• No results found

A VLT/MUSE analysis of HeIIλ1640 emitters at z=2-4

N/A
N/A
Protected

Academic year: 2021

Share "A VLT/MUSE analysis of HeIIλ1640 emitters at z=2-4"

Copied!
50
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

E X P L O R I N G H E I I 1 6 4 0 E M I S S I O N L I N E P R O P E R T I E S AT Z = 2 - 4

@themiyan

T H E M I YA N A N AYA K K A R A

Jarle Brinchmann, Leindert Boogaard, Rychard Bouwens, Sebastiano Cantalupo, Anna Feltre,

(2)
(3)
(4)
(5)

E > 5 4.4 e V

Po p I I I

S t ar s

( To p h e av y I M F)

(6)
(7)
(8)
(9)
(10)

C u r r e n t s t e l l a r p o p u l a t i o n / p h o t o i o n i s a t i o n

m o d e l s f a i l t o p r e d i c t t h e o b s e r v e d H e I I f e a t u r e s

(11)

C u r r e n t s t e l l a r p o p u l a t i o n / p h o t o i o n i s a t i o n

m o d e l s f a i l t o p r e d i c t t h e o b s e r v e d H e I I f e a t u r e s

(12)

H e + i o n i s i n g p h o t o n s c a n b e p r o d u c e d v i a

m u l t i p l e m e c h a n i s m s , s o s o m e s o l u t i o n s i n c l u d e :

Decrease Z/mass threshold to produce W-R stars

Include contribution from X-Ray Binaries

Increase N of Young massive stars

Consider contributions from Shocks and AGN

(13)

T e s t i n g t h e s e m o d e l s a n d p r o v i d i n g c o n s t r a i n t s

r e q u i r e s H e I I e m i t t e r s i n a v a r i e t y o f c o n d i t i o n s

P.1

(14)
(15)

W e u s e m u l t i p l e G T O p o i n t i n g s w i t h d e e p e x p o s u r e s

t o i d e n t i f y a n y H e I I λ

1 6 4 0

e m i t t e r s

(16)

W e u s e m u l t i p l e G T O p o i n t i n g s w i t h d e e p e x p o s u r e s

t o i d e n t i f y a n y H e I I λ

1 6 4 0

e m i t t e r s

(17)
(18)
(19)
(20)
(21)

1.0

0.5

0.0

0.5

(22)

4

3

2

1

0

1

2

log

10

(EW (Heii 1640)[˚

A])

3

2

1

0

1

log

10

(EW

(O

iii

]

1666)[

˚ A])

4

3

2

1

0

1

2

log

10

(EW (Heii 1640)[˚

A])

(23)

4

3

2

1

0

1

2

log

10

(EW (Heii 1640)[˚

A])

3

2

1

0

1

log

10

(EW

(O

iii

]

1666)[

˚ A])

4

3

2

1

0

1

2

log

10

(EW (Heii 1640)[˚

A])

(24)

40.50 40.75 41.00 41.25 41.50 41.75 1 0 1 2 3 4

log

10

([N

i,

obs

/N

i,

pred

]

HeI

I

1640

)

Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 40.50 40.75 41.00 41.25 41.50 41.75

log

10

(L[HeII 1640]

obs

(erg/s))

(25)

40.50 40.75 41.00 41.25 41.50 41.75 1 0 1 2 3 4

log

10

([N

i,

obs

/N

i,

pred

]

HeI

I

1640

)

Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 40.50 40.75 41.00 41.25 41.50 41.75

log

10

(L[HeII 1640]

obs

(erg/s))

(26)

40.50 40.75 41.00 41.25 41.50 41.75 1 0 1 2 3 4

log

10

([N

i,

obs

/N

i,

pred

]

HeI

I

1640

)

Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 Z = 0.010 40.50 40.75 41.00 41.25 41.50 41.75

log

10

(L[HeII 1640]

obs

(erg/s))

(27)

W e l a c k a c o m p r e h e n s i v e u n d e r s t a n d i n g o f s t e l l a r s p e c t r a i n t h e F U V

w h i c h m a y c o n t r i b u t e t o l a c k i n m e c h a n i s m s p r o d u c i n g o f

E

p h o t o n

> 5 4 e V

(28)

© S t a n w a y & E l d r i d g e ( 2 0 19 )

T h e l a c k o f h a r d i o n i s i n g p h o t o n s i s

(29)
(30)

Is it variations in the IMF?

