• No results found

A systematic literature review of the human skin microbiome as biomarker for dermatological drug development

N/A
N/A
Protected

Academic year: 2021

Share "A systematic literature review of the human skin microbiome as biomarker for dermatological drug development"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

SYSTEMATIC REVIEW AND META

–ANALYSIS

A systematic literature review of the human

skin microbiome as biomarker for

dermatological drug development

CorrespondenceRobert Rissmann, PhD, Centre for Human Drug Research, Zernikedreef 8, 2333CL Leiden, the Netherlands; Tel. +31 (0)71 5246400, Fax. +31 (0)715246499; E-mail: rrissmann@chdr.nl

Received24 January 2018;Revised9 May 2018;Accepted11 May 2018

T. Niemeyer - van der Kolk

1,2

, H. E. C. van der Wall

1

, C. Balmforth

1

, M. B. A. Van Doorn

1,2

and

R. Rissmann

1,3,4

1Centre for Human Drug Research, Leiden, the Netherlands,2Department of Dermatology Erasmus MC, University Medical Center Rotterdam, the Netherlands,3Leiden University Medical Center, Leiden, the Netherlands, and4Leiden Academic Center for Drug Research, Leiden, the Netherlands Keywordsbiomarkers, clinical drug development, microbiota, surrogate parameter

AIMS

To explore the potential of the skin microbiome as biomarker in six dermatological conditions: atopic dermatitis (AD), acne vulgaris (AV), psoriasis vulgaris (PV), hidradenitis suppurativa (HS), seborrhoeic dermatitis/pityriasis capitis (SD/PC) and ulcus cruris (UC).

METHODS

A systematic literature review was conducted according to the PRISMA guidelines. Two investigators independently reviewed the included studies and ranked the suitability microbiome implementation for early phase clinical studies in an adapted GRADE method.

RESULTS

In total, 841 papers were identified and after screening of titles and abstracts for eligibility we identified 42 manuscripts that could be included in the review. Eleven studies were included for AD,five for AV, 10 for PV, two for HS, four for SD and 10 for UC. For AD and AV, multiple studies report the relationship between the skin microbiome, disease severity and clinical response to treatment. This is currently lacking for the remaining conditions.

CONCLUSION

For two indications– AD and AV – there is preliminary evidence to support implementation of the skin microbiome as biomarkers in early phase clinical trials. For PV, UC, SD and HS there is insufficient evidence from the literature. More microbiome-directed prospective studies studying the effect of current treatments on the microbiome with special attention for patient meta-data, sampling methods and analysis methods are needed to draw more substantial conclusions.

© 2018 The Authors. British Journal of Clinical Pharmacology

published by John Wiley & Sons Ltd on behalf of British Pharmacological Society

(2)

Introduction

The escalating number of therapeutic candidates in drug de-velopment programs require strategies that optimize the pro-cess of clinical development. A common approach is the use of biomarkers in clinical trials. A biomarker is defined as a characteristic that can be objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacological responses to a therapeutic in-tervention [1, 2]. Clinical biomarkers are thought to reflect disease activity and pathophysiology [3, 4]. A useful bio-marker in any class has to comply with the following general criteria: (i) there must be a consistent response of the bio-marker across studies (preferably from different research groups) and drugs from the same mechanistic class; (ii) the

biomarker must respond clearly to therapeutic (not

supratherapeutic) doses; (iii) there must be a clear dose- or concentration-response relationship; and (iv) there must a plausible relationship between the biomarker, pharmacology of the drug class and disease pathophysiology [4]. Validated biomarkers are often being used to guide drug development programmes from human pharmacology studies, i.e. phase 1 trials, to confirmatory trials, i.e. phase 3 studies [2]. For der-matological diseases the drug developers often rely on clinical efficacy scores, e.g. the Eczema Area and Severity Index (EASI) for atopic dermatitis (AD), Psoriasis Area and Severity Index for psoriasis vulgaris (PV) and inflammatory lesion count for acne vulgaris (AV) or investigator global assessments. How-ever, more objective outcome measures including validated

biomarkers would have great added value in thisfield. One

of these potential new biomarkers is the human skin microbiome, which has the potential to monitor disease ac-tivity and drug specific (mechanistic) effects.

The human microbiome refers to the combined genomic information of all microbial communities living on or in the human body. Collectively, this encompasses fungi (mycobiota), bacteria (microbiota), viruses, bacteriophage, archaea and protozoa. This, along with the human genome, completes what is now termed the human microbial superor-ganism [5]. The skin microbiome harbours vast microbial communities living in a range of both physiologically and to-pographically distinct niches and microenvironments [6, 7]. Actinobacteria (52%), Firmicutes (24%), Proteobacteria (17%) and Bacteroidetes (7%) are the four most abundant species identified on the skin [8]. Previous studies have shown that it is not only skin topography that influences mi-crobial colonization, but also a vast range of host-specific fac-tors including age and sex, and environmental facfac-tors such as occupation, clothing choice, antibiotic use, cosmetics, soaps, environmental temperature, humidity, and longitudinal and/or latitudinal variation in UV exposure, which can all

contribute to the variability seen in the microbial flora of

the skin [9–15]. Moreover, changes or aberrations in the skin microbiome have been implicated in the pathophysiology of numerous skin diseases such as AD and AV [16].

Several reviews have described the role and impact of skin microbiome on disease [17–22]. However, to date, no struc-tured review has been conducted to evaluate the feasibility, suitability and potential use of the skin microbiome as bio-marker for early phase clinical drug development. Therefore, we conducted a systemic literature review with predefined

search terms according to the PRISMA guidelines, with focus on six relevant disorders, i.e. AD, seborrhoeic dermatitis and

pityriasis capitis (dandruff; SD/PC), AV, hidradenitis

suppurativa (HS), PV and ulcus cruris/chronic wounds (UC). In addition, we evaluated and ranked the conditions regard-ing the potential as clinical biomarker. Lastly, we provided recommendations for prospective microbiome investigations in clinical drug development programmes.

Methods

We followed the Preferred Reporting Items for Systematic Re-views and Meta-analysis (PRISMA) [23]. In collaboration with a trained librarian from the Leiden University Medical Cen-tre, a structured electronic literature search was composed, using a combination of two main search criteria: microbiome and the targeted skin condition (i.e. AD, SD/PC, HS, AV, UC and PV). For each search term, all relevant keyword variations were used in conjunction with free text word variations. The search strategy was optimized for all consulted databases, tak-ing into account the differences of the various controlled vocabularies, as well as the differences of database-specific

technical variations (e.g. the use of quotation marks). The

fi-nal search was performed on 29 September 2017, using bib-liographic databases including PubMed (incl. MEDLINE), Embase (OVID-version), Web of Science, Cochrane Library, CENTRAL, Academic Search Premier and ScienceDirect. Animal-only studies, reviews without original data, non-English studies and case studies were excluded. Moreover, culture-based methods were excluded since the objective of this review was to explore the full microbiome profile and rel-ative abundances compared to other genus as biomarker. The remaining studies were fully reviewed. The overall quality of evidence was rated using pre-defined criteria (group size, type of control, method of sampling, serial sampling available, well defined metadata, analysis method). Grading of

Recom-mendations Assessment, Development and Evaluation (GRADE)

guidelines were used as guidance for rating the quality of ev-idence [24]. This was done by two investigators

indepen-dently and thefinal outcome was determined by discussion

once discrepancies occurred.

Results

The search resulted in 841 titles. After duplicates were re-moved, 443 papers were screened for inclusion. Four-hundred-and-one manuscripts were excluded based on the exclusion criteria with mostly culture-based studies that were not eligible. The remaining 42 studies were identified as using nonculture-based methods to analyse microbiome popula-tions in one of the targeted skin condipopula-tions and fully reviewed, Figure 1. All 42 were included in the review, the study characteristics can be found in Table 1.

Psoriasis vulgaris

In 10 studies, the cutaneous microbiome in PV patients was investigated, Table 1 [25–34]. In addition to microbiota, these studies have focused on the mycobiota. An increased

(3)

diversity in the fungal flora in psoriatic skin lesions, com-pared to healthy skin was reported by Paulino et al. [25] and Amaya et al. [26]. No differences in the abundance of specific species was observed. Controversially, a significant dichot-omy between the relative abundances of specific Malassezia species between healthy skin, and psoriatic skin lesions was

found by Takemoto et al. [32]. Similar inconsistencies in

find-ings were also observed in those studies assessing the micro-biota [28–31, 34].

Hidradenitis suppurativa

To date, only two studies have been published that investi-gated the skin microbiome in HS (Table 1) [35, 36]. Both

stud-ies report a significant dysbiosis in HS lesional skin with more

abundance of anaerobic genera. Five lesional microbiome

types were identified of which type 1 (Corynebacterium

spe-cies) and type IV (Porphyromonas and Peptoniphilus spespe-cies) were most prevalent [35]. Porphyromonas was also found as predominantly abundant on lesional skin by Guet-Revillet

et al. [36], together with Prevotella species. In addition, clinical

severity significantly correlated with Fusobacterium and

Parvimonas species variation in this study.

Ulcus cruris

The role of the skin microbiome in UC was explored in 10 dif-ferent studies, Table 1 [37–46]. Current research into UC microbiome, comprises larger, longitudinal studies, com-pared to those in PV and HS. The skin mycobiota of diabetic foot ulcers was longitudinally assessed and was observed to be highly heterogeneous over time and between subjects while the diversity increased upon antibiotic treatment [45]. There have been similar efforts to reveal correlations between

patient metadata, treatment and/or clinical outcomes and the cutaneous microbiome in studies investigating the micro-biota in UC [38, 42–44, 46]. Overall, the most common found genus in these studies was Staphylococcus, with Staphylococcus

aureus the most common species. Ulcer closing in diabetic

pa-tients was found to be positively correlated with higher mi-crobial diversity and relative abundance of Proteobacteria, while a relative abundance of Staphylococcus was correlated negatively in a study by Gardner et al. [42]. Although

Staphy-lococcus was consistently reported to be the most common

ge-nus, inconsistencies exist regarding other genus that are important in CU.

Seborrheic dermatitis/Pityriasis capitis

Four case–control studies investigated the microbiome in SD patients [47–50], Table 1. In general, Malassezia spp. were found to be more abundant on dandruff scalp compared to healthy scalp [47, 48, 50]. In addition to the mycobiota, a dysbiosis in Staphylococcus and Propionibacterium spp. was de-scribed in microbiota analysis [48, 50]. One of the four studies

did notfind a general association between Malassezia spp.

and SD but didfind a higher abundance of M. globate in severe

SD patients [49].

Acne vulgaris

Five studies investigated the skin microbiome in patients with AV, Table 1 [51–55]. Three (3) were case–control studies and two (2) were small single-centre, controlled studies, of whom one was a double-blind, randomized-controlled trial. In general, all case–control studies demonstrated similarly an increased microbial abundance of Propionibacterium acnes in the skin microbiome of patients with AV, compared to healthy [51–53]. In addition, an association between a spe-cific P. acnes strains and acne affected skin, and healthy skin respectively was demonstrated [51, 52]. Acne improved and

Propionibacterium abundance decreased after various

treat-ments, together with an increase of microbial diversity in the two controlled studies. Moreover, a positive correlation between Propionibacterium abundance and acne severity grade was found [54, 55].

Atopic dermatitis

The skin microbiome in patients with AD was assessed in 11 studies, Table 1 [56–66]. A greater proportion of longitu-dinal studies and 2 completed randomized controlled trials were performed in AD patients. There is general consensus across studies that skin affected by AD exhibits decreased bacterial diversity, as a result of an increased abundance of S. aureus [60–64, 66]. In particular, AD flare ups were as-sociated with an increased proportion of Staphyloccocus se-quences, and S. aureus abundance correlated with disease severity [60]. In line with these results, microbial diversity in AD lesions was inversely correlated with overall eczema severity as observed by the EASI [63], with several further studies also reporting taxonomic normalization and in-creased bacterial diversity in AD lesional skin, following various treatments [60, 61, 63, 66].

Figure 1

(4)

Ta

bl

e

1

Su mm ar y ta b le o f th e st u d ie s in cl ud e d in th e re vi e w So ur ce F ir st au th o r, y e a r [r e f] D is ea se St ud y d es ig n No . o f p at ie n ts Sa m p le co ll e c ti o n me th o d s A na ly si s K e y n d in g s W ea kn es se s Le ve l ev id e n c e Pa ul in o et al . 20 0 6 [1 8 ] PV Ca se co nt ro l 3P V /5H V St er ile sw a b s Le si o n a l an d n o n le si o n a l sk in M u lt ip le sa mp ling in on e P V a n d 2 H V 18S rR NA 5. 8 S rD N A Ma la ss ez ia my co b io ta su b sta nt ia lly d if fe re n t PV vs .H V Sm al l co h o rt Lo w A m ay a et al . 20 0 7 [1 9 ] PV Ca se co nt ro l 22 PV /3 6 A D /3 0 H V O p S ite ® tr a n spa re n t ad he si v e dr es si n g s Le si o n a l an d n o n le si o n a l sk in 5. 8 S rD NA Ma la ss ez ia sp e ci e s d e tec te d in ov er al l sit es hi gh er in PV an d A D co mp ar ed to HV Sm al l co h o rt P V p a ti en ts o n tr ea tm en t Li mi te d a n a ly si s Di ff er en t ski n si te co lle c ti on PV vs .A D a n d H V Lo w Pa ul in o et al . 20 0 8 [2 0 ] PV Ca se co nt ro l 1P V /1H V St er ile sw a b s Le si o n a l an d no nl es io na l ski n M u lt ip le ti me po in ts 5. 8 S rD NA M yc o bi o ta re la tiv el y sta bl e ov er ti me . No si g n ifi ca nt di c h o tom y be tw ee n P V a n d HV . Sm al l co h o rt Li mi te d a n a ly si s Lo w Ga o et al . 20 0 8 [2 1 ] PV Ca se co nt ro l 6P V /6H V St er ile sw a b s Le si o n a l an d n o n le si o n a l sk in 16S rR NA V1 -V 9 Fi rm u cu tes mo re ab un d a n t in le si o n a l sk in P V vs .n o n le si o n a l sk in a n d H V . A ct in o ba c te ri a le ss ab un da nt in le si on al sk in P V vs . no nl es io na l ski n a n d H V . Sm al l co h o rt N o se ri a l sa m p lin g Lo w Fa h le n et al . 20 1 1 [2 2 ] PV Ca se co nt ro l 10 PV /1 2 H V 2-m m sk in pu n ch bi op si es 16S rR NA V3 -V 4 M o st co mm on p h y la in PV an d H V : Fi rm ic ut is , Pr o te o ba ct er ia , A c ti n o b a ct e ri a . St ap hy lo c o c c i a n d Pr o p io ni ba c te ri a w e re le ss co mm on in ps o ri a ti c le sio ns Sm al l co h o rt N o se ri a l sa m p lin g Va ri at io n in sk in sam pl e sit es Lo w A le k se ye nk o et al .2 0 1 3 [2 3 ] PV Ca se co nt ro l & Pr o spe ct iv e lo n g it u d in a l co ho rt st ud y CC : 5 4 P V /3 7 HV PC : 1 7 P V /15 HV St er ile sw a b s Le si o n a l an d n o n le si o n a l sk in HV ma tc he d si tes M u lt ip le sa mp ling 16S rR NA V1 -V 3 M o st co mm on p h y la in P V an d H V : Fi rm ic ut is , P ro te o b a ct e ri a , A ct in o ba ct er ia . Co mb in e d re la ti v e ab un d a n ce of C o ry ne ba ct er iu m , St re pt o co cc u s an d St ap hy lo co cc u s wa s in cr e a se d in ps or ia ti c ski n, co mp ar ed to un af fe c te d sk in an d he al th y c on tr o l sk in So me p a ti e n ts on ac ti v e tr e a tm e n t Ma in ly se v e re pa ti e n ts Lo w to m o d e ra te St at n ik o v et al .2 0 1 3 [2 4 ] PV Ca se co nt ro l 54 PV /3 7 H V St er ile sw a b s Le si o n a l an d no nl es io na l ski n HV ma tc he d si tes 1 6 S rR N A V1 -V 3 an d V 3 -V5 M ic ro b io me si gn at ur es co ul d b e u se d to di ag no se ps o ri a si s No se ri a l sa m p lin g Lo w to m o d e ra te Ta k e m o to et al .2 0 1 5 [2 5 ] PV Ca se co nt ro l 12 PV /1 2 H V PV : p so ri at ic sc a les by tw ee ze r HV : O pS it e® tr an sp ar en t a d h e siv e dr es si ng s 26S rR NA D1 – D2 Ps o ri a ti c le sio ns ex hi bi te d si g n ifi c a n tl y g rea te r d iv er si ty co mp ar ed to HV Ma la ss ez ia re st ri ct a le v e ls w e re si g n ifi ca nt ly hi gh er in ps o ri a ti c le sio ns , c om p a re d to he al th y co n tr o ls Sm al l co h o rt N o se ri a l sa m p lin g On ly ma le p a ti e n ts Di ff er en t sam pl e me th o d P V an d H V Lo w (con ti n u es

(5)

Ta

bl

e

1

(C on ti nu ed ) So ur ce F ir st au th o r, y e a r [r e f] D is ea se St ud y d es ig n No . o f p at ie n ts Sa m p le co ll e c ti o n me th o d s A na ly si s K e y n d in g s W ea kn es se s Le ve l ev id e n c e Sa la va et al . 20 1 7 [2 6 ] PV Ca se co nt ro l 13 PV St er ile sw a b s Le si o n a l an d n on le si o n a l sk in 1 6 S rR N A V1 -V 3 No si g n ifi ca nt di ff e re n c e s mi cr o b ia l d iv er si ty be tw ee n le sio na l a n d no nl es io na l ski n Sm al l co h o rt N o se ri a l sa m p lin g Va ri at io n in sk in sa m p le si te s Lo w Te tt et al . 20 1 7 [2 7 ] PV Ca se co nt ro l 28 PV St er ile sw a b s Le si o n a l an d no nl es io na l ski n W M S seq u e n ci n g Pl aq ue s a t the ea r h a d a si g n ifi ca nt de c re a se in mi cr o b ia l d iv er si ty , a n d in cr ea se in St ap hy lo co cc us ab un d a n ce At sp e ci e s le ve l, n o di ff e re n c e s b e twe en le si o n a l an d n o n le si o n a l sk in w e re ob se rv e d Sm al l co h o rt N o se ri a l sa m p lin g So me p a ti e n ts on ac ti v e tr ea tm en t Lo w Ri n g et al . 20 1 7 [2 8 ] HS Ca se co nt ro l 30 HS 24 HV Bi o p si e s Le si o n a l an d no nl es io na l ski n 1 6 S rR N A V3 -V 4 1 8 S rD N A V3 -V 4 M ic ro b io me in H S si g n ifi c a n tly d if fe ren t fr o m HV in le si on al an d no nl es io na l ski n Fi v e mi cr o b io me ty pe s id en ti fied Le si o n a l sk in co ns is te d pr ed om in a n tl y o f Co ry n eb a ct er iu m sp e ci e s (t y pe I) an d P ep ton ip h ilu s sp e ci e s (t y pe IV ) Pr op io n ib a ct er iu m sh o w ed a si g n ifi c a n t hi gh er ab u n d a n ce in H V Sm al l co h o rt N o se ri a l sa m p lin g Lo w Gu e t-R e v il le t et al .2 0 1 7 [2 9 ] HS Pr o spe ct iv e co h o rt 65 HS St er ile sw a b s Le si o n a l an d no nl es io na l ski n 16S rR NA V1 -V 2 Le si o n a l sk in co ns is te d pr ed om in a n tl y o f a n a e ro b e s (Po rp hy ro mo na s an d Pr ev ot el la sp e c ie s) Cl in ic al se v e ri ty si g n ifi ca nt ly as so ci at ed wi th va ri at io ns in le si o n a l mi c ro b io ta Fu so ba ct er iu m a ss oc ia te d wi th se v e re H S Sm al l co h o rt Lo w Do w d et al . 20 0 8 [3 0 ] U C Pr o spe ct iv e co h o rt 10 VL U /1 0 D FU / 10 PU De b ri d em en t sa m p le s 1 6 S rR N A V4 M a jo r p op ul at io ns in cl ud e o f al l w ou nd in c lu d e: St ap hy lo co cc us , Ps eu d o m o n a s, Pe pt on ip h ilu s, En te ro b a ct er , S tr eno tr op ho mo na s, Fi ne go ld ia an d Se rr a ti a sp ec ie s E a c h wo un d typ e d if fe re n t pr ofi le , d e p en de nt o n ox yg en to le ra n ce o f the ba ct er ia l p o p u lat io n Sm al l stu d y N o se ri a l sa m p lin g Lo w Pr ic e et al . 20 0 9 [3 1 ] U C Pr o spe ct iv e co h o rt 7 D F U /7 NU /3 VL U/ 3 PS U /4 O TH Wo un d b as e cu re tt e M u lt ip le ti me po in ts 1 6 S rR N A V3 Fa st id io us an ae ro b ic ba ct er ia of th e C lo st ri di al es fa mi ly XI we re th e m o st pr ev al en t b a c te ri a in w ou nd s Sm al l stu d y Sa mp ling ti me po in t va ri a b le Lo w (con ti n u es )

(6)

Ta

bl

e

1

(C on ti nu ed ) So ur ce F ir st au th o r, y e a r [r e f] D is ea se St ud y d es ig n No . o f p at ie n ts Sa m p le co ll e c ti o n me th o d s A na ly si s K e y n d in g s W ea kn es se s Le ve l ev id e n c e Wo un d m ic ro b io ta fro m an ti b io tic tr ea te d p at ie nt s w e re si g n ifi ca nt ly di ff e re n t fr o m un tr ea te d p a tie nt s In di ab et ic p a ti e n ts , St re p toc o cc u s wa s mo re ab un da nt Pa ti en ts o n w id e va ri e ty o f tr e a tm e n ts Pr ic e et al . 20 1 1 [3 2 ] UC C ross-se c ti o n a l 4 D F U /3 NU /3 VL U/ 2 OT H Wo un d b as e cu re tt e M u lt ip le sa mp le s tak en 16S rR NA V3 -V 4 Th e 1 0 m o st co m m o n ge ne ra in cl ud ed St ap hy lo co cc us , Ps eu d o m o n a s, St re p toc oc cu s, An ae ro co cc us , Ra ls to n ia , M o rg a n ella , Po rp h yr o m o n a s, Pe pt o n ip h ilu s, Ja nt hi no ba ct er iu m an d C o ry ne b a ct er iu m Sa mp le s fro m d if fe re n t si te s w it hi n in d iv id ua l w o u n d s sh a re d si mi la ri ti es in ba ct er ia l co m m u ni ty co mp o si ti o ns Sa mp le s tak en fr om di ff e re n t w o u n d s w er e le ss si mi la r tha n tho se ta ke n fr o m di ff e re n t sit es w it h in th e sam e w o u n d Sm al l co h o rt Pa ti en ts o n ac ti v e tr ea tm en t N o se ri a l sa m p lin g Lo w Rh oa d s et al . 20 1 2 [3 3 ] UC C ross-se c ti o n a l 4D F U /3 N U /3 VL U /2 O T H Wo un d b as e cu re tt e 1 6 S rR N A V1 -V 3 Th e te n mo st co mm on ge ne ra in cl ud ed St ap hy lo co cc us , Ps eu d o m o n a s, St re p toc oc cu s, An ae ro co cc us , Ra ls to n ia , M o rg a n ella , Po rp h yr o m o n a s, Pe pt o n ip h ilu s, Ja n th ino b a ct er iu m an d C o ry ne b a ct er iu m Sa mp le s fro m d if fe re n t si te s w it hi n in d iv id ua l w o u n d s sh a re d si mi la ri ti es in ba ct er ia l co m m u ni ty co mp o si ti o ns Sa mp le s tak en fr om d if fe ren t w o u n d s w e re le ss si mi la r th a n th o se ta ke n fr om di ff e ren t si te s w it hi n th e sa m e w o u n d Sm al l co h o rt Pa ti en ts o n ac ti v e tr ea tm en t N o se ri a l sa m p lin g Lo w Gj o d sb o l et al .2 0 1 2 [3 4 ] U C Co mp ar at iv e 46 VL U Fi lt e r pa p e r p a d & pu nc h b io ps ie s 16S rR NA V1 -V 3 St ap hy lo co cc u s au re u s mo st fo u n d sp e c ie s M u lt ip le sa m p ling o ve r ti me le ad to id en ti fica ti o n of ad di ti o n a l sp e c ie s N o d if fe ren ce in o u tc o m e s di ff e re n t sam pl e tec hn iq ue s No co nt ro ls Lo w (con ti n u es

(7)

Ta

bl

e

1

(C on ti nu ed ) So ur ce F ir st au th o r, y e a r [r e f] D is ea se St ud y d es ig n No . o f p at ie n ts Sa m p le co ll e c ti o n me th o d s A na ly si s K e y n d in g s W ea kn es se s Le ve l ev id e n c e Ga rdne r et al .2 0 1 3 [3 5 ] UC C ross-se c ti o n a l 52 DF U St er ile sw a b s 1 6 S rR N A V1 -V 3 Th e m o st a b u nd an t O TU wa s St ap hy lo co cc us , w it h S. au re u s th e m o st co m m o n spe c ie s U lc e r cl o si n g w a s p os it iv el y co rr el at ed wi th nu mb er o f sp e ci e s le ve l O T U s, h ig he r mi cr o b ia l d iv er si ty , re lat iv e ab un d a n ce o f P ro te o b ac te ri a, an d n e g a ti ve ly co rre la te d w it h re la ti ve ab un d a n ce o f St ap hy lo co cc us U lc e r d e p th w a s n e g at iv el y as so ci at ed wi th St ap hy lo co cc us ab un d a n ce a n d po si ti v e ly as so ci at ed wi th an ae ro b ic ba ct er ia re la ti v e ab un d a n ce N o se ri a l sa m p lin g No co nt ro ls Lo w Wo lc o tt et al .2 0 1 6 [3 7 ] U C Co ho rt 29 6 3 91 0 D FU /9 1 6 VL U /6 7 6 D U /3 7 0 P S U Sh ar p d e b ri de me nt at su rf ac e w ou nd be d 16S rR NA V1 -V 3 N e it h e r p at ie nt de mo gr ap hi cs (a ge , g e n d e r, ra ce , d ia b e te s st a tu s) no r w o u n d ty p e in flu e n ce d th e ba ct er ia l co m p o si ti o n o f th e ch ro ni c w ou nd mi cr o b io m e St ap hy lo co cc u s an d Ps eu d o m o n a s co mp ri se th e mo st p re va len t g e n e ra p re se n t in th e m ic ro bi o ta o f ch ro n ic w o u n d s, w it h S. au re us an d S. ep id er m idi s th e m o st pr ed om in a n t sp e c ie s Ch ro n ic w o u n d s a re fr eq ue nt ly co lo ni ze d b y c om mu na lis tic an d an ae ro bi c b a c te ri a, in cl u d in g co ag ul at io n-ne ga ti ve St ap hy lo co cc u s, Co ry ne b a ct er iu m , an d Pr op io n iba ct er iu m sp e c ie s Un c le a r w he th er p a ti e n ts w e re on tr ea tm en t Lo w to m o d e ra te Sm it h et al . 20 1 6 [3 6 ] U C Co ho rt 20 DF U St er ile sw a b s 1 6 S rR N A V4 Th e m o st co m m o n ly d e tec te d ba ct er ia in al l u lc er s w er e Pe pt o n ip h ilu s, A n ae ro co cc us an d C o ry ne b a ct er iu m sp ec ie s In ne w u lc e rs , th e m o st co mm on ly de te c te d ba ct er ia w e re th e a b o ve an d St ap hy lo co cc u s sp e ci e s Th e m a jo rit y o f O TU s re sid in g in bo th ne w a n d re c u rr en t u lc e rs (> 67% ) w e re mo st ly Gr am -p o sit iv e co cc i (St ap hy lo co cc u s, St re pt o co cc u s, An ae ro co cc us , Pe pt on ip h ilu s an d Fi ne go ld ia Lo w e r H b A 1 c va lu es an d sh o rt e r d u rat io n o f d ia be te s co rr el at ed wi th hi gh er di v e rs it y w it h in th e ul ce r Sm al l co h o rt N o se ri a l sa m p lin g No co nt ro ls Lo w (con ti n u es )

(8)

Ta

bl

e

1

(C on ti nu ed ) So ur ce F ir st au th o r, y e a r [r e f] D is ea se St ud y d es ig n No . o f p at ie n ts Sa m p le co ll e c ti o n me th o d s A na ly si s K e y n d in g s W ea kn es se s Le ve l ev id e n c e Ka la n et al . 20 1 6 [3 8 ] U C Pr o spe ct iv e lo n g it u d in a l co ho rt 10 0 D FU St er ile sw a b s M u lt ip le ti me po in t sa m p lin g IT S 1 rR NA Fu ng al mi cr o b io me w a s hi gh ly he te ro ge ne o u s o v e r ti me an d b e twe en su b je ct s Fu ng al di v e rs it y in cr e a sed w it h an ti bi ot ic ad mi ni st ra ti o n Th e p ro po rt io n o f th e ph y lu m A sc o m y co ta we re si g n ifi ca nt ly gr ea te r a t th e be gi nn in g o f the st u d y in w o u n d s tha t to ok > 8 w ee ks to he al No co nt ro ls Mo st pa ti en ts o n ac ti v e tr e a tm e n t Lo w to m o d e ra te Lo e sc h e et al . 20 1 7 [3 9 ] U C Pr o spe ct iv e lo n g it u d in a l co ho rt 10 0 D FU St er ile sw a b s M u lt ip le ti me po in t sa m p lin g 16S rR NA V1 -V 3 Th e m o st a b u nd an t g e n u s id en ti fied w a s St ap hy lo co cc u s, fo llo w e d by St re pt o co cc u s, C o ry ne b a ct er iu m an d An ae ro co cc us Th e m a jo r O T U a tt ri b u te d to St ap hy lo co cc u s wa s S . au re u s U lc e r m ic ro b io ta w as hi gh ly dy na mi c, w it h co mm un it y ty p e tr an si ti o n s o c cu rr in g ap p ro x im a te ly ev er y 3 .5 2 w e e k s M ic ro b io ta co mm un it y in st a b il it y w as as so ci at ed w it h fa st e r he al in g a n d im pr o v ed ou tc o m e s E x p o su re to sy st e m ic an ti b io ti cs de st a b iliz e w ou nd mi cr o b io ta , ra th er th a n al te ri n g o ve ral l di v e rs it y o r rel at iv e a b u n d a n c e of sp ec ifi ct a x a No co nt ro ls Mo st pa ti en ts o n ac ti v e tr ea tm en t Lo w to m o d e ra te Ku k P ar k et al .2 0 1 2 [4 0 ] SD /P C C a se con tr o l 4P C 3H V St er ile sw a b s 2 6 S rR N A D1 -D 2 P. me le a g ri nu m an d P. ch ru so g enu m d e te ct ed on d a n d ru ff sc a lp Ma la ss ez ia sp p . 2 ti m e s mo re ab un da nt o n da nd ru ff sc a lp Sm al l co h o rt N o se ri a l sa m p lin g Lo w Cl av au d et al . 20 1 3 . [4 1 ] SD /P C C a se –co nt ro l 29 PC 20 HV St er ile sw a b s In 2 0 PC p a ti e n ts le si o n a l an d n o n le si o n a l sa m p lin g 16S 28S -I T S M. re st ri ct a ma jo r fun ga l sp e ci e s o n sca lp PC an d H V M. re st ri ct a a nd s. ep id er m id is si g n ifi c a n tly mo re ab un d a n t on PC sc a lp Pr op io n ib a ct er iu m a cn es si g n ifi c a n tly le ss ab un d a n t on PC sc a lp M. re st ri ct a/ P. ac ne s ra ti o si g n ifi c a n tly hi g h e r in P C sc a lp Sm al l co h o rt N o se ri a l sa m p lin g Lo w So ar es et al . 20 1 5 [4 2 ] SD /P C C a se con tr o l 9 S D (5 m ild , 4 sev er e) 5H V St er ile sw a b s Sc al p, fo re he ad ch in , sh o u ld e r an d in ter fa c e sa m p le s 5. 8 S /I T S 2 rD N A In ge ne ra l, no as so ci at io n be tw ee n Ma la ss ez ia my co b io ta an d S D w as fo un d Sm al l co h o rt N o se ri a l sa m p lin g Lo w (con ti n u es

(9)

Ta

bl

e

1

(C on ti nu ed ) So ur ce F ir st au th o r, y e a r [r e f] D is ea se St ud y d es ig n No . o f p at ie n ts Sa m p le co ll e c ti o n me th o d s A na ly si s K e y n d in g s W ea kn es se s Le ve l ev id e n c e Hi g h e r m. gl ob o sa ab un da nc e w a s fo u n d in no ns ca lp le si o n s of se v e re SD p a ti e n ts Pa rk et al . 20 1 7 [4 3 ] SD /P C C a se con tr o l 29 SD 28 PC 45 HV St er ile sw a b s Sc al p sam pl es 16 s rR N A V4 -V 5 IT S 1 rD N A Hi g h e r ab un d a n ce o f St ap hy lo co cc u s sp . a n d m. re st ri ct a ,a n d lo w e r a b u n d a n c e of P ro p io n iba ct er iu m as so ci at ed wi th sc al p d is ea se No se ri a l sa m p lin g Lo w Be k -T h o m se n et al .2 0 0 8 [4 4 ] A V Ca se co nt ro l 5A V /3H V C ya n o a c ry la te b io ps y A V ac ne le si o n fa ce HV no se ar ea 16S rR NA V1 -V 9 A cn e sk in hi g h e r di v e rs it y , P. a cn es an d S. ep id er m idi s mo st co mm o n sp ec ie s Sm al l co h o rt On ly mo d e ra te to se ve re pa ti e n ts N o se ri a l sa m p lin g No no nl es io na l p a ti e n t sam pl in g Lo w Fi tz -G ib bo n et al .2 0 1 3 [4 5 ] A V Ca se co nt ro l 49 AV /5 2 H V B io ré® De ep C le a n si n g P o re str ip s N o se ar ea 16S rR NA V1 -V 9 N o d if fe ren ce re la ti v e ab un d a n ce P. ac ne s A V in HV . A sso ci at io n spe ci fic P. ac ne s st ra in an d a c n e . So me p a ti e n ts on ac ti v e tr ea tm en t N o se ri a l sa m p lin g No no nl es io na l p a tie nt sa m p ling Lo w Ba rn a rd et al .2 0 1 6 [4 6 ] A V Ca se co nt ro l 38 AV /3 4 H V B io ré® De ep Cl ea ns in g Po re st ri p s N o se ar ea W M S seq u e n ci n g A sso ci at io n spe ci fic P. a cn es st ra in a n d a c n e . So me p a ti e n ts on ac ti v e tr ea tm en t N o se ri a l sa m p lin g No no nl es io na l p a tie nt sa m p ling Lo w Dr eno et al . 20 1 7 [4 7 ] A V Si ng le -c en te r, ra nd o m iz e d -c o n tr o lle d , do ub le -b li nd Er yt hr om y ci n 4 % OR De rm at oc o sme ti c 26 AV St er ile sw a b s Le si o n a l an d n o n le si o n a l sk in M u lt ip le ti me po in ts 1 6 S rR N A V4 Di ff e re n t m ic ro bi o ta pr ofi le s o n d if fe re n t si te s. E ry thr o m y c in tr e a tm e n t re du ce d th e nu mb er of A ct in o ba ct er ia , a n d de rm o co sme ti c re d uc ed A ct in o ba ct er ia an d St ap hy lo co cc u s sp p. Sm al l co h o rt M u lt ip le sa mp le s ex cl ud ed du e to in suf fici e n t b a c te ria l m a ter ia l Mo de ra te Ke lh al a et al . 20 1 7 [4 8 ] A V Si ng le -c en tr e , co nt ro lled st u d y is ot re ti no in 0. 4– 0. 6 m g kg – 1 or lyme c yc lin e 3 0 0 mg tw ic e d a ily 17 is ot re ti n o in 11 ly me c yc lin e 16 HV St er ile sw a b s Pr ed os e a n d af te r 6 w ee ks C h e e k , ba c k an d a rm p it 16S rR NA V1 -V 3 Po si ti v e c o rr el at io n Pr op io n iba ct er iu m ab un d a n ce a n d ac ne se v e ri ty gr ad e B o th tr ea tm en ts re du ce d cl in ica l ac ne gr ad es Pr op io n ib a ct er iu m de cr ea se d in ch e e k sa m p le s a ft e r bo th tr ea tm e n ts Pr op io n ib a ct er iu m de cr ea se d in b ac k sam p le s Sm al l co h o rt No no nl es io na l p a ti e n t sam pl in g Mo de ra te (c on ti n u es )

(10)

Ta

bl

e

1

(C on ti nu ed ) So ur ce F ir st au th o r, y e a r [r e f] D is ea se St ud y d es ig n No . o f p at ie n ts Sa m p le co ll e c ti o n me th o d s A na ly si s K e y n d in g s W ea kn es se s Le ve l ev id e n c e af te r ly m e cy cl in e , b u t no t iso tr et in o in tre at me nt Di v e rs it y in cr e a sed af te r tre at me nt Su g it a et al . 20 0 4 [5 8 ] A D Ca se co nt ro l 13 AD /1 2 H V O p S ite ® tr a n spa re n t ad he si v e dr es si n g s Le si o n a l sk in HV ma tc he d si tes 26S a n d 5 S rR N A in te rg e n ic sp ac er re g io n 1 M. re st ri ct a c o lo ni ze s bo th A D an d H V Sm al l co h o rt N o se ri a l sa m p lin g Li mi te d a n a ly si s Pa ti en ts o n ac ti v e tr ea tm en t Lo w De ki o et al . 20 0 7 [4 9 ] A D Ca se co nt ro l 13 AD /1 0 H V St er ile sw a b s Fo re he ad sk in 16S rR NA In bo th A D an d H V th er e w as a h ig h rat e o f St re p toc o cc u s sp e ci e s In A D St re n o tr op ho m o n a s ma lt op hi lia wa s sign ifi ca nt ly mo re c o m m o n Sm al l co h o rt N o se ri a l sa m p lin g Pa ti en ts o n ac ti v e tr ea tm en t Lo w Ka g a et al . 20 0 9 [5 0 ] A D Ca se co nt ro l 56 AD /3 2 H V O p S ite ® tr a n spa re n t ad he si v e dr es si n g s Le si o n a l sk in A D Fa ce HV 26S a n d 5 S rR N A in te rg e n ic sp ac er re g io n 1 In mi ld an d m o d e rat e AD , M. re st ri ct a wa s pr ed om in a n t o v e r M. gl o b o se In pa ti e n ts wi th se v e re A D , p ro po rt io n s of M. re st ri ct a an d M. gl ob os e w e re al mo st id en ti ca l Li mi te d a n a ly si s N o se ri a l sa m p lin g Va ri at io n in sk in sam pl e sit es Pa ti en ts po ss ib ly o n a c ti v e tr ea tm en t Lo w to m o d e ra te Yi m et al . 20 1 0 [5 1 ] A D Pr o spe ct iv e co h o rt 60 St er ile sw a b s 5 b od y sit es 26S Th er e w er e n o sig ni fica n t di ff e re n c e s b e twe en po si ti v e Ma las sez ia cu lt u re , Ma la ss ez ia sp e ci e s, an d se v e ri ty of AD Li mi te d a n a ly si s Pa ti en ts o n em o lli e n t tr ea tm en t Lo w to m o d e ra te Ak a z a et al . 20 1 0 [5 2 ] A D Ca se co nt ro l 67 St er ile sw a b s Le si o n a l an d n o n le si o n a l sk in Fa ce an d tru nk 26S Fo r th e to ta l n u m b e r o f Ma la ss ez ia sp e ci e s, th er e w e re no si g n ifi c a n t di ff er en ce s be tw ee n le sio na l a n d no nl es io na l a re a s N o se ri a l sa m p lin g Pa ti en ts o n ac ti v e tr ea tm en t Lo w to m o d e ra te Ko ng et al . 20 1 2 [6 0 ] A D Pr o spe ct iv e co h o rt 12 AD /1 1 H V St er ile sw a b s M u lt ip le ti me po in ts Ba se lin e ,fl ar e, p o st -fl ar e 16S rR NA V1 -V 9 Fl ar e u ps w e re as so c ia te d w it h an in c re a se d p ro p o rt io n of St ap hy lo co cc us se q u en ce s, pa rt ic ul ar ly S. au re us ,a n d co rr el at ed wi th di se a se sev er it y In cr ea se s in St re p toc o cc u s, Pr op io n b ac te ri um ,a n d C o ry ne b a ct er iu m sp ec ie s w e re ob se rv e d fo llo w in g th e ra p y Sm al l co h o rt On ly mo d e ra te to se v e re pa ti e n ts Di ff er en t tr e a tm e n ts re g im e n s d u ri n g flar e Lo w to m o d e ra te Se it e et al . 20 1 4 [5 4 ] A D Pr o spe ct iv e co h o rt Em o lli e n s tr e a tme nt 46 St er ile sw a b s Le si o n a l an d n o n le si o n a l sk in M u lt ip le ti me po in ts 16S rR NA V1 -V 2 A ff e c te d sk in ha rb o u re d a g re at er re la ti v e ab un da nc e of St ap hy lo co cc us ,a n d in pa rt ic ul ar La rg e ti m e b et w e e n fi rs t a n d se c o n d sa m p le On ly mo d e ra te pa ti e n ts Lo w to m o d e ra te (c on ti n u es

(11)

Ta

bl

e

1

(C on ti nu ed ) So ur ce F ir st au th o r, y e a r [r e f] D is ea se St ud y d es ig n No . o f p at ie n ts Sa m p le co ll e c ti o n me th o d s A na ly si s K e y n d in g s W ea kn es se s Le ve l ev id e n c e S. ep id er m is , c om p a re d to he al th y ski n Re sp o n d e rs ha d in cr e a sed mi cr o b ia l d iv er si ty an d de cr ea se in St ap hy lo co cc u s sp ec ie s Ch ng et al . 20 1 6 [5 5 ] A D Ca se co nt ro l 19 me di ca l h is to ry AD /1 5 H V /5 p o sit iv e sk in p ri ck Ta pe st ri p p in g an ti -c u b it al fo ss a 16S rR NA V3 -V 6 WM S No n fl ar e, ba se lin e sk in mi cr o b io m e si g n a tu re s en ri ch ed fo r St re pt oc oc cu s an d Ge m ell a in A D pr o n e sk in v e rs us no rm a l sk in In cr ea se d p e rc e n tag e of S. au re u s ca rr ie rs no te d in AD c o h o rt o ve r co nt ro l su b je c ts Sm al l co h o rt N o se ri a l sa m p lin g No le si o n a l sa m p le s Lo w Go n z a le z et al .2 0 1 6 [5 6 ] A D Ra nd o m iz e d , p la c e b o -co nt ro lled , sin gl e-bl in d e d To p ic a l st e ro id or To p ic a l st e ro id + d ilut e bl ea ch ba th 21 AD /1 4 H V St er ile sw a b s Le si o n a l an d n o n le si o n a l sk in M u lt ip le ti me po in ts 1 6 S rR N A V4 A ff e c te d sk in ha rb o u re d a g re at er re la ti v e ab un da nc e of S. au re u s M ic ro b ia l d iv e rs it y at al l le si o n a l si te s in v er se ly co rr el at ed w it h ov er al l E AS I In d e x sc o re Ta xo no mi c n o rm a li za ti o n oc cu rr ed on le si o n a l fo llow in g tr ea tm e n ts B a c te ri a l co m m u n iti es o n le si o n a l sk in re se m b le no nl es io n a l sk in bu t re m a in d is ti n ct fr o m he al th y c on tr o l sk in Sm al l stu d y Mo de ra te Se it e et al . 20 1 7 [5 7 ] A D Do ub le -b lin d , Ra nd o m iz e d , co mp ar at iv e Em o lli e n t A or Em o lli e n t B 53 St er ile sw a b s Le si o n a l an d no nl es io na l ski n M u lt ip le ti me po in ts 16S rR NA V1 -V 2 Si g n ifi ca nt in c re a se d le ve ls of X a n tho m o n a s ge nu s in pa ti en ts tr e a te d w it h e m o llie nt A Le v e ls o f St ap hy lo co cc u s ge nu s in cr e a sed b e tw ee n Da y 1 an d D a y 2 8 in p a ti e n ts tr ea te d w it h e m o lli e n t B On ly mo d e ra te pa ti e n ts No w a sh -o ut o th e r tre at me nt s Mo de ra te Ki m et al . 20 1 7 [5 9 ] A D Pr o spe ct iv e co h o rt We t d re ss in g s To p ic a l st e ro id s An ti h is ta m in e s An ti b io ti c s 27 AD 6H V Sa lin e so ak ed ga uz es 1 6 S rR N A V1 -V 3 P rop o rt io n of St ap hy lo co cc u s si g n ifi c a n tly d e c re a se d a ft er tr ea tm e n t Di v e rs it y (S h a n n o n In d e x ) si g n ifi c a n tly in c re a se d af te r tre at me nt Sm al l stu d y Pa ti en ts o n w id e v a ri e ty o f tr ea tm en ts No no nl es io na l ski n a n a ly si s Lo w to m o d e ra te A D , a to pi c d er ma ti ti s; A V , a c n e vu lg a ri s; DF U , di ab et ic fo o t ul ce r; H S , h id ra d e n it is sup p u ra ti v a ; N U, ne ur op at hi c u lc er ; O T H , o th e r; O T U , o p e ra ti o na l ta x o n o m ic un it ; P S U , p o st-su rg ic a l ul ce r; PU , p re ss u re ul ce r; PV , p so ri as is vu lg ar is ; S D /P C , se b or rh o e ic de rm at it is /p it yr ia si s ca p it is ; U C , u lc u s cr u ri s; VL U, v e n o u s le g u lc er

(12)

Discussion

This systematic review provides an overview of the clinical studies that have investigated nonculture skin microbiome associated outcomes in AD, SD, AV, HS, PV and UC with the goal to explore its potential as biomarker in early phase clin-ical drug development with drug specific or disease specific application, as also referred to as type 3 or type 6 biomarker according to the classic definition of Danhof et al. [67].

Potential for microbiome as biomarker: AD and

AV

From our analysis, there is some preliminary evidence that the skin microbiota may be a suitable disease specific bio-marker for clinical trials of AD. This is due to the correlation between Staphylococcus abundance, microbiome diversity profile and disease severity that seems to exist in multiple tri-als, therewith complying with most of the criteria for a useful biomarker, Table 2 [4]. Objective data on the change of the microbiota may be valuable to support subjective AD efficacy scores in early phase clinical trials. However, it must be noted that the cause and effect relationship between skin microbi-ota dysbiosis and AD remains incompletely elucidated [68]. Currently, no evidence of benefit of antimicrobial interven-tions directed at reduction of Staphylococcus in patients with AD exists, only in secondarily impetiginized AD [69–71]. As multiple studies included in this review indicate that the skin microbiota within an individual patient varies over time [60, 61, 63, 64], there is need for longitudinal, frequent sampling and standard analysis studies. Nevertheless, it has proven its potential value and is recommended to apply in AD clinical trials, in particular when microbiota can serve also as drug-specific biomarker, i.e. for drugs with antimicrobial activity such as antimicrobial peptides that are currently in clinical trials for AD.

In AV, a strong, positive correlation between

Propionibacterium and acne severity grade is reported [55].

Moreover, acne improved and Propionibacterium decreased after treatment, while the microbial diversity increased [54, 55]. Taking into account that a clear pathophysiological

role of P. acnes exists and antimicrobial interventions are ef-fective in AV [72, 73], the adoption of the skin microbiome as biomarker in acne drug development programmes is, al-though still in its infancy, suggested by our review (Table 2). Lesion clearance often takes a long time; therefore, the in-clusion of microbiota is a valid option to monitor subclini-cal treatment effects and restoration of normal bacterial profile, i.e. rebiosis. Although a small uncertainty remains regarding the exact relationship between aberrations in the skin microbiome and acne [74], we conclude that there is definitely a potential for the microbiota as biomarker in clinical trials (Table 2). Another option would be to culture

P. acnes instead of profiling the whole skin microbiota in

clinical trials; however, with this approach a comprehensive overview and insight in the diversity will be missed.

PV, UC, hidradenitis and SD are lacking

evidence

Although dysbiosis in psoriasis seems to exist in the micro- as

well as the mycobiota, study findings are heterogeneous.

Wide variability in study design, sampling methods, control-lable factors and sequencing techniques between groups, in conjunction with small sample populations, could provide a possible explanation for this. Therefore, no clear recommen-dations can be made at this time. Future work focusing on se-rial sampling and longitudinal studying of skin microbiome populations it PV patients, may provide information on its potential applicability as biomarker, Table 2. From a clinical perspective, we know that antimicrobial and antifungal agents are not successful in the treatment of psoriasis, which suggests that it is less attractive to explore [75, 76]. However, since immune dysregulation is the key of psoriasis and recent investigations describe the extensive cross talk between the immune system and the microbiome, there may still be po-tential that should be explored [77]. For UC inconsistencies in study design, sampling methods and the heterogeneity of

the disease group also limit the comparability of study

find-ings. There appears to be a relationship between certain spe-cies, types of ulcers and ulcer duration [42, 46]. However, longitudinal studies with frequent standard sampling and

Table 2

Evaluation of the microbiome as clinical biomarker for each dermatological disease included in the review based on the criteria of a useful bio-marker as defined by de Visser et al. [4]

Indication

Manuscripts (N)

Evidence

level overall Consistency

Therapeutic response Dose– response relation Relationship with disease Recommendation for trial implementation

PV 10 Low – 0 0 0 Negative, more evidence needed

HS 2 Low + 0 0 + Negative, more evidence needed

UC 10 Low + 0 0 + Negative, more evidence needed

SD 4 Low – 0 0 + Negative, more evidence needed

AV 5 Moderate + + 0 + Positive

AD 11 Moderate + + 0 + Positive

AD, atopic dermatitis; AV, acne vulgaris; HS, hidradenitis suppurativa; PV, psoriasis vulgaris; SD/PC, seborrhoeic dermatitis/pityriasis capitis; UC, ulcus cruris Scoring system indicated as follows: +, studies in general report a positive outcome; 0, no studies available;–, studies in general report a negative outcome

(13)

standard analysis procedures are necessary to make a

recom-mendation. Thefinding of dysbiosis in HS skin microbiome

mostly regarding anaerobic species that is mostly consistent in two different studies opens up opportunities for the skin

microbiome as biomarker in thisfield, Table 2 [35, 36].

