• No results found

Modulation of the canonical Wnt signaling pathway in bone and cartilage

N/A
N/A
Protected

Academic year: 2021

Share "Modulation of the canonical Wnt signaling pathway in bone and cartilage"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Modulation of the canonical Wnt signaling pathway in bone and cartilage

Miclea, R.L.

Citation

Miclea, R. L. (2011, November 30). Modulation of the canonical Wnt signaling pathway in bone and cartilage. Retrieved from https://hdl.handle.net/1887/18153

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18153

Note: To cite this publication please use the final published version (if applicable).

(2)

Summary, conclusions, directions for future research

163

REFERENCES

1. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997; 11(24):3286-305.

2. Johnson ML, Rajamannan N. Diseases of Wnt signaling. Rev Endocr Metab Disord 2006; 7(1- 2):41-9.

3. Miller JR. The Wnts. Genome Biol 2002; 3(1):REVIEWS3001.

4. Baron R, Rawadi G. Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 2007; 5(2):73-80.

5. Chun JS, Oh H, Yang S, Park M. Wnt signaling in cartilage development and degeneration.

BMB Rep 2008; 41(7):485-94.

6. Church V, Nohno T, Linker C, Marcelle C, Francis-West P. Wnt regulation of chondrocyte differentiation. J Cell Sci 2002; 115(Pt 24):4809-18.

7. Corr M. Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis. Nat Clin Pract Rheumatol 2008; 4(10):550-6.

8. Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006;

16(3):151-8.

9. Hartmann C. Skeletal development--Wnts are in control. Mol Cells 2007; 24(2):177-84.

10. Krishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest 2006; 116(5):1202-9.

11. Liu F, Kohlmeier S, Wang CY. Wnt signaling and skeletal development. Cell Signal 2008;

20(6):999-1009.

12. Luyten FP, Tylzanowski P, Lories RJ. Wnt signaling and osteoarthritis. Bone 2009; 44(4):522- 7.

13. Piters E, Boudin E, van Hul W. Wnt signaling: a win for bone. Arch Biochem Biophys 2008;

473(2):112-6.

14. Kapadia RM, Guntur AR, Reinhold MI, Naski MC. Glycogen synthase kinase 3 controls endo- chondral bone development: contribution of fibroblast growth factor 18. Dev Biol 2005;

285(2):496-507.

15. Nagy A. Cre recombinase: the universal reagent for genome tailoring. Genesis 2000;

26(2):99-109.

16. Miclea RL, Karperien M, Bosch CA, van der Horst G, van der Valk MA, Kobayashi T et al.

Adenomatous polyposis coli-mediated control of beta-catenin is essential for both chon- drogenic and osteogenic differentiation of skeletal precursors. BMC Dev Biol 2009; 9:26.

17. Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP. Ihh signaling is di- rectly required for the osteoblast lineage in the endochondral skeleton. Development 2004;

131(6):1309-18.

(3)

Chapter 7

164

18. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progeni- tors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.

Dev Cell 2005; 8(5):739-50.

19. Gaspar C, Fodde R. APC dosage effects in tumorigenesis and stem cell differentiation. Int J Dev Biol 2004; 48(5-6):377-86.

20. Miclea RL, van der Horst G, Robanus-Maandag EC, Lowik CW, Oostdijk W, Wit JM et al. Apc bridges Wnt/beta-catenin and BMP signaling during osteoblast differentiation of KS483 cells. Exp Cell Res. 2011 Jun 10;317(10):1411-21.

21. van der Horst G, van der Werf SM, Farih-Sips H, van Bezooijen RL, Lowik CW, Karperien M.

Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prereq- uisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 2005;

20(10):1867-77.

22. Miclea RL, Karperien M, Langers AM, Robanus-Maandag EC, van Lierop A, van der Hiel B et al. APC mutations are associated with increased bone mineral density in patients with famil- ial adenomatous polyposis. J Bone Miner Res 2010; 25(12):2348-56.

23. Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H et al. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 2005; 90(12):6392-5.

24. Kapadia RM, Guntur AR, Reinhold MI, Naski MC. Glycogen synthase kinase 3 controls endo- chondral bone development: contribution of fibroblast growth factor 18. Dev Biol 2005;

285(2):496-507.

25. Miclea RL, Robanus-Maandag EC, Goeman JJ, Finos L, Bloys H, Löwik CW et al. Inhibition of Gsk3β in cartilage induces osteoarthritic features through activation of the canonical Wnt signaling pathway. Osteoarthritis and cartialge 2011.

26. Wu Q, Huang JH, Sampson ER, Kim KO, Zuscik MJ, O'Keefe RJ et al. Smurf2 induces degrada- tion of GSK-3beta and upregulates beta-catenin in chondrocytes: a potential mechanism for Smurf2-induced degeneration of articular cartilage. Exp Cell Res 2009; 315(14):2386-98.

27. Choi YA, Kang SS, Jin EJ. BMP-2 treatment of C3H10T1/2 mesenchymal cells blocks MMP-9 activity during chondrocyte commitment. Cell Biol Int 2009; 33(8):887-92.

28. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003;

116(Pt 7):1175-86.

(4)
(5)

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded.

Financial support for the costs associated with the publication of this thesis from the Depart- ment of Pediatrics of the Leiden University Medical Centre, the

Chondrocyte proliferation, matrix production and hypertrophy in the GP is responsible for the rate of longitudinal growth as well as for the ultimate length of all endochondral

(A-L) Immunostaining for β-catenin combined with Alcian blue (AB) staining (A,E), combined von Kossa-Toluidine blue staining (F), hematoxylin/eosin staining (G), gene expression

Relatively high levels of β-catenin signal- ing arising upon expression of Apc ∆15/1638N blocked the differentiation of SPC to both chondrocytes and osteoblasts,

KSFrt-Apc si cells displayed significantly increased endogenous levels of BMP signaling in comparison to control KSFrt-mtApc si cells (p < 0.01; Figure 5A). In these

APC mutations are associated with in- creased bone mineral density in patients with familial adenomatous

Inhibition of Gsk3β in chondro- cytes ex vivo leads to loss of cartilage markers expression, induces matrix degradation by stimulating the expression of Mmps, inhibits