• No results found

CRUSTUMERIUM: A GEO-ARCHAEOLOGICAL APPROACH TOWARDS THE DEVELOPMENT AND ABANDONMENT OF THE SETTLEMENT AREA FROM IRON AGE TO ROMAN TIMES AND AFTER - APPENDIX -

N/A
N/A
Protected

Academic year: 2021

Share "CRUSTUMERIUM: A GEO-ARCHAEOLOGICAL APPROACH TOWARDS THE DEVELOPMENT AND ABANDONMENT OF THE SETTLEMENT AREA FROM IRON AGE TO ROMAN TIMES AND AFTER - APPENDIX -"

Copied!
53
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

0 N.P. Noorda (s1816853)

DEPARTMENT OF ARCHAEOLOGY, University of Groningen

CRUSTUMERIUM:

A GEO-ARCHAEOLOGICAL APPROACH TOWARDS THE

DEVELOPMENT AND ABANDONMENT OF THE SETTLEMENT

(2)
(3)

Table of contents

9. Appendix ... 1

9.1. Maps: ... 1

9.1.1. Map of the Fossato Area with all excavations conducted in the area since 2013. ... 1

9.1.2. Map with the detailed location the D1-structure and the D1- trenches. ... 4

9.1.3. Map of all the research conducted on and around Quilici O. ... 5

9.1.4. Map with all the corings conducted at Crustumerium since 2012. ... 8

9.1.5. Geological map of the north of Rome ... 10

9.1.6. Soil map of the north of Rome ... 12

9.2. Figures: ... 14

9.2.1. The drawing of section 1 of Saggio 2 ... 14

9.2.2. The drawing of section 1 of Saggio 4 ... 15

9.2.3. The drawing of sections and planes of trench D1_1 & D1_5 ... 16

9.2.4. The drawing of section 2 of the Quilici O excavation ... 18

9.2.5. The drawing of section 3 of the Quilici O excavation ... 19

9.2.6. The drawing of section 9/10 of the Quilici O excavation with the Iron Age tumulus ... 20

9.2.7. The close-up of the mineral compositions of the three types of colluvial sediment. ... 21

9.2.8. The ternary diagrams with the particle size distribution of the colluvial sediments ... 24

9.2.9. The ternary diagrams with the particle size distribution of the anthropogenic sediments 27 9.2.10. The ternary diagrams with the particle size distribution of the drainage channels ... 31

9.3. Analysis guideline of the IBED (in Dutch) ... 33

9.4. List of minerals present at Crustumerium ... 41

9.5. Dataset particle size analysis (Info per sample per trench) ... 43

9.6. Excavation report of 2013 ... 45

9.7. Excavation report of 2014/2015 ... 97

(4)

1

9. Appendix

9.1. Maps:

9.1.1. Map of the Fossato Area with all excavations conducted in the area since 2013.

This map shows the excavations conducted by the GIA since 2013 plotted on the geomagnetic map (25nT) produced by Eastern Atlas in 2011 (Ullrich & Pilz, 2012). The excavations that will be discussed in this thesis are marked with Roman numerals in order of excavation:

I = Trench Saggio 2, which was excavated in the summer of 2013 (Noorda & Attema, 2013). II = Trench Saggio 4, which was also excavated in the summer of 2013 (Noorda & Attema, 2013).

III = The excavation plane of the Fossato-group in the summer of 2013, and several strata in the northeast corner of this plane have been sampled and used in this thesis.

IV = The D1-trenches, which are excavated in the autumn of 2013 (Noorda & Attema, 2013), and were plotted perpendicular to the oblong geophysical feature D1 (Ullrich & Pilz, 2012). A more detailed map of the D1-trenches and the geophysical D-features is shown in appendix 9.1.2.

V = Trench R7, which was excavated in the summer of 2014 and was the first excavation of the artificial hill Quilici O. (Noorda & Attema, 2016)

VI = Trench QO_15, which was excavated in the summer of 2015 and was a continuation and enlargement of trench R7. (Noorda & Attema, 2016)

Furthermore, the map shows the orientation of the large defensive Fossato (dotted red lines) that acted as the main defensive system of the settlement and subsequently delimits the southern border of the settlement. The beige coloured line shows the original limits of the ‘site’ Quilici O, based on the finds concentration of pottery collected by Quilici & Quilici- Gigli in the 1970s. Finally, the red square marks the location of the series of walls that were excavated by the SS-Col in 1998, and the geomagnetic map shows in fact a continuation of the walls towards the north.

(5)
(6)
(7)

4

9.1.2. Map with the detailed location the D

1

-structure and the D

1

- trenches.

(8)

5

9.1.3. Map of all the research conducted on and around Quilici O.

This detailed map shows all the research conducted on and around the artificial hill of Quilici O since 2013, plotted on the geomagnetic map (25nT) produced by Eastern Atlas in 2011 (Ullrich & Pilz, 2012). The excavations that will be discussed in this thesis are marked with Roman numerals in order of excavation:

III = The excavation plane of the Fossato-group in the summer of 2013, and several strata in the northeast corner of this plane have been sampled and used in this thesis.

V = Trench R7, which was excavated in the summer of 2014 and was the first excavation of the artificial hill Quilici O. (Noorda & Attema, 2016)

VI = Trench QO_15, which was excavated in the summer of 2015 and was a continuation and enlargement of trench R7. (Noorda & Attema, 2016)

In addition to excavations geophysical surveys form a large part of the research conducted on and around Quilici O. Both the German company Eastern Atlas as well as the Italian company GeoRes have conducted geophysical surveys; Both Eastern Atlas (in addition to their magnetometry surveys) and GeoRes used electrical resistivity tomography:

R7 = This is the location and orientation of the resistivity profile made by Eastern Atlas in the spring of 2013. (Ullrich, 2013)

Profile 1 = This is first resistivity profile made by GeoRes in the summer of 2015. It was placed at the southern edge of Quilici O, on the south side of trench QO_15. (Vercelli, 2015)

Profile 2 = This is second resistivity profile made by GeoRes in the summer of 2015. It was placed near the top of Quilici O, crossing the northern part of trench QO_15. (Vercelli, 2015)

(9)
(10)
(11)

8

9.1.4.

Map with all the corings conducted at Crustumerium since 2012.

(12)

9

LEGEND

- LTT: Tufi Stratificati Varicolori di la Storta (circa 410 kya)The predominant geological unit in the fieldwork area is the Tufi Stratificati Varicolori di la Storta (LTT). Karner (2001) dated this

Ignimbrite at around 410 kya. The LTT is composed of a complex sequence with high amounts of yellowish white pumice and gray scoria. The pumice contains abundant sanidine (potassium feldspar), leucite (potassium aluminum silicate) and pyroxene. The maximum thickness of the geological unit LTT was measured in the cuts made along the railway line Rome-Viterbo, in which the measured maximum thickness was 10 m (Funiciello et al., 2008). Two facies have been recognized separated by a layer of white pumice, in the older layer Paleosols have formed. These Paleosols have also been identified in outcrops of the Crustumerium site.

- SKF: Tufi Stratificati Varicolori di Sacrofano (circa 488 - 514 kya) The Tufi Stratificati Varicolori di Sacrofano (SKF) has outcrops in the northeastern and southwestern borders of the

Crustumerium site. The SKF consists of non-lithified stratified ash deposits with a maximum thickness of 180 cm. The sequence is composed of non-lithified layered yellow pyroclastic deposits with a fine grained matrix. All deposits are dwindling described by fallout from north to south and are interpreted as eruptions from the volcano centers located in Sabatino.

- PPT:Tufo Giallodi Prima Porta (circa 514 kya)Poorly lithified yellowish brown pyroclastic flow deposits can be identified. The overlaying second facies is a lithified yellow pyroclastic flow deposit with yellow pumice, rare gray scoria and occasionally large black scoria. The ignimbrite is mainly composed of the minerals leucite, sanidine, pyroxene and biotite. In the lithified facies sedimentary lithic clasts like unmetamophosed limestone and travertine can be found. Clast-rich flow in the initial stage (non-lithified facies) is followed by a fine-grained portion that filled topographically low areas as a blanket, indicating decreasing energy during the eruption.

- TP:Tufo del Palatino, Alban Hills (528 kya) not visible on 1:50.000 geological mapThe Tufo del Palatino consists of two facies. The first is a lithified dark gray lipilli-rich Ignimbrite. This main unit cannot be found within the Crustumerium site. The overlaying unit is a light brown lapilli-rich ash fall deposit. The Tufo del Palatino has its origin in the Alban Hills volcanic complex.

- TIB:Tufo Giallo della Via Tiberina (548 – 561 kya)Massive yellow ash fall deposit with scoria, lava, non-metamorphosed sedimentary lithic fragments and white pumice. The TIB is fining upwards into a pale yellow ash matrix with whitish-yellow leucite, sanidine and pyroxene crystals. The emplacement of this Igimbrite was responsible for damming and diverting the paleo-Tiber river north of Rome (Karner et al., 2001).

- FCZ:Fosso Della Crescenza formation (middle Pleistocene 0.5 - 2.5 Mya)Conglomerates

(13)

10

9.1.5. Geological map of the north of Rome

(14)

11

Soilcode Name Bedrock Classification

URBANO URBANO Urban Area Urban Area

AC1 MURATELLA Fluvial deposit Holocene Typic Eutrochrepts AC2 GAGLIARDI Fluvial deposit Holocene Typic Eutrochrepts AC3 CAPANNONI Fluvial deposit Holocene Vertic Eutrochrepts DU1 DUECASE Aeolian deposit Holocene Typic Xeropsamments DU2 ROTONDA Aeolian deposit Holocene Typic Xerochrepts

LA1 VERQUETTE Lagune sediment Holocene Oxyaquic udipsamments & Aquic Hapludalfs

LA2 ROMAGNOLA Lagune sediment Holocene Typic Calciaquerts & Typic Endoaquepts

LA3 SALINE Lagune sediment Holocene Typic Endoaquepts & Typic Medisaprists

MA1 MONTECOGNO Post Pyroclastic flow deposit marine terrace

Pleistocene Typic Xeropsamments QM1 SAPONARA Post Pyroclastic flow perimarine deposit

Pleistocene Aeric Epiacqualfs QM2 DECIMA Post Pyroclastic flow perimarine deposit

Pleistocene Arenic Albaqualfs & Aeric Albaqualfs QO CAPOCOTTA Post Pyroclastic flow Aeolian deposit Pleistocene Arenic Palexeralfs & Haplic Palexeralfs TM SANTOLA Post Pyroclastic flow deposit marine terrace

Pleistocene Arenic Epiacqualfs & Aeric Epiacqualfs TO1 TRECANELLE Post Pyroclastic flow deposit marine terrace

Pleistocene Typic haploxeralfs TO2 GRANARETTIO Post Pyroclastic flow deposit marine terrace

Pleistocene Chromic Haploxererts & Typic haploxeralfs AC2 GAGLIARDA Fluvial deposit Holocene Typic Eutrochrepts

AC3 CAPANNONI Fluvial deposit Holocene Vertic Eutrochrepts

AN1 ARRONE Fluvial deposit Holocene Typic Hapludalfs & Typic Argiudolls AN2 PANTANO Fluvial deposit Holocene Aquertic Hapludalfs

FL1 MONTARELLI Pre-volcanic sand Pleistocene, colluvium Typic haploxeralfs & Typic Xerochrepts

FL2 SCORMABECCO Pre-volcanic clay and silt Plio-, Pleistocene Typic haploxeralfs & Vertic haploxeralfs

GG1 MEZZALUNA Pre-volcanic sand Pleistocene Typic Xeropsamments & Typic Xerochrepts

GG2 SALLUSTRI Altered pre-volcanic sand Pleistocene Typic Xeropsamments & Typic Xerochrepts

IN CALANDRELLA Pyroclastic volcanic rock rock Middle-Pleistocene,

colluvium Vitrandic Argixerolls & Vitrandic Haploxeralfs OD1 TORRINO Post Pyroclastic flow fluvial deposit Pleistocene Typic Xerochrepts & Typic

Haploxeralfs

OD2 POLLEDRARA Post-volcanic rock Late-Pleistocene Vitrandic Argixerolls & Typic Haploxeralfs

PA1 VIGNOLA Pre-volcanic clay Plio-, Pleistocene Typic haploxeralfs & Chromic Haploxererts

PA2 SCATURIMO Pre-volcanic clay Plio-, Pleistocene Chromic Haploxererts SR1 LORETTO Semi-lithified/lithified pyroclastic rock/pozzolane

Middle-Pleistocene Vitrandic Xerochrepts & Typic Vitrixerands ST GALLICANO Semi-lithified/lithified pyroclastic rock

Middle-Pleistocene Vitrandic Xerochrepts & Typic Vitrixerands VD FALLOGNANA Pyroclastic rock Middle-Pleistocene Vitrandic Haploxeralfs & Vitrandic

Argixerolls VS1 BRANDUSA Semi-lithified/lithified pyroclastic rock

Middle-Pleistocene Vitrandic Haploxeralfs & Vitrandic Argixerolls VS2 COLONALLE Semi-lithified/lithified pyroclastic rock

Middle-Pleistocene Vitrandic Haploxererts VS3 SAPIENZA Pozzolane Middle-Pleistocene Typic Vitrixerands & Vitrandic

(15)

12

9.1.6. Soil map of the north of Rome

Map 2 Soil map of Rome and the legend describing the soil types. (after Arnoldus-Huyzendveld, 2003.)

Soilcode Name Bedrock Classification

(16)
(17)

14

9.2. Figures:

9.2.1. The drawing of section 1 of Saggio 2

(18)

15

9.2.2. The drawing of section 1 of Saggio 4

(19)

16 9.2.3.

The drawing of sections and planes of trench D

1_1

& D

1_5

Figure 3 Drawing of section 1 in trench D1_1, made by Remco Bronkhorst and Chris Luinge in 2013. (Noorda & Attema, 2013)

Figure 4 Drawing of the plan of trench D1_1 just below the surface. Made by Remco Bronkhorst and Chris Luinge in 2013. (Noorda & Attema, 2013)

Figure 5 A detail of the plan of trench D1_1 just below the layer is 6th century B.C. pottery. The width of the V-shaped channel is now visible. Made by Remco Bronkhorst and Chris Luinge in 2013.

(20)

17

Figure 7 Drawing of the plan of trench D1_5. The pavement and US 03 (which is discussed in chapter 5.3.) is still visible. Made by Remco Bronkhorst and Chris Luinge. (Noorda & Attema, 2013)

(21)

18

9.2.4. The drawing of section 2 of the Quilici O excavation

(22)

19

9.2.5. The drawing of section 3 of the Quilici O excavation

(23)

20

9.2.6. The drawing of section 9/10 of the Quilici O excavation with the Iron Age tumulus

(24)

21

9.2.7. The close-up of the mineral compositions of the three types of colluvial sediment.

These three pictures show the composition and condition of minerals of different types of colluvial sediments found during the excavations at Crustumerium. The pictures are taken through a stereomicroscope. In total three different types of colluvial sediment can be distinguished:

Type I = this type is comprised of relatively coarse textured material, and a low percentage of material smaller than 63µm (clay/silt). It has a sandfraction in which crystalline mineral fragments largely consist of quartz together with some sanidine and other feldspars, magnetite, and a minor amount of pyroxenes, which are mostly rather weathered. Type I is high in strongly weathered dense volcanic glass fragments, accounting for the high percentage of fine sand, and low in relatively fresh, pumiceous volcanic glass fragments.

Type II = This type consists of relatively clayey material of which the sandfraction is more varied in composition between the fine sand and coarse sand fraction. Similar to type I, this type lacks easily weatherable minerals such as olivine and zeolites, and is also relatively low in pumiceous volcanic glass fragments. Moreover, minerals tend to be ‘clean’, which means that they did not have any adherent coatings of volcanic glass.

Type III = This type consists of two subtypes: the first one is an intermediate clay fraction that is smaller than type 2 but larger than type I. Furthermore, it consists of a smaller percentage of fine sand and a higher percentage of coarse sand than type I. The second one has a similar clay fraction as type II, but also consists of a smaller percentage of fine sand and a higher percentage of coarse sand than type II. This is due to an abundant amount of pumiceous volcanic glass and weatherable minerals, of which the latter often have adherent glass coating.

The pictures show the composition and condition of these three types of colluvial sediments with varying sand fractions. In total eleven different sand fractions were distinguished during the analysis, but the pictures only show the following three:

- Fraction < 850 µm > 600 µm - Fraction < 300 µm > 212 µm - Fraction < 212 µm > 150 µm

The samples used in these pictures are the following:

2015/NPN/13 = Sample taken from US 19 in trench R7 (number V in appendix 9.1.1.). US 19 represents a one of the fillings of the paleo-gully on the southern edge of Quilici O. According to Jan Sevink it is probably natural, in-situ soil and could date to the Eemian. (Noorda & Attema, 2016)

2015/NPN/58 = Sample taken from US 242 in trench Saggio 4 (number I in appendix 9.1.1.). US 242 represents a stratum of compact light yellowish-brown soil with a lot of stone particles, tuff-fragments and minerals, and interpreted as Archaic colluvium (Noorda & Attema, 2013)

2015/NPN/75 = Sample taken from US 159 in the northeast corner of the excavation plane of the

(25)
(26)
(27)

24

9.2.8. The ternary diagrams with the particle size distribution of the colluvial sediments

(28)
(29)

26

Figure 13 Above left page. Ternary diagram showing the particle size distribution of the Iron Age colluvial sediments sampled since 2013. The US-numbers and trench connected to the samples is shown in appendix 9.5.

Figure 12 Down left page. Ternary diagram showing the particle size distribution of the Roman colluvial sediments samples since 2013. The US-numbers and trench connected to the samples is shown in appendix 9.5.

(30)

27

9.2.9. The ternary diagrams with the particle size distribution of the anthropogenic

(31)

28

Figure 16 Ternary diagram showing the particle size distribution of the anthropogenic strata dating to the Iron Age. The US-numbers and trench connected to the samples is shown in appendix 9.5.

(32)

29

Figure 18 Ternary diagram showing the particle size distribution of the anthropogenic layers dating to the Archaic period. The US-numbers and trench connected to the samples is shown in appendix 9.5.

(33)

30

Figure 20 Ternary diagram showing the particle size distribution of the anthropogenic layers dating to the Roman period. The US-numbers and trench connected to the samples is shown in appendix 9.5.

(34)

31

9.2.10. The ternary diagrams with the particle size distribution of the drainage channels

(35)

32

Figure 23 Ternary diagram showing the particle size distribution of the fills of the (drainage) channels dating to the Archaic period. The US-numbers and trench connected to the samples is shown in appendix 9.5.

(36)

33

9.3. Analysis guideline of the IBED (in Dutch)

GR_B3010

Granulair analyse

( korte analyse ) wijziging juni 2006 1

Inleiding:

Na een voorbehandeling van het grondmonster, waarbij dit in zijn elemen- taire deeltjes uiteenvalt, worden eerst de grove fracties van elkaar gescheiden door middel van zeven. De gehalten van de fijnere fracties worden op basis van hun onderscheiden bezinkingssnelheid bepaald.

Tijdens een voorbehandeling met waterstofperoxyde en zoutzuur worden de bindingen tussen de elementaire bodemdeeltjes verbroken. IJzeroxyde kan na reductie met dithioniet worden verwijderd. Oplosbare zouten worden eveneens verwijderd door uitwassen met water.

Reagentia:

1. Waterstofperoxyde, H2O2, c = 30%.

2. Zoutzuur, HCl, c = 1 mol/l.

Verdun 80 ml HCl 37% met water tot 1 liter. Vul een maatkolf van 1 liter met 800 ml water en voeg het zuur hieraan toe. Meng en koel het mengsel door de maatkolf onder koud leidingwater te houden en vul aan tot de streep. Homogeniseer de oplossing.

Het zoutzuur aan het water toevoegen! 3. Natriumpyrofosfaat, Na4P2O7, c = 0,12 mol/l.

Los 53,5 gram Na4P2O7.10H2O op in water en verdun tot 1 liter in een maatkolf.

Het gewicht van 20,0 ml van deze oplossing moet bekend zijn. Daarvoor dient 20,0 ml oplossing te worden drooggedampt in een nikkelen of porseleinen schaaltje op een waterbad. Na 3 uren drogen in een stoof bij 105°C het gewicht van de zoutrest op een 4-decimalen balans bepalen.

(37)

34

Monster:

De fractie <2mm van een grondmonster (fijnaarde).

Deze fractie is verkregen door het gedroogde monster te zeven over een zeef met ronde doorlaatopeningen van 2mm. De gewichtsfractie >2mm wordt apart bepaald en als percentage van de fractie <2mm vermeld bij het resultaat van de analyse.

Het vochtgehalte wordt apart bepaald.

Werkwijze:

Scheidt met een monsterverdeler 15 tot 25 gram van het monster af.

Er wordt meer monster ingewogen voor de analyse naarmate het klei- en siltgehalte lager is. Weeg dit op een 0,01 gram nauwkeurig af in een conisch bekerglas (Philips bekerglas) van 750ml.

organische stof verwijderen:

Voeg met een maatcilinder 35 ml water en 15 ml waterstofperoxyde (1) toe.

Zwenk de inhoud van het glas zodanig dat er een goed contact ontstaat tussen vloeistof en grondmonster. Dek de beker af met een SpeedyVap horlogeglas en plaats het monster in de zuurkast.

Bij een heftige reactie is het verstandig het bekerglas in een bakje te zetten, zodat overschuimend monster opgevangen wordt en niet verloren gaat.

Laat het monster gedurende een nacht bij kamertemperatuur staan: de waterstofperoxyde werkt dan langzaam maar efficiënt.

De volgende morgen wordt het monster op een kokend waterbad gezet. Wacht tot ook het monster warm is en voeg, als er geen heftige reactie optreedt door verwarmen, opnieuw 10 ml waterstofperoxyde toe. Indien het monster het glas dreigt uit te schuimen mag er enkele druppels ethanol 96% worden toe gevoegd om het schuimen te stoppen.

Voeg meer waterstofperoxyde toe tot al de organische stof is geoxydeerd. Bij een heftige reactie het glas in een bakje zetten om overschuimend monster op te vangen.

Als de oxydatie volledig is, wordt na het toevoegen van de waterstofperoxyde al na korte tijd de bovenstaande vloeistof helder: de bodemdeeltjes sedimenteren.

carbonaat verwijderen:

(38)

35 2 ml zoutzuur extra. Zwenk het bekerglas goed en, nadat de carbonaten zijn opgelost, moet er water worden toegevoegd tot een volume van ca. 300ml. Laat het bekerglas op het (kokend) waterbad staan totdat al de waterstofperoxyde uit de oplossing is verdwenen (geen luchtbelletjes meer).

uitwassen:

Er worden twee methoden beschreven om de overmaat HCl en H2O2 en hun reactieprodukten uit het

monster te wassen. De eerste methode is vooral aan te bevelen als er haast geboden is, maar is arbeidsintensiever. De tweede methode duurt tenminste twee dagen maar kost weinig arbeidstijd.methode 1

Filtreer het monster met een Büchner filtratieopzet over een hard filter: bv. Schleicher & Schuell 1575. Spoel het bekerglas met water na. Voorkom dat het filter droog gezogen wordt. Was het monster minstens vijf keer met een laagje water van ca. 1 cm.

Trek tenslotte het filter droog en breng het residu terug in de oorspronkelijke beker. Was het monster van het filter met zo min mogelijk water. Gooi het schoon gewassen filter dan weg.

Vervolg de procedure met de scheiding van deeltjes over een 63 µm zeef.

methode 2

Nadat de kalk uit het monster verwijderd is, wordt er water toegevoegd tot enkele cm's onder de rand van het bekerglas (en dus niet tot een volume van 300ml). Het bekerglas blijft op het waterbad in de zuurkast staan. De volgende dag met behulp van een waterstraalpomp de bovenstaande heldere vloeistof afzuigen. Zet het bekerglas dan op een lab.tafel (onderkant van het glas afdrogen!) en vul voor een tweede keer met water tot enkele cm's onder de rand. Herhaal de volgende dag het afzuigen. De derde keer, en meestal de laatste keer, wordt het glas tot de helft gevuld met water. Nadat ook dit water de volgende dag afgeheveld is, kan het monster worden gezeefd over een 63 µm zeef. Vervolg de procedure zoals hieronder is beschreven.

scheiding over 63 µm:

(39)

36 droog zeven:

Het deel van het monster dat op de zeef achter blijft (de zandfractie) wordt met water overgespoten in een nikkelen schaaltje waarvan het gewicht vooraf bepaald is op een 4-decimalen balans. Vergeet niet het monsternummer op het schaaltje te noteren (bv. hoog aan de binnenzijde).

Nadat de zandfractie bezonken is kan het overtollige water afgeschonken worden en de rest op een waterbad worden droog gedampt. Daarna moet het schaaltjes nog minstens één uur nadrogen in een droogstoof, ingesteld op 105°C, waarna het opnieuw gewogen wordt.

De fractie 2000-63 µm kan nu gesplitst worden in deelfracties met behulp van een set zeven en een trilmachine. Stapel hiervoor de zeven op elkaar met de zeef met de kleinste doorlaatdiameter onder. Onderaan komt een zeefpan om het materiaal <63 µm op te vangen.

Voor een bodemklassifikatie gebruiken we de volgende doorlaten: 63 µm, 125 µm, 250 µm, 500 µm en 1000 µm.

Als er monster <63 µm door de onderste zeef komt, dan kan dit toegevoegd worden aan de inhoud in de cilinder of worden gewogen. Bij de berekening moet hiermee rekening worden gehouden. Voor een uitgebreide analyse

(geomorfologische onderzoek) voegen we zeven toe met tussenliggende waarden voor de doorlaat opening (opmerking 3).

Pipet-analyse:

Vul de cilinder met water tot de 1000ml maatstreep. Plaats op de cilinder een rubberstop en schud de cilinder goed door deze om en om te draaien met de voet als middelpunt. Zet de cilinder neer, verwijder onmiddellijk de rubberstop en pipetteer zo vlug als mogelijk is 20 ml uit het midden van de cilinder. Laat de pipet leeglopen in een vooraf gewogen nikkelen schaaltje, voorzien van een nummer en waarvan het lege gewicht op 4-decimalen nauwkeurig bekend is. Spoel de pipet na met een beetje water. Nu is de fractie < 63 µm gepipetteerd.

* Plaats het schaaltje op een kokend waterbad en damp de inhoud droog. Laat vervolgens nog

tenminste 3 uren nadrogen in een droogstoof ingesteld op 105°C. Zet het schaaltje daarna in een exsiccator om af te koelen en bepaal het gewicht opnieuw. Bij voorkeur wordt de zelfde balans gebruikt als waarmee het lege gewicht werd bepaald.

Voor de andere pipetfracties moet de cilinder iedere keer weer opnieuw worden geschud op de hiervoor beschreven wijze. Lees uit de tabel de tijd en pipetteerdiepte af voor de andere fracties. Ga daarna verder zoals achter * is aangegeven.

(40)

37 insteek-diepte voor de pipet na bepaalde tijd (in cm's)

(41)

38 Berekening: % fractie > 63 µm =

mg gevonden

mg abs.droge grond

x 100%

1 A % fractie < 63 µm =

(mg gevonden x 50) - 800

mg abs.droge grond

x 100%

2 B % fractie < 16 µm =

(mg gevonden x 50) - 800

mg abs.droge grond

x 100%

3 Y % fractie < 2 µm = (mg gevonden x 50) - 800 mg abs.droge grond x 100%4 C Noem de som van de gewichten van de deelfracties 2000 - 63 µm X, dan is:

% fractie 2000 - 1000 µm =

mg gevonden

X

x 100%

5 D % fractie 1000 - 500 µm = ,, E % fractie 500 - 250 µm = ,, F % fractie 250 - 125 µm = ,, G % fractie 125 - 63 µm = ,, H % fractie < 63 µm =

mg gevonden

mg abs.droge grond

x 100%

6 I trek I van A af ... ... ... ... ... K tel I bij B op ... ... ... ... L K + L is de hoeveelheid absoluut droge grond ... M

Bereken nu alle resultaten in procenten van M.

