pnas.1011036107. 301. Zeng X et al. Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion, Proc

Natl Acad Sci U S A 112 (2015). doi:10.1073/pnas.1414190112.

302. Gibbons DL et al. Visualization of the target-membrane-inserted fusion protein of semliki forest virus by com-bined electron microscopy and crystallography, Cell 114 (2003). doi:10.1016/S0092-8674(03)00683-4. 303. van der Borg G et al. Single-particle fusion of influenza viruses reveals complex interactions with target

Referenties

GERELATEERDE DOCUMENTEN

19 Lipidated conjugates of Coil-K and Coil-E have been synthesised and incorporated into liposomes and, upon mixing, a parallel coiled coil is formed which forces the two

19 The hemagglutinin protein (Figure 1.4, blue) mediates both attachment to a target cell and entry into that cell, the last step by catalyzing the fusion of the viral and

In the canonical productive pathway, for k extension > k foldback (), coiled-coil formation in the B loop (blue) enables HA extension and insertion of the fusion peptide

Deze stap van mem- braanfusie wordt gemedieerd door eiwitmoleculen op het virus. In dit proces klappen de eiwit- moleculen uit, grijpen het andere membraan, en vouwen vervolgens

Kim, Monique, Keri, Gerco, voor de vele spelletjes, gesprekken en gewoon gezelligheid, wat zo belangrijk voor me was om ook even uit dat onderzoek te komen; de filosofiegroep,

 van Duijl-Richter MKS*, Blijleven JS*, van Oijen AM†, Smit JS†, Chikungunya virus fusion properties elucidated by single-particle and bulk approaches, Journal of General

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright

Membrane fusion of influenza and chikungunya viruses Blijleven, Jelle.. IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite