• No results found

Data-driven distributionally robust LQR with multiplicative noise

N/A
N/A
Protected

Academic year: 2021

Share "Data-driven distributionally robust LQR with multiplicative noise"

Copied!
101
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Data-driven distributionally robust LQR

with multiplicative noise

Peter Coppens, Mathijs Schuurmans, Panagiotis Patrinos

(2)
(3)

Control in uncertain environments model = reality generalize model ≠ reality safety conservative performance

(4)

Control in uncertain environments model = reality generalize model ≠ reality safety conservative performance

(5)

Control in uncertain environments model = reality generalize model ≠ reality safety conservative performance

(6)

Control in uncertain environments model = reality generalize model ≠ reality safety conservative performance

(7)

Control in uncertain environments model = reality generalize model ≠ reality safety conservative performance

(8)

Control in uncertain environments model = reality generalize model ≠ reality safety conservative performance

(9)

Uncertain systems financial (bio-)chemical climate control power distribution robotics/autonomous vehicles

(10)

Learning to generalize

classical controlidentification and controller design are kept seperate.

Data identification Model synthesis Controller

(11)

Learning to generalize

coarse id controlexplicitly include ambiguity in the model throughout the design1.

Data identification Model synthesis Controller

(12)

Learning to generalize

coarse id controlexplicitly include ambiguity in the model throughout the design1.

Data identification Model synthesis Controller

(13)

Learning to generalize

coarse id controlexplicitly include ambiguity in the model throughout the design1.

Data identification Model synthesis Controller

(14)
(15)

Robustify — Stochastic and robust optimization • Robust optimization (𝑤 ∈ 𝒲) min 𝑥 max𝑤∈𝒲 𝑓(𝑥,𝑤) s. t. 𝑔(𝑥,𝑤) ≤ 0,∀𝑤 ∈ 𝒲 • Stochastic optimization (𝑤 ∼ IP𝑤) min 𝑥 IE[𝑓(𝑥,𝑤)] s. t. IP[𝑔(𝑥,𝑤) ≤ 0] ≥ 1 − 𝛿

(16)

Robustify — Stochastic and robust optimization

• Robust optimization (𝑤 ∈ 𝒲)

min

𝑥 max𝑤∈𝒲 𝑓(𝑥,𝑤)

s. t. 𝑔(𝑥,𝑤) ≤ 0,∀𝑤 ∈ 𝒲

strong guarantees, conservative

• Stochastic optimization (𝑤 ∼ IP𝑤)

min

𝑥 IE[𝑓(𝑥,𝑤)]

s. t. IP[𝑔(𝑥,𝑤) ≤ 0] ≥ 1 − 𝛿

(17)

Robustify — Stochastic and robust optimization • Robust optimization (𝑤 ∈ 𝒲) min 𝑥 max𝑤∈𝒲 𝑓(𝑥,𝑤) s. t. 𝑔(𝑥,𝑤) ≤ 0,∀𝑤 ∈ 𝒲 • Stochastic optimization (𝑤 ∼ IP𝑤) min 𝑥 IE[𝑓(𝑥,𝑤)] s. t. IP[𝑔(𝑥,𝑤) ≤ 0] ≥ 1 − 𝛿

(18)

Robustify — Stochastic and robust optimization • Robust optimization (𝑤 ∈ 𝒲) min 𝑥 max𝑤∈𝒲 𝑓(𝑥,𝑤) s. t. 𝑔(𝑥,𝑤) ≤ 0,∀𝑤 ∈ 𝒲 • Stochastic optimization (𝑤 ∼ IP𝑤) min 𝑥 IE[𝑓(𝑥,𝑤)] s. t. IP[𝑔(𝑥,𝑤) ≤ 0] ≥ 1 − 𝛿 less guarantees, optimal

(19)

Robustify — Distributionally robust optimization • Distributionally robust (𝜉 ∼ IP𝑤,IP𝑤∈ 𝒜) min 𝑥 IPmax𝑤∈𝒜 IE𝑤[𝑓(𝑥,𝑤)] s. t. IP𝑤[𝑔(𝑥,𝑤) ≤ 0] ≥ 1 − 𝛿,∀IP𝑤∈ 𝒜

conservatism decreases with data akin to automatic regularization2 already applied in control before3-5

(20)

Robustify — Distributionally robust optimization • Distributionally robust (𝜉 ∼ IP𝑤,IP𝑤∈ 𝒜) min 𝑥 IPmax𝑤∈𝒜 IE𝑤[𝑓(𝑥,𝑤)] s. t. IP𝑤[𝑔(𝑥,𝑤) ≤ 0] ≥ 1 − 𝛿,∀IP𝑤∈ 𝒜

conservatism decreases with data

akin to automatic regularization2 already applied in control before3-5

(21)

Robustify — Distributionally robust optimization • Distributionally robust (𝜉 ∼ IP𝑤,IP𝑤∈ 𝒜) min 𝑥 IPmax𝑤∈𝒜 IE𝑤[𝑓(𝑥,𝑤)] s. t. IP𝑤[𝑔(𝑥,𝑤) ≤ 0] ≥ 1 − 𝛿,∀IP𝑤∈ 𝒜

conservatism decreases with data akin to automatic regularization2

(22)

Robustify — Distributionally robust optimization • Distributionally robust (𝜉 ∼ IP𝑤,IP𝑤∈ 𝒜) min 𝑥 IPmax𝑤∈𝒜 IE𝑤[𝑓(𝑥,𝑤)] s. t. IP𝑤[𝑔(𝑥,𝑤) ≤ 0] ≥ 1 − 𝛿,∀IP𝑤∈ 𝒜

conservatism decreases with data akin to automatic regularization2 already applied in control before3-5

(23)
(24)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

(25)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given 𝑤(𝑖)𝑘 𝑤(𝑖)𝑘

(26)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

(27)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf 𝑢 {ℓ(𝑥, 𝑢) + IE [𝑉 (𝑥+) ∣ (𝑥, 𝑢)]} IE [𝑥⊤ +𝑃 𝑥+ ∣ (𝑥, 𝑢)] = (A0𝑥 + B0𝑢) ⊤ ([1 𝜇 ⊤ 𝜇 Σ + 𝜇𝜇⊤] ⊗ 𝑃) (A0𝑥 + B0𝑢) , whereA0= [𝐴⊤0 𝐴⊤1 … 𝐴⊤𝑛𝑤] ⊤ andB0= [𝐵⊤0 𝐵1⊤ … 𝐵𝑛⊤𝑤] ⊤

(28)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + IE [𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

(29)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + IE [𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

generalized Riccati equation1-3

properties of optimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞ • performant true optimum

(30)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + IE [𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

generalized Riccati equation1-3

properties of optimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞

• performant true optimum • only depends on 𝜇 and Σ

(31)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + IE [𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

generalized Riccati equation1-3

properties of optimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞ • performant true optimum

(32)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + IE [𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

generalized Riccati equation1-3

properties of optimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞ • performant true optimum

(33)

DR-LQR — The nominal problem minimize 𝑢0,𝑢1,… IE [ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = (𝐴0+ ∑𝑛𝑤 𝑖=1𝐴𝑖𝑤 (𝑖) 𝑘 ) 𝑥𝑘+ (𝐵0+ ∑ 𝑛𝑤 𝑖=0𝐵𝑖𝑤 (𝑖) 𝑘 ) 𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + IE [𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

generalized Riccati equation1-3

properties of optimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞ • performant true optimum

(34)

DR-LQR — Learning to generalize

Data identification Model Controller synthesis

(35)

DR-LQR — Learning to generalize

Data identification Model Controller synthesis

quantify robustify

assumptions about the data:

• access to samples {𝑤𝑖}𝑀𝑖=1 • Σ−1/2(𝑤 − 𝜇) is sub-Gaussian • 𝜇̂= 1 𝑀∑ 𝑀 𝑖=1𝑤𝑖 • Σ̂ = 𝑀1 ∑𝑖=1𝑀 (𝑤𝑖− ̂𝜇)(𝑤𝑖− ̂𝜇)⊤

(36)

DR-LQR — Learning to generalize

Data identification Model Controller synthesis

quantify robustify

assumptions about the data:

• access to samples {𝑤𝑖}𝑀𝑖=1 • Σ−1/2(𝑤 − 𝜇) is sub-Gaussian1 • 𝜇̂= 1 𝑀∑ 𝑀 𝑖=1𝑤𝑖 • Σ̂ = 𝑀1 ∑𝑖=1𝑀 (𝑤𝑖− ̂𝜇)(𝑤𝑖− ̂𝜇)⊤

(37)

DR-LQR — Learning to generalize

Data identification Model Controller synthesis

quantify robustify

assumptions about the data:

• access to samples {𝑤𝑖}𝑀𝑖=1 • Σ−1/2(𝑤 − 𝜇) is sub-Gaussian1 • 𝜇̂= 1 𝑀∑ 𝑀 𝑖=1𝑤𝑖 • Σ̂ = 𝑀1 ∑𝑖=1𝑀 (𝑤𝑖− ̂𝜇)(𝑤𝑖− ̂𝜇)⊤

(38)

DR-LQR — The ambiguity set

quantization: determine 𝑟𝜇and 𝑟Σsuch that IP [IP⋆𝑤 ∈ 𝒜] ≥ 1 − 𝛽

𝒜 ∶= {IP𝑤∣ (𝜇−𝜇)̂

Σ̂−1(𝜇𝜇̂) ≤ 𝑟 𝜇(𝛽)

(39)

DR-LQR — The ambiguity set

quantization: determine 𝑟𝜇and 𝑟Σsuch that IP [IP⋆𝑤 ∈ 𝒜] ≥ 1 − 𝛽

𝒜 ∶= {IP𝑤∣ (𝜇−𝜇)̂

Σ̂−1(𝜇𝜇̂) ≤

Σ⪯ Σ̂ }

𝑟𝜇(𝛽) 𝑟Σ(𝛽)

(40)

DR-LQR — The ambiguity set

quantization: determine 𝑟𝜇and 𝑟Σsuch thatIP [IP⋆𝑤 ∈ 𝒜] ≥ 1 − 𝛽

𝒜 ∶= {IP𝑤∣ (𝜇−𝜇)̂

Σ̂−1(𝜇𝜇̂) ≤ 𝑟 𝜇(𝛽)

(41)

DR-LQR — The ambiguity set

quantization: determine 𝑟𝜇and 𝑟Σsuch that IP [IP⋆𝑤 ∈ 𝒜] ≥ 1 − 𝛽

𝒜 ∶= {IP𝑤∣ (𝜇−𝜇)̂

Σ̂−1(𝜇𝜇̂) ≤ 𝑟 𝜇(𝛽)

Σ⪯ 𝑟Σ(𝛽)Σ̂ }

• radii decrease with 1/√# samples

• no knowledge of true distribution required • sufficient samples required

(42)

DR-LQR — The ambiguity set

quantization: determine 𝑟𝜇and 𝑟Σsuch that IP [IP⋆𝑤 ∈ 𝒜] ≥ 1 − 𝛽

𝒜 ∶= {IP𝑤∣ (𝜇−𝜇)̂

Σ̂−1(𝜇𝜇̂) ≤ 𝑟 𝜇(𝛽)

Σ⪯ 𝑟Σ(𝛽)Σ̂ }

• radii decrease with 1/√# samples

• no knowledge of true distribution required

(43)

DR-LQR — The ambiguity set

quantization: determine 𝑟𝜇and 𝑟Σsuch that IP [IP⋆𝑤 ∈ 𝒜] ≥ 1 − 𝛽

𝒜 ∶= {IP𝑤∣ (𝜇−𝜇)̂

Σ̂−1(𝜇𝜇̂) ≤ 𝑟 𝜇(𝛽)

Σ⪯ 𝑟Σ(𝛽)Σ̂ }

• radii decrease with 1/√# samples

• no knowledge of true distribution required • sufficient samples required

(44)

DR-LQR — The ambiguity set

quantization: determine 𝑟𝜇and 𝑟Σsuch that IP [IP⋆𝑤 ∈ 𝒜] ≥ 1 − 𝛽

𝒜 ∶= {IP𝑤∣ (𝜇−𝜇)̂

Σ̂−1(𝜇𝜇̂) ≤ 𝑟 𝜇(𝛽)

(45)

DR-LQR — The ambiguity set

quantization: determine 𝑟𝜇and 𝑟Σsuch that IP [IP⋆𝑤 ∈ 𝒜] ≥ 1 − 𝛽 𝒜 ∶= {IP𝑤∣ (𝜇−𝜇)̂

Σ̂−1(𝜇𝜇̂) ≤ 𝑟 𝜇(𝛽)

Σ⪯ 𝑟Σ(𝛽)Σ̂ }

synthesis: find the distributionally robust controller

min 𝑢0,𝑢1,…IPmax𝑤∈𝒜 IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

(46)

DR-LQR — Uncertain covariance min 𝑢0,𝑢1,…Σ⪯𝑟max ΣΣ̂ IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

(47)

DR-LQR — Uncertain covariance min 𝑢0,𝑢1,… IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given max Σ⪯𝑟ΣΣ̂

(48)

DR-LQR — Uncertain covariance min 𝑢0,𝑢1,…Σ⪯𝑟max ΣΣ̂ IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) +Σ⪯𝑟max ΣΣ̂

