• No results found

University of Groningen Insights into the transport mechanism of energy-coupling factor transporters Stanek, Weronika Karolina

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Insights into the transport mechanism of energy-coupling factor transporters Stanek, Weronika Karolina"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Insights into the transport mechanism of energy-coupling factor transporters

Stanek, Weronika Karolina

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Stanek, W. K. (2018). Insights into the transport mechanism of energy-coupling factor transporters. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

SUPPLEMENT

AR

Y

T

ABLES

Supplementary

Table 1 Substrate binding affinity determined for

differ

ent S-components

Protein Substrate Method Sample Value Author FolT Lactobacillus casei [ 3H]folate

Radiolabeled substrate binding

to cells Whole cells at 4°C kd 36 nM, binding 0.35 nmol/10 10 cells 1 ThiT Lactobacillus casei [thiazole-2-14C]thiamine

Radiolabeled substrate binding

to cells

Whole cells with glucose

and iodoacetate kd < 10 nM 2 ECF-FolT Lactobacillus casei [3’,5’,9(n)-3H]folate

Radiolabeled substrate binding

to cells

Whole cells, not ener

gized 0.45 nmol/10 10 cells 3 ECF-ThiT Lactobacillus casei [thiazole-2-14C]thiamine

Radiolabeled substrate binding

to cells

Whole cells, not ener

gized 0.70 nmol/10 10 cells 3 ECF-FolT Lactobacillus casei [3’,5’,7,9-3H]folate

Radiolabeled substrate binding

to cells at 0°C

Whole cells and membranes

- kd 0.26 nM cells - kd 0.35 nM membranes k1 4.9x 10 7 liter/mol/min; k-1 0.028/min 4 ECF-ThiT Lactobacillus casei [ 35S]thiamine

Radiolabeled substrate binding

to cells

Whole cells, deener

gized kd 0.03 nM 5 ECF BioY Lactobacillus casei [ 3H]biotin

Radiolabeled substrate binding

to cells

Whole cells, deener

gized kd 0.15 nM 5 RibU Lactococcus lactis - Riboflavin - Riboflavin - Riboflavin - Roseoflavin - FMN - FAD - Riboflavin - ITC - ITC - Fluorescence titration - Fluorescence Trp titration - Fluorescence titration - Fluorescence titration - Flow dialysis - Purified - membrane vesicles - Purified - Purified - Purified - Purified - Purified - kd 1.8 ± 0.7 nM - kd 5.0 ± 1.0 nM - kd 0.6 ± 0.2 nM - kd 2.5 ± 1.2 nM - kd 36 ± 6 nM - no binding - kd 1.7 ± 3.2 nM 6 FolT Lactobacillus casei Folate Fluorescence quenching of tryptophan Purified kd 9 nM 7 ThiT Lactobacillus casei Thiamine Fluorescence quenching of tryptophan Purified kd 0.5 nM 7

(3)

ThiT Lactococcus lactis - Thiamine - TMP - TPP - Pyrithiamin Fluorescence quenching of tryptophan Purified - kd 122 ± 13 pM - kd 1.01 nM - kd 1.6 nM - kd 180 ± 70 pM 8 BioY Lactococcus lactis D-biotin Fluorescence quenching of tryptophan Purified kd 0.3 nM 9 BioY Rhodobacter capsulatus D-biotin Fluorescence quenching of tryptophan Purified

Very high affinity

, not possible to determine 9 ThiT Lactococcus lactis Thiamine Fluorescence quenching of tryptophan Purified kon 3.4 x 10 8 M -1 s -1 koff very slow (0.004 s -1) (kd 1 1 pM) 10 FolT Enterococcus faecalis Folate ITC Purified kd 29.8 ± 4.7 nM 11 FolT1 Lactobacillus delbrueckii Folate Fluorescence quenching of tryptophan Purified kd 1.0 ± 0.24 nM 12 FolT2 Lactobacillus delbrueckii Folate Fluorescence quenching of tryptophan Purified kd 20 ± 2.19 nM 12 YkoE Bacillus subtilis Thiamine Fluorescence quenching of tryptophan Purified kd 4.5 nM 13 RibU Listeria monocytogenes Riboflavin FSEC

Purified, released from

whole complex kd 526 ± 74 nM 14 ECF(H>A) RibU Listeria monocytogenes AT P

SEC with samples preincubated with varying

ATP

concentrations

Purified full complex with double H-loop

mutation kd 101 ± 19 µM 14 CbrT Lactobacillus delbrueckii - Cyanocobalamine - Cobinamide - Hydroxycobalamine - Methylcobalamine ITC Membrane vesicles kd 9.2 ± 4.5 nM k 36 ± 15 nMd kd 9.6 ± 6.9 nM kd 4.5 ± 0.3 nM 15 PanT Lactobacillus delbrueckii Pantothenate ITC Membrane vesicles kd 21.4 ± 22.9 nM This study FolT2 Lactobacillus delbrueckii Folate ITC Membrane vesicles kd 14.4 ± 9.3 nM This study

(4)

Supplementary

Table 2 Structurally characterized pr

oteins in ECF

transporters family

, classified by the

type.

Transporter Organism Nucleotide state Orientation PDB code Resolution [Å] Refer ences Type I ECF transporters Tt NikM Thermoanaer obacter tengcongensis

-Nickel bound (The four

nitrogen atoms form an

square-planar geometry)

4M58 (truncated structures with Ni

2+

4M5B and Co

2+

4M5C)

3,2 (1,83 for the truncated) 2,5 (Co bound)

16 CbiO Thermoanaer obacter tengcongensis No nucleotide -4MKI 2,3 17 YkoE Bacillus subtilis -Thiamine bound 5EDL 1,5 (LCP) 13 CbiMQO Rhodobacter capsulatus

-Inward-facing (no CbiN)

5X3X 2,79 18 CbiMQO Rhodobacter capsulatus

-Inward-facing (no CbiN)

5X41

3,47 (LCP)

18

CbiO E166Q dimer

Rhodobacter capsulatus AMP-PCP -5X40 1,45 18 Type II ECF transporters ECF-FolT Lactobacillus br evis Nucleotide free Inward-facing, no substrate bound 4HUQ 3 19 ECF-HmpT (pyridoxin transporter) Lactobacillus br evis Nucleotide free Inward-facing, no substrate bound 4HZU 3,5 20 ECF-PanT Lactobacillus br evis Nucleotide free Inward-facing, no substrate bound 4RFS 3,25 21 ECF-FolT2 Lactobacillus delbrueckii Nucleotide free Inward-facing, no substrate bound 5JSZ 3 12 ECF-FolT2 Lactobacillus delbrueckii AMP-PNP Inward-facing, no substrate bound 5D3M 3,3 12

(5)

ECF-CbrT Lactobacillus delbrueckii -Inward-facing, no substrate bound 6FNP 3,4 15 RibU Staphylococcus aur eus -Riboflavin bound 3P5N 3,6 22 RibUΔCt Thermotoga maritima -Riboflavin bound 5KBW 5KC0 5KC4 2,61 (LCP) 3,2 3,4 14 BioY Lactoccocus lactis -D-biotin bound 4DVE 2,1 9 ThiT Lactococcus lactis

-Thiamin bound (not

V-shape conformation) 3RLB 2,0 23 ThiT Lactococcus lactis

-Small molecule modulators:

• LMG1 16 • BA T-25 • Pyrithamine • AV -38 • LMG139 • LMG135 • 4MES • 4MHW • 4MUU • 4N4D • 4POP • 4POV 2,0 2,5 2,1 2,4 2,2 2,2 To be published 24 FolT1 Lactobacillus delbrueckii -Folate bound 5D0Y 3,01 12 FolT Enter ococcus faecalis -Folate bound 4Z7F 3,19 11 EcfAA Thermotoga maritima ADP -4HLU 2,7 25 EcfAA‘ Thermotoga maritima AMP-PNP -4ZIR 3,0 26

(6)

Supplementary

Table 3

ATPase activity characterization for

differ

ent ECF

transporters

Protein Substrate Method Sample Value Author BioMNY Rhodobacter capsulatus Changing ATP concentrations

Free phosphate colorimetric determination

27 Purified Vmax 390 nmol P i /min/mg 28

ECF-RibU Streptococcus thermophilus

5

mM A

TP

Free phosphate colorimetric determination

29 Purified Vmax 0.8 ATP molecules/s/ECF-RibU (47.9 mol/min/mol) 25 BioMNY Rhodobacter capsulatus 2 mM A TP

Free phosphate colorimetric determination

30 - nanodiscs - purified - Vmax 0.73 ± 0.01 µmol P i /min/ mg (70 nmol/min/nmol), Km 0.14 ± 0.04µm; k 1.27 scat -1 - Vmax 0.53 ± 0.04 µmol/min/mg 31 ECF-RibU L ysteria monocytogenes Changing ATP concentrations

Free phosphate colorimetric determination

29 - prot eol iposom es - purified - Vmax 488 ± 67 nmol/min/mg (56.12 nmol/min/nmol), - Vmax 1 150 ± 28 nmol/min/mg Km 165 ± 16 µM 26 CbiMNQO Rhodobacter capsulatus Changing ATP concentrations Free phosphate colorimetric determination Purified kcat 29.7 min -1 Km 153.8 m 18 CbiMQO Rhodobacter capsulatus Changing ATP concentrations Free phosphate colorimetric determination Purified kcat 33.9 min -1 Km 150.7 m 18 CbiQO Rhodobacter capsulatus Changing ATP concentrations Free phosphate colorimetric determination Purified kcat 2.5 min -1 Km 277.3 m 18

ECF-FolT2 Lactobacillus delbrueckii

Changing ATP concentrations, 100 nM folate Radiolabeled substrate uptake assay Proteoliposomes Km 5.54 mM, n H 1.75 This study

ECF-PanT Lactobacillus delbrueckii

Changing ATP concentrations, 100 nM pantothenate Radiolabeled substrate uptake assay Proteoliposomes Km 5.61 mM, n H 1.74 This study

ECF-PanT Lactobacillus delbrueckii

Changing

ATP

concentrations,

500 nM pantothenate

Coupled enzyme assay

32 Proteoliposomes Km 16.38 mM, Vmax 200.23 pmol/min/pmol, n1.83H This study

(7)

Supplementary

Table 4 Kinetic parameters of transport determined in ECF

transporters

Protein Substrate Sample Value Author ECF-FolT Lactobacillus casei - [G-3H]Folate - [ 14CH 3 ]Amethopterin - [3’,5’-3H]5-methyl tetrahydrofolate Whole cells - Km 0.35 µM, Vmax 0.44 nmol/min/1 0 10 cells - Km 0.21 µM, Vmax 0.44 nmol/min/1 0 10 cells - Km 0.90 µM, Vmax 0.56 nmol/min/1 0 10 cells 33 ThiT Lactobacillus casei [thiazole-2-14C]thaimine

Whole cells, ener

gized Km < 10 nM 2 ECF-FolT Lactobacillus casei [3’,5’,9(n)-3H]folate

Whole cells, ener

gized Vmax 0.32 nmol/min/10 10 cells 3 ECF-ThiT Lactobacillus casei [thiazole-2-4C]thiamine

Whole cells, ener

gized Vmax 0.35 nmol/min/10 10 cells 3 BioY Rhodobacterim capsulatus D-[8,9-3H]biotin

Whole cells, ener

gized Km 250 nM, Vmax 60 pmol/mg/min 34 BioMNY Rhodobacterim capsulatus D-[8,9-3H]biotin

Whole cells, ener

gized Km 5 nM, Vmax 6 pmol/mg/min 34 BioY Chlamydia trachomatis D-[8,9-3H(N)] biotin