% fractie > 63 ... µm ... =

100

M

x K

7 ... N

% fractie < 63 ... µm ... =

100

(42)

39 % fractie < 16 ... µm ... =

100

M

x Y

9 ... Z

% fractie < 2 ... µm ... =

100

M

x C

10 ... P

Als het werkelijke percentage van de fractie > 63 µm N is, dan:

% fractie 2000 ... - ... 1000 ... µm ...=

N

100

x D

11 ... R % fractie 1000 ... - ... 500 ... µm ...=

N

100

x E

12 ... S % fractie 500 ... - ... 250 ... µm ...=

N

100

x F

13 ... T % fractie 250 ... - ... 125 ... µm ...=

N

100

x G

14 ... U % fractie 125 ... - ... 63 ... µm ...=

N

100

x H

15 ... V Controle op de berekening: .... N + O = 100% ... ... ... R + S + T + U + V = N ... ... ... D + E + F + G + H = 100% opmerkingen:

1. Zo spoedig mogelijk na aanvang van de analyse een vochtbepaling aan het materiaal doen. 2. Het is praktisch om in het begin van de analyse voor elk monster drie kleine en een grote

nikkelen schaal te nummeren en te wegen. Deze gewichten noteren op het uitwerkblad. 3. Voor een uitgebreide granulaire samenstelling van de zandfractie hebben

we zeven met de volgende maaswijdten beschikbaar:

(43)

40

Literatuur:

1. NEN 5753 Bodem. Bepaling van het lutumgehalte en korrelgrootte van grondmonsters met behulp van zeef en pipet, 2006, Uitgave Nederlands Normalisatie-instituut, Delft.

2. NEN 5753/C1 (correctieblad) Bodem. Bepaling van het lutumgehalte en korrelgrootteverdeling in grond en waterbodem met behulp van zeef en pipet, 2009, Uitgave Nederlands Normalisatie-instituut, Delft.

(44)

41

9.4. List of minerals present at Crustumerium

Pyroxene group

The pyroxene group includes both orthohombic and monoclinic minerals2, and pyroxene crystals are the

first minerals to form when magma cools down.3 In the soils of Crustumerium the monoclinic pyroxenes

are mainly present with the minerals augite, aegirine/aegirine-augite and diopside augite.4

Augite: Augite crystals are monoclinic pyroxenes and have a large, diamond or elongated shape. The colour varies from pale brown, brown, purplish brown, green to black.5 The minerals have a more or less

shell-shaped cleavage and are generally distinguished from diopside and aegirine by a smaller double refraction.6 Augite minerals occur mainly in igneous rocks, and are, because they are the first to

crystallize during the cooling of magma, often the most dominant mineral present.7

Aegirine/ aegirine-augite: These monoclinic pyroxenes have a more elongated shape and the colour varies between translucent, dark green to greenish dark for aegirine, and translucent, dark green to black, green, yellow-green or brown for aegirine-augite.8 Difference between both is mainly based on

colour.9 Both crystals generally show colour zones with an hour-glass pattern and, furthermore, have a

serrated structure on the end faces of the crystals.10 Aegirine and aegirine-augite occur commonly as the

later products of crystallization in alkaline magmas, and aegirine occurs in some alkali granites, while the aegirine-augite crystals are often found in regionally metamorphosed rocks.11

Diopside augite: A monoclinic mineral that is intermediate in composition between augite and aegerine-augite. The colour varies from pale or dark green to white.12 Diopside forms in a relatively early in the

crystallization sequence.13

Other minerals

Sanidine: Alkali feldspars are subdivided into three divisions: Potassium feldspars with little or no sodium. Sodium feldspars with little or no potassium. Alkali feldspars in general.14 Sanidine is a very

dominant and distinctive, glass-like potassium feldspar, which breaks easily, forming diamond shaped faces. Normally sanidine is colourless or white, but sometimes it varies between pink, yellow, red or green.15 This type of feldspars are essential components of alkali and acid igneous rocks, and are

particularly abundant in syenites, granites, granodiorites and their volcanic equivalents.16

2 Deer et al. 1971, p.99.

3 Sevink, J. (personal communication 16 sept. 2015). 4 Sevink, J. (personal communication 16 sept. 2015).

5 Deer et al. 1971, p.120; Sevink, J. (personal communication 16 sept. 2015). 6 Deer et al 1971, pp.125-126; Sevink, J. (personal communication 16 sept. 2015). 7 Deer et al. 1971, p.126; Sevink, J. (personal communication 16 sept. 2015). 8 Sevink, J. (personal communication 16 sept. 2015).

9 Deer et al. 1971, pp.132-133.

10 Deer et al. 1971, p. 133; Sevink, J. (personal communication 16 sept. 2015). 11 Deer et al. 1971, pp.134-135.

12 Deer et al. 1971, p.115; Sevink, J. (personal communication 16 sept. 2015). 13 Deer et al. 1971, p.117.

14 Deer et al. 1971, p.285.

(45)

42 Leucite: Leucite is a feldsparoid that is a characteristic element of potassium-rich basic lavas. This glass-like, white or grey coloured mineral, weathers easily and is therefore rare to find elsewhere then in new, untouched volcanic deposits. Decomposed by HCL.17

Magnetite: The spinel group can be divided into three groups; Spinel series, magnetite series and the chromite series. Magnetite is a ferro-spinel with generally a black colour with a black streak, although the colour can vary between red, brown, blue, black, green, yellow, grey or almost colourless, and in reflected light, it appears grey and has moderate reflectivity. The mineral has a characteristic double-pyramid form and is magnetic.18 It is one of the most common oxide minerals in igneous and

metamorphic rocks and is the principal magnetic ore. Magnetite typically occurs as an accessory mineral in many igneous rocks, but is occasionally concentrated in magnetic segregations.19

Olivine: Round pellets with a limited presence, partly due to their high weatherability. The colour varies from green, lime-yellow, and greenish yellow to yellow-amber. 20

Granaat: Round pellets with a limited presence, partly due to their high weatherability. The colour varies from dark brown to red. Similar shape as Olivine.