(49)

DR-LQR — Uncertain covariance min 𝑢0,𝑢1,…Σ⪯𝑟max ΣΣ̂ IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf 𝑢 {ℓ(𝑥, 𝑢) + maxΣ⪯𝑟 ΣΣ̂ IE𝑤[𝑉 (𝑥+) ∣ (𝑥, 𝑢)]} max Σ⪯𝑟ΣΣ̂ IE𝑤[𝑥⊤+𝑃 𝑥+ ∣ (𝑥, 𝑢)] = (A0𝑥 + B0𝑢) ⊤ ([1 𝜇 ⊤ 𝜇 𝑟ΣΣ̂+ 𝜇𝜇⊤] ⊗ 𝑃) (A0𝑥 + B0𝑢)

(50)

DR-LQR — Uncertain covariance min 𝑢0,𝑢1,…Σ⪯𝑟max ΣΣ̂ IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + maxΣ⪯𝑟 ΣΣ̂

IE𝑤[𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

(51)

DR-LQR — Uncertain covariance min 𝑢0,𝑢1,…Σ⪯𝑟max ΣΣ̂ IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + maxΣ⪯𝑟 ΣΣ̂

IE𝑤[𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

generalized Riccati equation

properties of optimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing w.h.p. IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞

• performant converges to true optimum • only depends on 𝜇 and𝑟ΣΣ̂

(52)

DR-LQR — Uncertain covariance min 𝑢0,𝑢1,…Σ⪯𝑟max ΣΣ̂ IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + maxΣ⪯𝑟 ΣΣ̂

IE𝑤[𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

generalized Riccati equation

properties of optimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing w.h.p. IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞ • performant converges to true optimum

(53)

DR-LQR — Uncertain covariance min 𝑢0,𝑢1,…Σ⪯𝑟max ΣΣ̂ IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solution is still quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) + maxΣ⪯𝑟 ΣΣ̂

IE𝑤[𝑉 (𝑥+) ∣ (𝑥, 𝑢)]}

generalized Riccati equation

properties of optimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing w.h.p. IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞ • performant converges to true optimum • only depends on 𝜇 and𝑟ΣΣ̂

(54)

DR-LQR — Full uncertainty min 𝑢0,𝑢1,… max IP𝑤∈𝒜 IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

(55)

DR-LQR — Full uncertainty min 𝑢0,𝑢1,… IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given max IP𝑤∈𝒜

(56)

DR-LQR — Full uncertainty min 𝑢0,𝑢1,… max IP𝑤∈𝒜 IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:solutionno longer quadratic 𝑉 (𝑥) = inf

𝑢 {ℓ(𝑥, 𝑢) +IPmax𝑤∈𝒜

(57)

DR-LQR — Full uncertainty min 𝑢0,𝑢1,… max IP𝑤∈𝒜 IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:approximate solution1

minimize 𝑃 𝑥 ⊤ 0𝑃 𝑥0 subj. to 𝑥⊤𝑃 𝑥 ≥ min 𝑢 {ℓ(𝑥, 𝑢) + maxIP𝑤∈𝒜IE𝑤[𝑥 ⊤ +𝑃 𝑥+]} , ∀𝑥

(58)

DR-LQR — Full uncertainty min 𝑢0,𝑢1,… max IP𝑤∈𝒜 IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:approximate solution1

minimize 𝑃 𝑥 ⊤ 0𝑃 𝑥0 subj. to 𝑥⊤𝑃 𝑥 ≥ min 𝑢 {ℓ(𝑥, 𝑢) + maxIP𝑤∈𝒜IE𝑤[𝑥 ⊤ +𝑃 𝑥+]} , ∀𝑥 solve approximate SDP2

(59)

DR-LQR — Full uncertainty min 𝑢0,𝑢1,… max IP𝑤∈𝒜 IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:approximatesolution1

minimize 𝑃 𝑥 ⊤ 0𝑃 𝑥0 subj. to 𝑥⊤𝑃 𝑥 ≥ min 𝑢 {ℓ(𝑥, 𝑢) + maxIP𝑤∈𝒜 IE𝑤[𝑥⊤ +𝑃 𝑥+]} , ∀𝑥 solveapproximateSDP2

(60)

DR-LQR — Full uncertainty min 𝑢0,𝑢1,… max IP𝑤∈𝒜 IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:approximate solution1

minimize 𝑃 𝑥 ⊤ 0𝑃 𝑥0 subj. to 𝑥⊤𝑃 𝑥 ≥ min 𝑢 {ℓ(𝑥, 𝑢) + maxIP𝑤∈𝒜IE𝑤[𝑥 ⊤ +𝑃 𝑥+]} , ∀𝑥 solve approximate SDP2

properties of approximateoptimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing w.h.p. IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞

(61)

DR-LQR — Full uncertainty min 𝑢0,𝑢1,… max IP𝑤∈𝒜 IE𝑤[ ∞ ∑ 𝑘=0 𝑥⊤ 𝑘𝑄𝑥𝑘+ 𝑢⊤𝑘𝑅𝑢𝑘] subj. to 𝑥𝑘+1 = 𝐴(𝑤𝑘)𝑥𝑘+ 𝐵(𝑤𝑘)𝑢𝑘, ∀𝑘 ∈ IN 𝑥0given

Bellman equation:approximate solution1

minimize 𝑃 𝑥 ⊤ 0𝑃 𝑥0 subj. to 𝑥⊤𝑃 𝑥 ≥ min 𝑢 {ℓ(𝑥, 𝑢) + maxIP𝑤∈𝒜IE𝑤[𝑥 ⊤ +𝑃 𝑥+]} , ∀𝑥 solve approximate SDP2

properties of approximateoptimal controller:

• linear 𝑢 = 𝐾𝑥 (solve SDP)

• safe mean-square stabilizing w.h.p. IE[𝑥⊤

𝑘𝑥𝑘] → 0 as 𝑘 → ∞ • performant converges to true optimum

(62)

DR-LQR — Numerical result 103 104 105 106 10−6 10−5 10−4 10−3 10−2 # samples R el. Subop t. uncertain covariance full uncertainty

(63)

DR-LQR — Numerical result 103 104 105 106 10−6 10−5 10−4 10−3 10−2 # samples R el. Subop t. uncertain covariance full uncertainty 1/# samples

(64)

DR-LQR — Future work

• what to do when not enough samples?

• what to do when only state measurements? • constraints, state observers, …

(65)

DR-LQR — Future work

• what to do when not enough samples? • what to do when only state measurements?

(66)

DR-LQR — Future work

• what to do when not enough samples? • what to do when only state measurements? • constraints, state observers, …

(67)
(68)
(69)

References i

Abadeh, Soroosh Shafieezadeh, Peyman Mohajerin Esfahani, and Daniel Kuhn.

“Distributionally Robust Logistic Regression”.In: Advances in Neural Information Processing Systems 28. 2015, pp. 1576–1584.

Abadeh, Soroosh Shafieezadeh et al.“Wasserstein distributionally robust Kalman filtering”.In: Advances in Neural Information Processing Systems. 2018, pp. 8474–8483. Ben-Tal, Aharon, Laurent El Ghaoui, and Arkadi Nemirovski.“Robustness”.In: Handbook

of Semidefinite Programming. Boston, MA: Springer US, 2000, pp. 139–162.

Boyd, Stephen et al.Linear Matrix Inequalities in System and Control Theory.Society for Industrial and Applied Mathematics, 1994.

Coppens, P. and P. Patrinos.Sample Complexity of Data-Driven Stochastic LQR with Multiplicative Uncertainty.2020. arXiv: 2005.12167.

(70)

References ii

Costa, Oswaldo L.V. and Carlos S. Kubrusly.“Quadratic optimal control for discrete-time infinite-dimensional stochastic bilinear systems”.In: IMA Journal of Mathematical Control and Information 14.4 (1997), pp. 385–399.

Delage, Erick and Yinyu Ye.“Distributionally robust optimization under moment uncertainty with application to data-driven problems”.In: Operations Research 58.3 (2010), pp. 595–612.

Gravell, Benjamin, Peyman Mohajerin Esfahani, and Tyler Summers.“Learning robust control for LQR systems with multiplicative noise via policy gradient”.In: arXiv preprint arXiv:1905.13547 (2019). arXiv: 1905.13547.

Hsu, Daniel, Sham M. Kakade, and Tong Zhang.“A tail inequality for quadratic forms of subgaussian random vectors”.In: Electronic Communications in Probability 17.52 (2012), pp. 1–6.

(71)

References iii

Hsu, Daniel, Sham M. Kakade, and Tong Zhang.“Tail inequalities for sums of random matrices that depend on the intrinsic dimension”.In: Electronic Communications in Probability 17.52 (2012), pp. 1–13.