Whole cells (nothing about ener

gizing) Km 3.35 nM, Vmax 55.1 pmol/mg/min 35

ECF-CbrT Lactobacillus delbrueckii

Changing 57Co-cyanocobalamine concentrations Proteoliposomes Km 2.1 ± 0.4 nM, Vmax = 3.6 ± 0.6 pmol/min/µg 15 ECF FolT2 Lactobacillus delbrueckii Changing [3,5,7,9 -3H]folate concentrations Proteoliposomes Km 58.8 nM, Vmax 0.771 pmol/min/µg, kcat 0.00148 s -1 This study ECF PanT Lactobacillus delbrueckii Changing D-[2,3-3H]pantothenate concentrations Proteoliposomes Km 46.1 nM, Vmax 2.2 pmol/(min*µg), kcat 0.00429 s -1 This study

*All transport kinetic parameters were measured with radiolabeled substrate uptake assay

(8)

Supplementary

Table 5

ATP

analogues used in this study

Analogue Structur e State Differ ence vs. A TP Refer ence AT P Pre-hydrolysis (ground) state -36 ADP

Post hydrolysis (product)

state No γ-phosphate 25,37,38 ATP-γ-S Pre-hydrolysis (ground) state

Slowly hydrolyzed analogue with a sulfur atom instead of oxygen in a terminal phosphate. Cannot form pentacovalent conformation, mimicking ground

state.

39

AMP-PNP

(Adenylyl-imidodiphosphate)

Ground state

Slowly-hydrolyzed analogue that contain imido group instead of oxygen between the β- and γ-phosphorus atom.

Tetrahedral geometry . 12,26,40–42 Beryllium fluoride + ADP Pre-hydrolysis (ground) state Tetrahedral geometry 41,43 Vanadate (VO 3 3−) + ADP Post-hydrolysis (transition) state An analogue of inor ganic phosphate. The covalently

linked oxygen forms trigonal bipiramid, mimicking a

transition state.

41,44

Aluminum fluoride +

ADP

Transition state

Octahedral geometry that resemble conformation γ-phosphate under the water nucleophilic attack

(9)

REFERENCES

1. Henderson, G. B., Zevely, E. M. & Huennekens, F. M. FOLATE TRANSPORT IN

LACTOBACILLUS CASEI: SOLUBILIZATION AND GENERAL PROPERTIES OF THE BINDING PROTEI. Biochem. Biophys. Res. Commun. 68, 712–717 (1976). 2. Henderson, G. B. & Zevely, E. M. Binding and transport of thiamine by Lactobacillus

casei. J. Bacteriol. 133, 1190–1196 (1978).

3. Henderson, G. B., Zevely, E. M. & Huennekens, F. M. Mechanism of folate transport

in Lactobacillus casei: Evidence for a component shared with the thiamine and biotin transport systems. J. Bacteriol. 137, 1308–1314 (1979).

4. Henderson, G. B., Kojima, J. M. & Kumar, H. P. Kinetic Evidence for Two

Interconvertible Forms of the Folate Transport Protein from Lactobacillus caseit.

163, 1147–1152 (1985).

5. Henderson, G. B., Kojima, J. M. & Kumar, H. P. Differential interaction of cations with the thiamine and biotin transport proteins of Lactobacillus casei. 813, 201–206 (1985).

6. Duurkens, R. H., Tol, M. B., Geertsma, E. R., Permentier, H. P. & Slotboom, D. J.

Flavin binding to the high affinity riboflavin transporter RibU. J. Biol. Chem. 282, 10380–10386 (2007).

7. Eudes, A. et al. Identification of genes encoding the folate- and thiamine-binding

membrane proteins in firmicutes. J. Bacteriol. 190, 7591–7594 (2008).

8. Erkens, G. B. & Slotboom, D. J. Biochemical characterization of ThiT from

lactococcus lactis: A thiamin transporter with picomolar substrate binding affinity.

Biochemistry 49, 3203–3212 (2010).

9. Berntsson, R. P. -a. et al. Structural divergence of paralogous S components from

ECF-type ABC transporters. Proc. Natl. Acad. Sci. 109, 13990–13995 (2012). 10. Majsnerowska, M. et al. Substrate-induced conformational changes in the

S-component ThiT from an energy coupling factor transporter. Structure 21, 861– 867 (2013).