Mica: In this case, especially biotite, which occurs in a greater assortment of geological environments than other micas. Biotite is generally a darker mica and the colour varies from black, deep shades of brown, reddish brown or green, although it can turn to a gold-like colour during weathering.21 Biotite is

formed in metamorphic rocks under a wide range of temperature and pressure conditions and it occurs abundantly in many contact and regionally metamorphosed sediments.22

Sedimentary minerals

Quartz: Quartz is one of the most abundant minerals and occurs as an essential component of many igneous, sedimentary and metamorphic rocks. Furthermore, quartz can be found as an accessory mineral, and occurs as secondary material often forming a cementing medium in sediments. 23 The

mineral is formed as clear pellets with a shell-shaped fracture, or as rounded and translucent sand grains with an iron crust. The colour varies from white to black, purple, green, etc.24

Flint: Dense, opaque pellets with a rounded form. Micro-crystaline mineral with a colour varying from grey to red brown. 25

Other:

Aggregates: All possible aggregates consisting of weathered tuff, aggregated clay particles or weathered volcanic glasses.

17 Deer et al. 1971, p.367; Sevink, J. (personal communication 16 sept. 2015). 18 Deer et al. 1971, p424/p.430; Sevink, J. (personal communication 16 sept. 2015). 19 Deer et al. 1971, p.432.

20 Deer et al. 1971, p.2; Sevink, J. (personal communication 16 sept. 2015). 21 Deer et al. 1971, p.211; Sevink, J. (personal communication 16 sept. 2015). 22 Deer et al. 1971, p.213.

23 Deer et al. 1971, p.352.

(46)

43

9.5. Dataset particle size analysis (Info per sample per trench)

(47)
(48)

45

(49)
(50)

97

(51)
(52)
(53)

165

10.

Literature

Arnoldus-Huyzendveld, A., 2003. Carta dei Suoli del Comune di Roma in scala 1:50.000.

Deer, W.A., Howie, R.A. & Zussman, J., 1966. Introduction to the Rock Forming Minerals. ed. 1971, Wiley Publishing.

Den Haan, 2013. Geological and pedogenetical formation and their relation to archaeological remains of the Crustumerium settlement, Rome, Italy. Internal Report, University of Amsterdam, The Netherlands. 21 p.

Funiciello R., Giordano G., Mattei M. 2008. Geological Map of Roma Municipality, Scale 1:50.000. SELCA, Firenze

Noorda, N.P. & Attema, P.A.J.A., 2013. Landscape archaeology in the settlement of Crustumerium: The results of two excavation campaigns of the University of Groningen in 2013. Groningen: Internal GIA report.

Noorda, N.P. & Attema, P.A.J.A., 2016. Quilici O: The results of two excavation campaigns by the University of Groningen. Groningen: Internal GIA report.

Ullrich, B. & Pilz, D., 2012. Report 1137/2011: Magnetic Survey 2011: Crustumerium (Lazio, Italy). Berlin: Eastern Atlas GmbH & Co KG. (Internal GIA/SS-Col report)

Ullrich, B., 2013. Report 1308/2013: Geophysical survey at Crustumerium (Lazio, Italy), Campaign 2013. Berlin: Eastern Atlas GmbH & Co KG. (Internal GIA/SS-Col report)

Referenties

GERELATEERDE DOCUMENTEN

van de Title: The role of quiescent and cycling stem cells in the development of skin cancer Issue

[r]

[r]

[r]

RSTTUVWXVYZVX[W\W]^VT_XV`ZVaZ]VbWZ]V\ZY]Vc[VYW]VUTb]cc\dVeZbV`ZVbWZ]

Author: Runtuwene, Vincent Jimmy Title: Functional characterization of protein-tyrosine phosphatases in zebrafish development using image analysis Date: 2012-09-12...

68 67888942 WXYZ[Y\]Y^_YZ]\Y`aYb_cZ\Y`dYe_ZbfZg`hbiYeZjklcZ^gghZfgZ]mZ_YZ^YdYe_YZagf_Yebf^YfZ]mZYnoe]bhghbYZ

68 67888942 WXYZ[Y\]Y^_YZ]\Y`aYb_cZ\Y`dYe_ZbfZg`hbiYeZjklcZ^gghZfgZ]mZ_YZ^YdYe_YZagf_Yebf^YfZ]mZYnoe]bhghbYZ