Rahimian, H. and S. Mehrotra.Distributionally Robust Optimization: A Review.2019. arXiv: 1908.05659.

Recht, Benjamin.“A Tour of Reinforcement Learning: The View from Continuous Control”.In: Annual Review of Control, Robotics, and Autonomous Systems 2.1 (2019), pp. 253–279.

Schuurmans, Mathijs, Pantelis Sopasakis, and Panagiotis Patrinos.“Safe

Learning-Based Control of Stochastic Jump Linear Systems: a Distributionally Robust Approach”.In: 2019 IEEE Conference on Decision and Control (CDC). IEEE. 2019,

(72)

References iv

Vershynin, Roman.High-Dimensional Probability: An Introduction with Applications in Data Science.2018.

Wainwright, Martin J.High-Dimensional Statistics.Cambridge University Press, 2019. Wonham, W. Murray.“Optimal Stationary Control of a Linear System with

State-Dependent Noise”.In: SIAM Journal on Control 5.3 (1967), pp. 486–500. Yang, Insoon.Wasserstein distributionally robust stochastic control: A data-driven

(73)

Assets

Images‘control in uncertain environments’: https://flic.kr/p/<e6tYCK,939fWN,2iUoC88> Images‘uncertain systems’:

https://flic.kr/p/<k283C7,xz8h9,2hRaa8G,r3LtVQ,azfYAW,n9mn42> Matlab code available on request

(74)
(75)
(76)
(77)

Quantify – Sub-Gaussian

Definition (Sub-Gaussian)

Random variable 𝑋 is sub-Gaussian1if, for some 𝜎 ≥ 0, IE[𝑒𝜆(𝑋−IE[𝑋])] ≤ 𝑒𝜎2𝜆2/2

, ∀𝜆 ∈ IR

examples2:

• Gaussian random variables 𝜎2= IE[(𝑋 − IE[𝑋])2],

• Bernoulli random variable 𝜎 = 1/√log(2),

(78)

Quantify – Sub-Gaussian

Definition (Sub-Gaussian)

Random variable 𝑋 is sub-Gaussian1if, for some 𝜎 ≥ 0, IE[𝑒𝜆(𝑋−IE[𝑋])] ≤ 𝑒𝜎2𝜆2/2

, ∀𝜆 ∈ IR

examples2:

• Gaussian random variables 𝜎2= IE[(𝑋 − IE[𝑋])2],

• Bernoulli random variable 𝜎 = 1/√log(2),

• random variables with bounded support 𝜎 = ess sup |𝑋|/√log(2). Sub-Gaussian vector𝑍: for every 𝑢 ∈ 𝒮𝑑we have 𝑢⊤𝑍 sub-Gaussian.

(79)

Quantify – Sub-Gaussian

Definition (Sub-Gaussian)

Random variable 𝑋 is sub-Gaussian1if, for some 𝜎 ≥ 0, IE[𝑒𝜆(𝑋−IE[𝑋])] ≤ 𝑒𝜎2𝜆2/2

, ∀𝜆 ∈ IR

examples2:

• Gaussian random variables 𝜎2= IE[(𝑋 − IE[𝑋])2],

• Bernoulli random variable 𝜎 = 1/√log(2),

• random variables with bounded support 𝜎 = ess sup |𝑋|/√log(2). Sub-Exponential: |𝜆| < 1/𝛼.

(80)

Quantify — Sum of random vectors/matrices

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂−𝜇) ≤𝑟𝜇,Σ⪯𝑟ΣΣ̂} ,

(81)

Quantify — Sum of random vectors/matrices

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂−𝜇) ≤𝑟𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: IE[𝑤𝐼] = 0, IE[𝑤𝐼𝑤⊤𝐼] = 𝐼.

mean uncertainty: 𝑤𝐼∈ IR𝑑∼ subG(𝜎) 𝜇̂𝐼∼ subG𝑑(𝜎/

√ 𝑀). IP [‖𝜇̂𝐼2≤ 𝜎

2

𝑀(𝑛𝑤+ 2√𝑛𝑤log (1/𝛽) + 2log(1/𝛽))] ≥ 1 − 𝛽

Daniel Hsu, Sham M. Kakade, and Tong Zhang. “A tail inequality for quadratic forms of subgaussian random vectors”. In: Electronic Commu-nications in Probability 17.52 (2012), pp. 1–6

(82)

Quantify — Sum of random vectors/matrices

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂−𝜇) ≤𝑟𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: IE[𝑤𝐼] = 0, IE[𝑤𝐼𝑤⊤𝐼] = 𝐼. covariance uncertainty: 𝑤𝐼∈ IR𝑑∼ subG(𝜎).