11. Zhao, Q. et al. Structures of FolT in substrate-bound and substrate-released

conformations reveal a gating mechanism for ECF transporters. Nat. Commun. 6, 7661 (2015).

12. Swier, L. J. Y. M., Guskov, A. & Slotboom, D. J. Structural insight in the toppling mechanism of an energy-coupling factor transporter. Nat. Commun. 7, 11072 (2016). 13. Josts, I., Almeida Hernandez, Y., Andreeva, A. & Tidow, H. Crystal Structure of a

Group I Energy Coupling Factor Vitamin Transporter S Component in Complex with Its Cognate Substrate. Cell Chem. Biol. 23, 827–836 (2016).

14. Karpowich, N. K., Song, J. & Wang, D. N. An Aromatic Cap Seals the Substrate

Binding Site in an ECF-Type S Subunit for Riboflavin. J. Mol. Biol. 428, 3118–3130 (2016).

15. Santos, J. A. et al. Functional and structural characterization of an ECF-type ABC

transporter for vitamin B12. Elife 7, e35828 (2018).

16. Yu, Y. et al. Planar substrate-binding site dictates the specificity of ECF-type nickel/ cobalt transporters. Cell Res. 24, 267–77 (2014).

17. Chai, C. et al. Structural basis for a homodimeric ATPase subunit of an ECF

(10)

18. Bao, Z. et al. Structure and mechanism of a group-I cobalt energy coupling factor transporter. Cell Res. 27, 675–687 (2017).

19. Xu, K. et al. Crystal structure of a folate energy-coupling factor transporter from

Lactobacillus brevis. Nature 497, 268–71 (2013).

20. Wang, T. et al. Structure of a bacterial energy-coupling factor transporter. Nature

497, 272–6 (2013).

21. Zhang, M. et al. Structure of a pantothenate transporter and implications for ECF

module sharing and energy coupling of group II ECF transporters. Proc. Natl. Acad.

Sci. U. S. A. 111, 18560–5 (2014).

22. Zhang, P., Wang, J. & Shi, Y. Structure and mechanism of the S component of a

bacterial ECF transporter. Nature 468, 717–720 (2010).

23. Erkens, G. B. et al. The structural basis of modularity in ECF-type ABC transporters.

Nat. Struct. Mol. Biol. 18, 755–760 (2011).

24. Swier, L. J. Y. M. et al. Structure-based design of potent small-molecule binders to

the S-component of the ECF transporter for thiamine. ChemBioChem 16, 819–826 (2015).

25. Karpowich, N. K. & Wang, D. Assembly and mechanism of a group II ECF

transporter. Proc. Natl. Acad. Sci. U. S. A. 110, 2534–9 (2013).

26. Karpowich, N. K., Song, J. M., Cocco, N. & Wang, D.-N. ATP binding drives

substrate capture in an ECF transporter by a release-and-catch mechanism. Nat.

Struct. Mol. Biol. 22, 565–571 (2015).

27. Chifflet, S., Torriglia, A., Chiesa, R. & Tolosa, S. A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: Application to lens ATPases. Anal. Biochem. 168, 1–4 (1988).

28. Finkenwirth, F. et al. Subunit composition of an energy-coupling-factor-type biotin

transporter analysed in living bacteria. Biochem. J. 431, 373–380 (2010).

29. KODAMA, T., FUKUI, K. & KOMETANI, K. The initial phosphate burst in ATP

hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate. J Biochem 99, 1465–1472 (1986).

30. Ames, G. F. et al. Purification and Characterization of the Membrane-Bound Complex

of an ABC Transporter , the Histidine Permease 1. 33, 2–4 (2001).

31. Finkenwirth, F. et al. ATP-dependent Conformational Changes Trigger Substrate

Capture and Release by an ECF-type Biotin Transporter. J. Biol. Chem. 290, 16929– 16942 (2015).

