• No results found

Front tracking simulations on liquid-liquid systems; an investigation of the drag force on droplets

N/A
N/A
Protected

Academic year: 2021

Share "Front tracking simulations on liquid-liquid systems; an investigation of the drag force on droplets"

Copied!
25
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Ivo Roghair, Wouter Dijkhuizen, Martin van Sint Annaland and Hans Kuipers

Front Tracking simulations on liquid-liquid

systems; an investigation of the drag

force on droplets

(2)

12/06/08 I. Roghair, CFD2008 2

Contents

• Introduction

• Objectives

• Numerical simulations

– Grid dependency study

– Drag force study

(3)

Introduction

Multi-level modelling strategy for multiphase flow

Direct numerical simulations Discrete element model Multi-fluid continuum model

Closures for:

- Drag, lift, virtual mass - Swarm effects

- Mass transfer coefficients Medium scale structures

(4)

12/06/08 I. Roghair, CFD2008 4

Introduction

Direct Numerical Simulations (DNS)

• Fully resolved

– Based only on fundamental equations for

fluid flow

• Navier-Stokes + continuity equation for incompressible flow

– Can be used to derive closures for forces on

• Bubbles • Droplets • Particles

• Only valid when grid independence can be

shown!

(5)

Front tracking

• Incompressible fluids

• Fixed Eulerian grid

• Interface consists of Lagrangian marker

points that build up a triangular mesh

– Points are moved with the interpolated fluid flow

– Straightforward surface tension force calculation

• Advantages

– Calculation of surface tension force with

sub-grid accuracy.

– No numerical coalescence of dispersed

phase elements

(6)

12/06/08 I. Roghair, CFD2008 6

(7)

Drag force

FD FG FP FL FVM Droplet velocity Σ F FD

Forces acting on a

droplet

Stationary force balance

in the rise direction

mb dvb dt = FG F P F D FL FVM=

F c−dg  6 deq 3 −1 2CDc  4 deq 2 ud , z− uc , z2=0 CD= 4c−dg deq 3 cud , z− uc , z

(8)

12/06/08 I. Roghair, CFD2008 8

Drag force

• Determine drag force coefficient by

different averaging procedures

– Average rise velocity, then determine C

D

– Determine C

D

as a function of time, average

this value

(9)

Drag force

CD= 24 Re CD= 16 Re

1 2 116 Re 3.315 Re0.5

CD=max

[

min

[

16 Re10.15 Re 0.687 , 48 Re

]

, 8 3 Eo Eo4

]

Re=cuddeqc Eo= c−dg deq2  CD=max

[

24 Re10.15 Re 0.687 , 8 3 Eo Eo4

]

Correlations from literature (bubbly flow)

Rigid sphere:

Mei et al. (1994):

Tomiyama (1998):

– Pure

(10)

12/06/08 I. Roghair, CFD2008 10

Drag force

• Experiments and simulations on drag

force for bubbly flow

From:

Wouter Dijkhuizen, PhD thesis, University of Twente, 2008

(11)

Objectives

• Investigate the behavior of the Front

Tracking model for liquid-liquid systems

• Simulate droplets in an infinite quiescent

liquid to derive drag force closures

• Investigate the relation between

gas-liquid and gas-liquid-gas-liquid drag force and

their dependencies

(12)

12/06/08 I. Roghair, CFD2008 12

Grid dependency

•Vary resolution in droplet, domain 5 times droplet size •Vary resolution in droplet, keep domain at 1003 cells

•Keep resolution in droplet at 20 cells, vary domain size Simulation parameters: ρc = 1000 kg/m3, μ c = 10 -3 Pa·s ρd = 800 kg/m3, μ d = 10-1 Pa·s σ = 52.9 mN/m, deq = 1 mm tend = 1 s dt = 10-5 s

(13)

Grid dependency

•Vary resolution in droplet, domain 5 times droplet size •Vary resolution in droplet, keep domain at 1003 cells

•Keep resolution in droplet at 20 cells, vary domain size

30

100

20 6

(14)

12/06/08 I. Roghair, CFD2008 14

Grid dependency

•Vary resolution in droplet, domain 5 times droplet size

•Vary resolution in droplet, keep domain at 1003 cells

•Keep resolution in droplet at 20 cells, vary domain size

100

100

20 8

(15)

Grid dependency

•Vary resolution in droplet, domain 5 times droplet size •Vary resolution in droplet, keep domain at 1003 cells

•Keep resolution in droplet at 20 cells, vary domain size

50

100

20 20

(16)

12/06/08 I. Roghair, CFD2008 16

Drag force simulations

• Used settings:

– 20 grid cells in droplet diameter

– 100

3

grid cells in domain

• Variation of continuous phase viscosity

between 0.001 - 0.2 Pa·s

• Variation of equivalent droplet diameter

between 0.2 – 5 mm

• “Dodecane droplet in water” system:

– ρc = 1000 kg/m3;

– ρd = 746 kg/m3; μd = 1.34·10-3 Pa·s – σ = 0.0529 N/m;

(17)

Drag force simulations

(18)

12/06/08 I. Roghair, CFD2008 18

Drag force simulations

• Variation of dispersed phase viscosity

between 10

-3

– 10

-1

Pa·s

• Variation of equivalent droplet diameter

between 0.2 – 7 mm

• Physical properties

– ρc = 1000 kg/m3; μc = 10-1 Pa·s – ρd = 800 kg/m3;

(19)

Drag force simulations

(20)

12/06/08 I. Roghair, CFD2008 20

Drag force simulations

• Due to volume losses more detailed

simulations:

– Computational grid 150

3

cells

– 30 cells within droplet diameter

– Higher surface tension

(21)

Drag force simulations

Simulation parameters: ρc = 1000 kg/m3; μ c = 10 -3 Pa·s ρd = 800 kg/m3; μ d = 10 -1 Pa·s σ = 0.1 N/m; deq = 0.5 - 7 mm

(22)

12/06/08 I. Roghair, CFD2008 22

Drag force simulations

Simulation parameters: ρc = 1000 kg/m3; μ c = 10 -3 Pa·s ρd = 800 kg/m3; μ d = 10 -3 - 0.5 Pa·s σ = 0.1 N/m; deq = 1 mm

(23)

Conclusions and outlook

• Front tracking model can simulate dispersed liquid phases but a high resolution is required

• Volume loss strongly depending on droplet resolution • Correlations of Mei et al. and Tomiyama for bubbly

flow are well predicted

– Some overshoot due to wall effects

• Transition of free-slip to no-slip condition as a function of μd shown

• Outlook:

– Eo dependence of drag force coefficient – Droplet and bubble swarms

(24)

12/06/08 I. Roghair, CFD2008 24

Thank you

(25)

Front tracking

 Surface tension is

mapped from the

interface mesh to the Eulerian grid. a b c m Fc Fb Fa na nb nc tm,a tm,c tm,bFa

t m,a×na

F b

tm,b×nb

F c

t m,c×nc

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

F r o m Tables 2 and 4, two conclusions can be drawn: (1) it appears that holding back inven- tory in a depot yields a lower service level than passing through all

Mean number (± SE) of insects found in control (no mulch) and mulched vineyards from March to June 2010 using pitfall traps, divided into functional feeding groups (springtails

De ventilatiemonitor, zoals ontwikkeld door Wageningen UR Glastuinbouw, bepaalt uit al aanwezige klimaatdata de ventilatievoud en de daarbij behorende energie- en

Ik denk aan een ver- dieping door projecten te ondersteunen waar we echt de confrontatie aan moeten gaan in Den Haag maar ook met gemeenten en provincies, waarbij het niet meer lukt

Dit verschil is minder groot dan bij het inkomen mede doordat zich onder de laagste inkomens ook zelfstandigen bevinden met een incidenteel laag inkomen die hun bestedingen

This literature study provides an overview of the current design process, various types of attacks on embedded systems and proposes a method to integrate protection mechanisms

When the controversy around the Sport Science article started on social media, it was to have serious repercussion for the researchers, the research community at