IP [‖Σ̂𝐼− 𝐼‖2≤ 𝜎 2 1 − 2𝜖(√ 32𝑞(𝛽, 𝜖, 𝑛𝑤) 𝑀 + 2𝑞(𝛽, 𝜖, 𝑛𝑤) 𝑀 , )] ≥ 1 − 𝛽, where 𝑞(𝛽, 𝜖, 𝑛𝑤) = 𝑛𝑤log(1 +1/𝜖) + log(2/𝛽).

Daniel Hsu, Sham M. Kakade, and Tong Zhang. “Tail inequalities for sums of random matrices that depend on the intrinsic dimension”. In: Electronic Communications in Probability 17.52 (2012), pp. 1–13

(83)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

(84)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

illustration: for 𝜇 = 0.

𝑤𝐼= Σ−1/2𝑤

Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment uncertainty with application to data-driven problems”. In: Op-erations Research 58.3 (2010), pp. 595–612

(85)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

illustration: for 𝜇 = 0.

‖Σ̂𝐼− 𝐼‖2≤𝑡Σ

𝑤𝐼= Σ−1/2𝑤

Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment uncertainty with application to data-driven problems”. In: Op-erations Research 58.3 (2010), pp. 595–612

(86)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

illustration: for 𝜇 = 0.

(1 −𝑡Σ)𝐼 ⪯Σ̂𝐼 ⪯ (1 +𝑡Σ)𝐼

𝑤𝐼= Σ−1/2

𝑤

Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment uncertainty with application to data-driven problems”. In: Op-erations Research 58.3 (2010), pp. 595–612

(87)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

illustration: for 𝜇 = 0.

(1 −𝑡Σ)𝐼 ⪯Σ̂𝐼

𝑤𝐼= Σ−1/2𝑤

Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment uncertainty with application to data-driven problems”. In: Op-erations Research 58.3 (2010), pp. 595–612

(88)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

illustration: for 𝜇 = 0.

𝐼 ⪯ 1 (1 −𝑡Σ)Σ̂𝐼

𝑤𝐼= Σ−1/2𝑤

Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment uncertainty with application to data-driven problems”. In: Op-erations Research 58.3 (2010), pp. 595–612

(89)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

illustration: for 𝜇 = 0. Σ1/2𝐼Σ1/2 1 (1 −𝑡Σ)Σ 1/2Σ̂ 𝐼Σ 1/2 𝑤𝐼= Σ−1/2 𝑤

Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment uncertainty with application to data-driven problems”. In: Op-erations Research 58.3 (2010), pp. 595–612

(90)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

illustration: for 𝜇 = 0. Σ1/2𝐼Σ1/2 1 (1 −𝑡Σ)Σ 1/2Σ̂ 𝐼Σ 1/2 𝑤𝐼= Σ−1/2 𝑤

Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment uncertainty with application to data-driven problems”. In: Op-erations Research 58.3 (2010), pp. 595–612

(91)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽)

bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

illustration: for 𝜇 = 0.

Σ ⪯ 1

(1 −𝑡Σ)Σ̂

𝑤𝐼= Σ−1/2𝑤

Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment uncertainty with application to data-driven problems”. In: Op-erations Research 58.3 (2010), pp. 595–612

(92)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽) bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)).

(93)

Quantify — Final ambiguity set

𝒜 = {IP𝑤 ∣ (𝜇̂−𝜇)Σ̂−1(𝜇̂𝜇) ≤𝑟

𝜇,Σ⪯𝑟ΣΣ̂} ,

first consider isotropic case: ‖𝜇̂𝐼2≤𝑡𝜇(𝛽) and ‖Σ̂𝐼− 𝐼‖2≤𝑡Σ(𝛽) bound:

𝑟Σ(𝛽) = 1/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)) and 𝑟𝜇(𝛽) =𝑡𝜇(𝛽/2)/(1−𝑡Σ(𝛽/2)−𝑡𝜇(𝛽/2)). only valid after 𝑀 sufficiently large (𝑡Σ(𝛽/2) +𝑡𝜇(𝛽/2) < 1)!