(31)
(32)

© G r ä f e n e r & V i n k ( 2 0 1 5 ) +

(33)

© G r ä f e n e r & V i n k ( 2 0 1 5 ) +

(34)

© G r ä f e n e r & V i n k ( 2 0 1 5 ) +

Is it very massive stars at Eddington limit?

(35)

© G r ä f e n e r & V i n k ( 2 0 1 5 ) +

Is it very massive stars at Eddington limit?

(36)

Is it contributions from X-ray Binaries?

(37)

Is it contributions from X-ray Binaries?

© S c h a e r e r + ( 2 0 19 )

(38)

Is it contributions from X-ray Binaries?

© S c h a e r e r + ( 2 0 19 )

B PAS S o n ly

(39)
(40)

How can we provide observational

constraints?

(41)
(42)

©Bacon et al.,

MUSE XDF program

(43)
(44)
(45)

MUSE HFF program

©Wisotzki et al.

©Wisotzki et al.

(46)

MUSE HFF program

2 0 0 h p r o g r a m w i t h 4 H F F p ar al le l f i e l d s .

E a c h f i e l d :

D e e p : 1 ` x 1 ` 2 5 h p o i nt i n g

M e d i u m : 2 ` x 2 ` 5 h p o i nt i n g s

s h al lo w : 3 ` x 3 ` 1.7 h p o i nt i n g s

©Wisotzki et al.

©Wisotzki et al.

(47)
(48)
(49)
(50)

C O N C L U S I O N S

We compose a catalogue with ≈

13

HeII1640 detections from MUSE (and ≈

20

tentative detections from

other public surveys).

Using Gutkin et al.,

(2016)

models we show our observed emission line ratios can be reproduced via

high-U sub-solar Z models.

Including effects of binaries from Xiao et al.,

(2018)

models makes the model parameters

degenerate.

We show even BPASS models are unable to reproduce the observed HeIIλ1640 and OIII]λ1666 equivalent

widths.

We show that matching HeIIλ1640 luminosities with BPASS models require ~

1/200

Z

models which

are in tension with gas phase metallicities inferred via line-ratio diagnostics.

IMFs with larger fractions of high mass stars (top heavy) or exotic stellar population mechanisms

such as XRBs or very massive WNh stars that can produce photons at wavelength < 275 Å with

relatively low wind effects are required to match our observed data with models.

Referenties

GERELATEERDE DOCUMENTEN

The upper limits for M 2 sin i of hypotheti- cal companions around the RV constant BDs /VLMSs range be- tween 0.1 M Jup and 1.5 M Jup (Table 3, upper part) assuming a circular orbit,

The purpose of this study was to evaluate the long-term (18 months) eff ect of a once-only 30-day VLCD (Modifast®, 450 kCal/day) on body weight and glycaemic control in obese type

Two days of a very low calorie diet reduces endogenous glucose production in obese type 2 diabetic patients despite the withdrawal of blood glucose lowering therapies

If all types of galaxies we consider here (LAEs, BBGs, and photo-z candidates) trace the same underlying struc- ture represented by a matter overdensity δ, the impli- cation would

First, the auto-correlation function of both quasars (Shen et al. 2010) are well measured by previous work, which allow us to compute the expected strength of the cross-

The proce- dure browse the SN curves (see Fig. 7, and picks the pre- computed 2D source plane projection computed from the correct SN value and the appropriate redshift value.

We have indicated the origin of gas features either as interstellar (IS) or circumstellar (CS) from the literature as listed in Sect. 1995) were devoted to the group of λ Bootis

equivalent widths in excess of ∼250 Å. The two emitters which do not show a convincing line asymmetry and do not show con- tinuum both redward and blueward of the emission line,