• No results found

Rearrangements within the facioscapulohumeral muscular dystrophy locus: mechanism, timing and consequences.

N/A
N/A
Protected

Academic year: 2021

Share "Rearrangements within the facioscapulohumeral muscular dystrophy locus: mechanism, timing and consequences."

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Rearrangements within the facioscapulohumeral muscular dystrophy

locus: mechanism, timing and consequences.

Lemmers, R.

Citation

Lemmers, R. (2005, June 15). Rearrangements within the facioscapulohumeral muscular

dystrophy locus: mechanism, timing and consequences. Retrieved from

https://hdl.handle.net/1887/2699

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in theInstitutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/2699

(2)

CONTENTS

Chapter 1. Introduction

1.1 Facioscapulohumeralmuscular dystrophy

1.1.1 Clinicalcharacteristics 15

1.1.2 Genomic localization 15

1.1.3 Causalmolecular defect 16

1.1.4 Potentialmolecular mechanism 18 -FSHD gene within D4Z4 (DUX4)

-PEV model

-Long-distancecislooping model -Localchromatin alteration

1.1.5 Identification of FSHD genes 24 -FRG 1

-TUBB4Q,FRG2,andDUX4c 1.2Subtelomeric plasticity 4q35

1.2.1 General 26

1.2.2 Gene duplications 27

1.2.3 Duplications subtelomeric 4q35 genes 28 -FRG1-homologs

-TUBB4Q-homologs

-FRG2 and DUX4-homologs

1.2.4 Distal4q35 duplication 30

1.2.5 D4Z4 translocations 31

1.3Plasticity of repetitive DNA sequences

1.3.1 General 33

1.3.2 M odels for repeatinstability 34 1.3.3 Repeatinstability in human 35

1.3.4 Instability D4Z4 repeat 37

1.3.5 Timing of mitotic D4Z4 rearrangement 39

1.3.6 Repeathomogenization 44

1.3.7 Evolution of the D4Z4 repeat 46 1.4Implications of rearrangements for molecular diagnosis 49

M olecular diagnosis of FSHD

Lemmers RJLF,van der W ielen M JR,Bakker E,van der M aarelSM

(3)

1.5 Discussion

1.5.1 Molecular diagnosis FSHD 77

1.5.2 Mitotic rearrangement of D4Z4 contractions 81 Timing mitotic D4Z4 rearrangement

Rearrangement mechanism

1.5.3 Subtelomeric plasticity and the definition of the FSHD allele 82 Region distal to D4Z4

1.6 Future perspectives

1.6.1 Timing D4Z4 rearrangement 84

Analysis of mosaicism in gonadal cells D4Z4 methylation analysis

1.6.2 Interacting proteins 86

1.6.3 Transcription analysis D4Z4 87

1.6.4 Completing sequence 4qter and 10qter 89

1.6.5 Phenotype-genotype study 89

1.6.6 Genome-wide high throughput studies 90

1.7Summary of major findings 93

1.8 References 95

Chapter 2. 105

Hypomethylation of D4Z4 in 4q-linked and non-4q-linked FSHD

van Overveld PGM, Lemmers RJLF, Sandkuijl LA, Enthoven L, Winokur ST, Bakels F, Padberg GW, van Ommen GJ, Frants RR, van der Maarel SM

Nature Genetics 35/4 (2003) 315–317

Chapter 3. 115

FSHD is uniquely associated with one of the two variants of the 4q subtelomere

Lemmers RJLF, de Kievit P, Sandkuijl LA, Padberg GW, van Ommen GJ, Frants RR, van der Maarel SM

Nature Genetics 32/2 (2002) 235–236

Chapter 4. 123

Contractions of D4Z4 on 4qB subtelomeres do not cause FSHD

(4)

Chapter 5. 133

Possible phenotypic dosage effect in patients compound heterozygous for FSHD-sized 4q35 alleles Wohlgemuth M, Lemmers RJLF, van der Kooi EL, van der Wielen MJR, van Overveld PGM, Dauwerse H, Bakker E, Frants RR, Padberg GW, van der Maarel SM Neurology 61/7 (2003) 909–913 Chapter 6. 141

D4F104S1 deletion in FSHD: phenotype, size, and detection Lemmers RJLF, Osborn M, Haaf T, Rogers M, Frants RR, Padberg GW, Cooper DN, van der Maarel SM, Upadhyaya M Neurology 61/2 (2003) 178–183 Chapter 7. 151

Mechanism and timing of mitotic rearrangements in the subtelomeric D4Z4 repeat involved in FSHD Lemmers RJLF, van Overveld PGM, Sandkuijl LA, Padberg GW, Frants RR, van der Maarel SM The American Journal of Human Genetics 75/1 (2004) 44–53 Chapter 8. 163

Somatic mosaicism in FSHD often goes undetected Lemmers RJLF, van der Wielen MJR, Bakker E, Padberg GW, Frants RR, van der Maarel SM Annals of Neurology 55/6 (2004) 845–850 Chapter 9. 171

Complete allele information in the diagnosis of FSHD by triple DNA analysis Lemmers RJLF, de Kievit P, van Geel M van der Wielen MJR, Bakker E, Padberg GW, Frants RR, van der Maarel SM Annals of Neurology 50/6 (2001) 816–819 Summary 179

Samenvatting 183

Bibliography 187

(5)

Referenties

GERELATEERDE DOCUMENTEN

Since expression of Serpins may facilitate the immune escape of HLA positive tumors, we next analysed the effect of Serpin expression on survival in cases with normal/partial

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/16263.

Detection of amyloid plaques in mouse models of Alzheimer’s disease by magnetic resonance imaging.. Apostolova

More precisely, an upper bound for the variance of the test statistic R N ∗ is realized by the one-dimensional Moore-Rayleigh null hypothesis, whose distribution is similar to the

Bij alle somatisch mozaïeke patiënten beschreven in FSHD publicaties, vond de D4Z4 contractie waarschijnlijk plaats voor de afsplitsing van de kiembaan en waarschijnlijk zijn al

Peripheral blood cells were stained with HLA-A2.1 tetramers containing the tyrosinase368–376 peptide followed by staining with a panel of lineage antibodies, as described in

Blades and blade fragments seem to have been especially used for longitudinal motions, mainly on plant material (7/12). Flake and flake fragments are used in different motions on

This shape also occurs in the combination artefacts (see below). The shape is the result of intensive use in a repetitive abrasive motion, carried out from different angles. In