(94)
(95)

SDPs — Nominal problem

solutionexists when system is mean square stabilizable. • Riccati equation:

𝑃 = 𝑄 + 𝐹 (𝑃 ) − 𝐻(𝑃 )⊤(𝑅 + 𝐺(𝑃 ))−1𝐻(𝑃 )

• optimal controller:

(96)

SDPs — Nominal problem

solutionexists when system is mean square stabilizable. • Riccati equation: 𝑃 = 𝑄 + 𝐹 (𝑃 ) − 𝐻(𝑃 )⊤(𝑅 + 𝐺(𝑃 ))−1𝐻(𝑃 ) • optimal controller: 𝐾 = −(𝑅 + 𝐺(𝑃 ))−1𝐻(𝑃 ) Semidefinite program: minimize 𝑃 − Tr 𝑃 subj. to [𝑄 − 𝑃 + 𝐹 (𝑃 ) 𝐻(𝑃 ) ⊤ 𝐻(𝑃 ) 𝑅 + 𝐺(𝑃 )] ⪰ 0, 𝑃 ⪰ 0.

(97)

SDPs — Unknown covariance solution • Riccati equation: 𝑃 = 𝑄 + 𝐹 (𝑃 ) − 𝐻(𝑃 )⊤(𝑅 + 𝐺(𝑃 ))−1𝐻(𝑃 ) • optimal controller: 𝐾 = −(𝑅 + 𝐺(𝑃 ))−1𝐻(𝑃 ) Semidefinite program: only change covariance

minimize 𝑃 − Tr 𝑃 subj. to [𝑄 − 𝑃 +𝐹(𝑃 ) 𝐻(𝑃 ) ⊤ 𝐻(𝑃 ) 𝑅 +𝐺(𝑃 )] ⪰ 0, 𝑃 ⪰ 0.

(98)

SDPs — Full uncertainty

solution

• approximation of value function:

𝑉 (𝑥) = 𝑥⊤𝑊−1𝑥 • optimal controller: 𝐾 = 𝑉 𝑊−1 maximize 𝑊 ,𝑉 ,𝑆,𝐿 Tr𝑊 subj. to ⎣ 𝑆 𝑟𝜇𝐻1⊤𝑟𝜇𝐻⊤2 ⋯𝑟𝜇𝐻⊤𝑛𝑤 𝑟𝜇𝐻1 𝐿 𝑟𝜇𝐻2 𝐿 ⋮ ⋱ 𝑟𝜇𝐻𝑛𝑤 𝐿 ⎤ ⎥ ⎦ ⪰ 0, ⎡ ⎢ ⎢ ⎢ ⎣ 𝑊 −√2𝑆 (A𝑊 +B𝑉 )( ̂𝐴𝑊 + ̂𝐵𝑉 )𝑊𝑄12 𝑉⊤𝑅12 A𝑊 +B𝑉 (𝑟ΣΣ̂)−1⊗𝑊 ̂ 𝐴𝑊 + ̂𝐵𝑉 𝑊 −√2𝐿 𝑄12𝑊 𝐼𝑛𝑥 𝑅12𝑉 𝐼𝑛𝑢 ⎤ ⎥ ⎥ ⎥ ⎦ ⪰ 0, ̂ 𝐴 = 𝐴 + ∑𝑛𝑤𝐴𝜇̂(𝑖),𝐵 = 𝐵̂ + ∑𝑛𝑤𝐵𝜇̂(𝑖), A = [𝐴… 𝐴], B = [𝐵… 𝐵]and

(99)

SDPs — Full uncertainty

solution

• approximation of value function:

𝑉 (𝑥) = 𝑥⊤𝑊−1𝑥

• optimal controller:

𝐾 = 𝑉 𝑊−1

̂

(100)
(101)

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Leaching EAFD with sulphuric acid allows a significant portion of the highly reactive zinc species (up to 78% of the total zinc in the fumes) to be leached, while limiting

Deze begeleiding, die slechts één archeologisch spoor opleverde, werd op 22 en 23 juni 2010 uitgevoerd door het archeologisch projectbureau ARON bvba uit Sint-Truiden en dit in

[r]

Daar word verder voorgestel dat sulke aftreefondse moet voortgaan om fondse in te samel as deel van die vrywillige bydraes bo en behalwe die verpligte bydraes ingevolge

Die uiteindelike doelwit is om riglyne te probeer neerle wat teologies en struktureei rigting kan verskaf aan die ontwikkeling van die bediening binne die Nederduitse

agree to take part in a research study entitled “A description of the electromyographic activity of the pelvic floor muscles in healthy nulliparous female adults

 Spreek met een familielid of andere naaste af dat hij u naar het ziekenhuis brengt en weer ophaalt, indien u een TIA heeft gehad kan dat tijdelijk gevolgen hebben voor uw