32. Karasawa, A. et al. Physicochemical Factors Controlling the Activity and Energy

Coupling of an Ionic Strength-gated ATP-binding Cassette. 288, 29862–29871 (2013).

33. Huennekens, F. M. & Henderson, G. B. Transport of Folate Compounds into

Lactobacillus Casei Although transport of folate compounds into mammalian cells , particularly those of L1210 murine leukemia , has been studied extensively ( reviewed by Goldman ( 1 ))) less is known about the mechanism. 728, 722–728 (1974). 34. Hebbeln, P., Rodionov, D. a, Alfandega, A. & Eitinger, T. Biotin uptake in prokaryotes

by solute transporters with an optional ATP-binding cassette-containing module.

Proc. Natl. Acad. Sci. U. S. A. 104, 2909–2914 (2007).

(11)

Chlamydia Spp. through the Use of a Bacterial Transporter (BioY) and a Host-Cell Transporter (SMVT). PLoS One 7, 1–16 (2012).

36. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal

structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007).

37. Johnson, E., Nguyen, P. T., Yeates, T. O. & Rees, D. C. Inward facing conformations of the MetNI methionine ABC transporter: Implications for the mechanism of transinhibition. Protein Sci. 21, 84–96 (2012).

38. Dawson, R. J. P. & Locher, K. P. Structure of a bacterial multidrug ABC transporter.

Nature 443, 180–185 (2006).

39. Sauna, Z. E. et al. Catalytic cycle of ATP hydrolysis by P-glycoprotein: Evidence

for formation of the E·S reaction intermediate with ATP-γ-S, a nonhydrolyzable analogue of ATP. Biochemistry 46, 13787–13799 (2007).

40. Dawson, R. J. P. & Locher, K. P. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 581, 935–938 (2007).

41. Oldham, M. L. & Chen, J. Snapshots of the maltose transporter during ATP hydrolysis.

Proc. Natl. Acad. Sci. 108, 15152–15156 (2011).

42. Korkhov, V. M., Mireku, S. a. & Locher, K. P. Structure of AMP-PNP-bound vitamin

B12 transporter BtuCD–F. Nature 490, 367–372 (2012).

43. Chabre, M. Aluminofluoride and beryllofluoride complexes: a new phosphate analogs

in enzymology. Trends Biochem. Sci. 15, 6–10 (1990).

44. Ward, A., Reyes, C. L., Yu, J., Roth, C. B. & Chang, G. Flexibility in the ABC

transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. U. S. A.

104, 19005–19010 (2007).

45. Lunardi, J. et al. Inhibition of H+-transporting ATPase by formation of a tight

nucleoside diphosphate-fluoroaluminate complex at the catalytic site. Proc. Natl.

Referenties

GERELATEERDE DOCUMENTEN

First cysteine crosslinking was used, in which pairs of cysteines were introduced in the S-component and an interacting EcfT protein with the aim to find conditions in which

A commonly used vector for production of whole complex ECF transporters is the p2BAD plasmid with two identical arabinose promoters, one for the expression of the genes coding for

Due to high sensitivity of studied transporters to the time spent outside the lipid bilayer as well as to gain a broader picture of transport mechanism we start investigation of lipid

Daarnaast hebben wij de uitwisseling getest tussen twee transport complexen, specifiek voor pantothenate en folate, co-gereconstitueerd met één ECF-module die de E naar Q mutatie

Insights into the transport mechanism of energy-coupling factor transporters Stanek, Weronika Karolina.. IMPORTANT NOTE: You are advised to consult the publisher's version

Dirk’s group: Alisa, Marysia, Sonja, Lotteke, Huifang (Hallie), Michael, Inda, Joris, Lisa, Rianne, Nynke, Rameez, Rajkumar (Raj), Nicola, Li (Iren), Stephan, Gianluca, Dorith,

The observed effects on the uptake rates of one vitamin in response to the presence of another vitamin are the result of differences in expression levels of specific S-component

Download date: 16-07-2021.. PROPOSITIONS belonging to the thesis Insights into the transport mechanism of Energy Coupling Factor transporters 1) S-components associate with