• No results found

Figure 1: Strength pro�iles modi�ied after Ziegler & Cloetingh 2004.

N/A
N/A
Protected

Academic year: 2022

Share "Figure 1: Strength pro�iles modi�ied after Ziegler & Cloetingh 2004."

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

depth (Km)

0 -1000

0

100 20

strength (MPa)

Moho

1500

compression extension

0 temperature (°C) 1500 geotherm

-1000

strength (MPa)

depth (Km)

0 -1000

0

100

30 Moho

1500

compression extension

0 temperature (°C) 1500 geotherm

-1000

Figure 1: Strength pro�iles modi�ied after Ziegler & Cloetingh 2004.

depth (Km)

-1000

20

strength (MPa)

0

-1000 0

100

Moho

1500

compression extension

0 temperature (°C) 1500

geotherm Cooling

&

Strengthening Heating

&

Weakening

Extended cratonic lithosphere

(75 Ma after rifting) Extended cratonic

lithosphere (0 Ma after rifting) Unextended normal

cratonic lithosphere (age 100 Ma)

OLD RIFT

STRONG HETEROGENEITY YOUNG RIFT

WEAK HETEROGENEITY REFERENCE

LITHOSPHERE Figure 3: a) Sketch of the experimental set-up; b) representative strength pro�iles calculated for a convergence rate of 1 cm/h, describing the very initial deformation stage.

Brittle upper crust (feldspar sand) Viscous lower crust (silicone 1)

Brittle upper mantle (quartz sand) Viscous upper mantle (silicone 2)

Length scale 1 cm = 20 Km

Lower mantle lithosphere

& asthenosphere (low viscosity �luid)

EXP NATURE

Plexiglas box

Engine = convergence velocity

Asthenosphere

36 cm 42 cm

Moving w all

Old rift

A

B

VLC BUM

BUC

VUM

A

b) a)

1,0 0 0,5

1,5 2,0 2,5 3,0 3,5 4,0

0 200 400 600 800

De pt h (c m )

(σ1 -σ3) Pa B

Increase in brittle crustal strength increase in bulk lithospheric strength

simulates

0 200 400 600 800

De pt h (c m )

(σ1- σ3) Pa A

1,0 0,5

1,5 2,0 2,5 3,0 3,5 4,0

0

STRONG

HETEROGENEITY REFERENCE

LITHOSPHERE

(1) Department of Earth Sciences, Utrecht University, PO Box 80021, 3508 TA Utrecht, The Netherlands (2) Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo, Norway (3) Géosciences Rennes UMR 6118 CNRS/Rennes 1 University, 35042 Rennes Cedex, France (4) Geologisches Institut, ETH-Zürich and Universiteit Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland

Contact: E.Calignano@uu.nl

Lateral strength variation in the lithosphere: a key parameter for the localization of intra-plate deformation (T31C-2520)

E. Calignano, D. Sokoutis, J.P. Brun, E. Willingshofer & J.P. Burg

1 1,2 3 1 4

Aknowledgments: The research project was funded by the European Union FP& Maire Curie ITN “Topomod”, contract n. 264517

References

Willingshofer E., Sokoutis D. & Burg J.P., 2005 - Lithospheric scale analogue modelling of collision zones invoking a pre-existing weak zone. In “ Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere” (Eds. Gapais D., Brun J.P. & Cobbold P.R.). Geological Society, London, Special Publications 243, 277-294 Ziegler P.A. & Cloetingh S., 2004 - Dynamic processes controlling evolution of rifted basins. Earth Science Reviews, 64, 1-50

2. Experimental parameters

3. Analogue experiments: set-up

Assumptions and simpli�ications

- Simpli�ied rheology of viscous layers: analogue materials are characterized by depth-invariant viscosity.

- Erosion and sedimentation are not included in the experiments.

- Lateral strength variation in the mantle lithosphere are not in- vestigated; lateral changes in bulk lithospheric strength are sim- ulated with variation in the thickness of crustal layers.

- Despite the above simpli�ications the presented experiments are considered representative for �irst order deformation and as- sociated topography in presence of a laterally heterogeneous lithosphere under compression.

6. Summary and Conclusions

In presence of a mechanically stronger old rift subject to compressional stresses deformation localizes along the basin margin facing the compression direction.

Strain rate governs the geometry of the deep lithospheric structure. An increase in convergence velocity results in a progressive increase in aymmetry of the lithospheric root underlying the pop-down.

The brittle-ductile ratio in the lithospheric mantle determines the absence (low B/D) or presence (high B/D) of faults in the upper brittle mantle (Experiment 2, Experiment 3). For a low B/D ratio deformation in the mantle is accommodated by shear zones (Experiment 2).

Underthrusting along the margin of the old rift is the main deformation mechanism in case of low strength brittle mantle and high convergence velocity (Experiment 1).

Folding and formation of a mountain root are the main deformation mechanisms in case of low strength brittle mantle and low convergence velocity (Experiment 2).

A weak viscous upper mantle allow the development of a major pop-down prismatic structure in the upper crust; a strong viscous upper mantle prevents the formation of a pop-down basin in the crust and underthrusting along the basin margin (Experiment 4).

In presence of a mechanically weaker young rift subject to compressional stresses deformation starts along the rift margins and remains localized inside the weak plate leading to the development of pronounced topography, which is compensated by a lithospheric root (Willingshofer et al., 2005; Figure 5).

1. Introduction and objectives

Lateral variation of strength in the lithosphere is an important factor controlling the localization of intra-plate deformation. Pre-existing heterogeneities can become reactivated in extension as well as in compression, governing the spatial and temporal development of intra-plate deformation.

Analogue models investigating the deformation pattern and topography development of compressional intra-plate settings are presented. The initial scaling conditions are designed to analyse the effects of �irst order lateral strength variations. The reference lithosphere is characterized by a uniform four-layers brittle-ductile rheological structure. An increase in upper crustal thickness, and thus strength, has been used to approximate a strong lithospheric section, representative for an old rift setting. The introduced lateral heterogeneity is striking perpendicular to the compression direction. All experiments have been deformed under normal gravity �ield. Other investigated parameters have been the strain rate, the thickness of the brittle mantle and the rheology of the viscous upper mantle.

4. Results: intra-plate deformation in presence of a strong lithospheric section

5. Comparison with previous experiments:

intra-plate deformation with a pre-existing weak lithospheric section

Experiment 1 Experiment 4

Experiment 2 Experiment 3

Con ver genc e v elocit y (cm/h)

Thickness brittle mantle (cm)

Brittle mantle faulting

5 cm 100 Km nature

A VLC BUM

BUC

Weak VUM

Elevation (cm)

0 + 0,85

- 0,15

5 cm 100 Km nature

A

Elevation (cm)

0 + 0,85

- 0,15

VLC BUM BUC

Strong VUM

Elevation (cm)

0 + 0,85

- 0,15

BUMVLC BUC Weak VUM

Asthenosphere

5 cm

100 Km nature

A

Asymmetric deep lithospheric structure

Shear z one

5 cm

100 Km nature

A

Symmetric deep

lithospheric structure

BUMVLC BUC

Weak VUM

Shear zone Shear z

one

Elevation (cm)

0 + 0,85

- 0,15

Brittle mantle folding

Figure 4: representative cross sections and DEM (Digital Elevation Model) of the experiments’ surface at 20% BS (bulk shortening).

1,0 0,5

0 0 5,0

1,0

A Lower

crust

Viscous upper mantle

5 cm

100 Km nature

Elevation (cm)

0 + 1,5

- 0,2

Reduced brittle crustal strenght

absence strong + brittle upper mantle

simulates

decrease in bulk lithospheric strength

VLC BUM

BUC

VUM

Figure 5: intra-plate deformation with a pre-existing weak zone.

Modi�ied after Willingshofer et al., 2005.

0 1.01.5

2.5

22 c m

18 c

m Lateral Confinement

13

brittle upper mantle

dry feldspar sand brittle crust

viscous crust strong viscous

upper mantle

brittle crust viscous crust silicone mix I

viscous mantle

silicone mix I dry quartz sand

silicone mix II low viscosity lower mantle lithosphere +

asthenosphere (liquid)

16 cm 10 cm 16 cm

depth (cm)

C D

C

depth (cm)

0 200 400 600 800

1,0 0,5

1,5 2,0 2,5 3,0 3,5

0 1000

D

(σ1 - σ3) Pa

depth (cm)

0 200 400 600

1,0 0,5

1,5 2,0 2,5 3,0 3,5 0

(σ1 - σ3) Pa

REFERENCE

LITHOSPHERE WEAK

HETEROGENEITY

GEOMETRICAL and KINEMATICAL PARAMETERS

Experiment Convergence velocity

(cm/h) Strain rate

(s-1) Bulk shortening

(%) H brittle upper mantle (cm)

Experiment 1 5,0 3,31E-05 20 0,5

Experiment 2 1,0 6,61E-06 20 0,5

Experiment 3 1,0 6,61E-06 20 1,0

Experiment 4 5,0 3,31E-05 20 1,0

Parameters valid for all models

Model length 42 cm Model width 36 cm Old rift width 4 cm

h UC (reference lithosphere) 1,0 cm h UC (old rift) 1,3 cm

h LC (reference lithosphere) 0,5 cm h LC (old rift) 0,2 cm

h viscous UM 1,3 cm Gravity 9,81 m/s2

Upper brittle crust Lower viscous crust Upper brittle

mantle Lower viscous

mantle

Nature

σ − σ1 3

Depth (Km)

Experiment

Depth (mm)

Byrlee (brittle) law

Viscous flow law

Sand Silicon 1 Sand

Silicon 2 σ − σ1 3

Temperature (i.e. depth) dependent

viscous behaviour

Constant viscosity with depth

Figure 2: strength pro�iles for continental lithosphere in nature (left) and in analogue experiments (right).

RHEOLOGICAL PARAMETERS

Layer Material Experiment Density Coeff. friction Cohesion Stress exponent Material constant Effective viscosity

ρ (kg m-3) µ C (Pa) n A η (Pa s)

Brittle upper crust dry feldspar sand 1 to 4 1300 0.4-0.7 15-35

Viscous lower crust silicon 1 1, 2 1400 1,16 1,00E-05 1,06E+05

Viscous lower crust silicon 1 3, 4 1400 1,16 1,00E-05 8,48E+04

Viscous upper mantle silicon 2 1 1578 1,06 1,00E-05 9,35E+04

Viscous upper mantle silicon 2 2,3 1578 1,06 1,00E-05 1,02E+05

Viscous upper mantle silicon 3 4 1550 1,6 7,00E-07 3,37E+05

Lower lithosphere Na Polytungstate+glycerol 1 to 4 1600 1,2

Brittle upper mantle dry quartz sand 1, 2 1500 0.6 30-70

Referenties

GERELATEERDE DOCUMENTEN

Climate and Tectonic Influence on Alluvial Dynamics in the Weihe Basin, Central China..

Note also that (since v0.991) this is a 1-parameter macro so doesn’t expand subsequent tokens until meets a ⟨balanced text⟩ but just takes first single token or ⟨text⟩..

Het dichtbij gelegen Victoriameer ligt niet in de Grote Riftvallei en is op een andere manier ontstaan dan de meren die wel in deze Grote Riftvallei liggen.. 2p 11 Geef

onder spanning staat van opstijgend magma 1 • waarna magma langs breuken richting het aardoppervlak beweegt 1 13 maximumscore 2. Juiste aanwijzingen

The variables are variables are: social interaction indicators - either ‘active in social groups’ (ASG), the amount of different social groups (DSG), ‘the

Leden van de Nederlandsche Natuurkundige Vereeniging kunnen zich op het tijdschrift abonneren a ƒ 7.50 per jaar; opgave hiervoor te richten aan de secretaris van

Contents of the project: It is assumed that the essential issue in safe driving is not so much the development of specific skills, but the ability to balance task demands and

Sleuf I tot IV (gelegen het dichtst bij de Garonnestraat) hadden allen een quasi gelijkaardige opbouw (zie foto sleuf 1); beschrijving:.. 0-20