How-ever, future studies will have to confirm this potential. In SD, three different sequencing methods were used in the three different studies [47, 49, 50]. This, together with the small sample populations, single time point sampling and poor

study designs, might explain the heterogeneity infindings.

Since there is a clear evidence that antifungal agents such as ketoconazole are effective in SD [78], it is recommended to further explore the skin microbiome’s potential in this dis-ease in future clinical trials.

Limitations and considerations

It is important to note that in all included studies, there was a high variability in study design and sampling methods be-tween groups, which makes comparisons of specific findings difficult. Case–control studies (25/42, 60%) dominate re-search into the skin microbiome and skin disease. Patients are compared with healthy controls, capturing microbial pro-files at a particular time, but have little predictive value in de-termining functionality, looking more at associations, and not causation. The small patient sample sizes across all stud-ies may fail to account for interindividual differences within the study population. The poorly defined inclusion and ex-clusion criteria, with certain studies including actively treated patients in their sample population, could also

con-found potentialfindings. The standardization of controllable

factors to reduce confounders was not well documented or maybe not performed in most of the included studies. As sim-ple factors including but not limiting of age, ethnicity, envi-ronmental factors, soap use, hand-washing and the use of topical (antimicrobial) agents before sampling have been shown to alter microbial skin communities; documentation of these metadata is essential to draw valid conclusions [5, 8, 12, 60, 61, 79–81]. Multiple methods were used for skin microbiome sampling across the studies (i.e. swabs, biop-sies, tape strips, wound curettes). Interestingly, all have been shown to exhibit a wide variation in biomass yield, micro-bial profile, human DNA contribution/contamination, sampling depth and discomfort level for the test subject [19, 62, 82–87]. In addition to the sampling method, the se-lection of sampling sites and sampling frequency are impor-tant factors that were not always considered in the included studies. Consistent sampling of the same anatomi-cal area of skin in all individuals in study cohorts is essential in order to limit confounders, and allow for the accurate comparison of skin microbiome populations. Moreover, re-garding analysis, only consistent use of specific primers to target specific hypervariable V regions, will allow for colla-tion of data and comparison between multiple studies. It is clear that broadly used analysis methods in this review as shown in Table 1 count as a limitation for comparison. Taken all the above together, based on the level of evidence it is clear that our recommendations should be made with some caution. A standard approach for skin microbiome study design, collection, storage, processing and analysis as proposed by Kong et al. should be followed in future studies

[17]. However, although the list of limitations and some-times poor evidence might be assessed as a weak recommen dation for the inclusion of cutaneous microbiome in

der-matological trials, the recent finding that the gut

microbiome partially explains the response/nonresponse to PD-1 immunotherapy in different cancer patients will foster research into microbiome in general [88, 89]. In ad-dition, the relation between the gut microbiome in inflam-matory bowel disease and response to infliximab was also recently highlighted [90]. In particular, when considering the reports about the role of the gut-skin axis that might influence many diseases including the here investigated skin disorders [91–93].

Conclusion

Only a small number of studies have consistently reported the cutaneous microbiome for skin diseases and chronic

wounds. Ourfindings reveal that for two indications – AD

and AV– there is preliminary evidence to support

implemen-tation of the skin microbiome as biomarker in early phase clinical trials. For PV, UC, SD and HS, there is insufficient ev-idence. More standardized microbiome-directed studies studying the effect of current treatments on the microbiome are needed to draw conclusions.

Competing Interests

There are no competing interests to declare.

References

1 Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing

GJ, Hoth DF, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89–95.

2 Cohen AF, Burggraaf J, van Gerven JM, Moerland M, Groeneveld

GJ. The use of biomarkers in human pharmacology (Phase I) studies. Annu Rev Pharmacol Toxicol 2015; 55: 55–74.

3 Lee JW, Weiner RS, Sailstad JM, Bowsher RR, Knuth DW, O’Brien

PJ, et al. Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm Res 2005; 22: 499–511.

4 de Visser SJ, van der Post JP, de Waal PP, Cornet F, Cohen AF, van

Gerven JM. Biomarkers for the effects of benzodiazepines in healthy volunteers. Br J Clin Pharmacol 2003; 55: 39–50.

5 Human Microbiome Project C. A framework for human

microbiome research. Nature 2012; 486: 215–21.

6 Selwyn S. Microbiology and ecology of human skin. Practitioner

1980; 224: 1059–62.

7 Tagami H. Location-related differences in structure and function

of the stratum corneum with special emphasis on those of the facial skin. Int J Cosmet Sci 2008; 30: 413–34.

8 Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC,

et al. Topographical and temporal diversity of the human skin

(14)

9 Leyden JJ, McGinley KJ, Mills OH, Kligman AM. Age-related

changes in the resident bacterialflora of the human face. J Invest Dermatol 1975; 65: 379–81.

10 Somerville DA. The normal flora of the skin in different age

groups. Br J Dermatol 1969; 81: 248–58.

11 Marples RR. Sex, constancy, and skin bacteria. Arch Dermatol Res

1982; 272: 317–20.

12 Fierer N, Hamady M, Lauber CL, Knight R. The influence of

sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 2008; 105: 17994–9.

13 Giacomoni PU, Mammone T, Teri M. Gender-linked differences

in human skin. J Dermatol Sci 2009; 55: 144–9.

14 McBride ME, Duncan WC, Knox JM. The environment and the

microbial ecology of human skin. Appl Environ Microbiol 1977; 33: 603–8.

15 Faergemann J, Larko O. The effect of UV-light on human skin

microorganisms. Acta Derm Venereol 1987; 67: 69–72.

16 Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011;

9: 244–53.

17 Kong HH, Andersson B, Clavel T, Common JE, Jackson SA, Olson

ND, et al. Performing skin microbiome research: a method to the madness. J Invest Dermatol 2017; 137: 561–8.

18 Edmonds-Wilson SL, Nurinova NI, Zapka CA, Fierer N, Wilson M.

Review of human hand microbiome research. J Dermatol Sci 2015; 80: 3–12.

19 Zeeuwen PL, Boekhorst J, van den Bogaard EH, de Koning HD, van

de Kerkhof PM, Saulnier DM, et al. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol 2012; 13: R101.

20 Schommer NN, Gallo RL. Structure and function of the human

skin microbiome. Trends Microbiol 2013; 21: 660–8.

21 Jo JH, Kennedy EA, Kong HH. Research techniques made simple:

bacterial 16S Ribosomal RNA gene sequencing in cutaneous research. J Invest Dermatol 2016; 136: e23–7.

22 Paulino LC. New perspectives on dandruff and seborrheic

dermatitis: lessons we learned from bacterial and fungal skin microbiota. Euro J Dermatol EJD 2017; 27: 4–7.

23 Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred

reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.

24 Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y,

Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clinical research ed) 2008; 336: 924–6.

25 Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis

of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol 2006; 44: 2933–41.

26 Amaya M, Tajima M, Okubo Y, Sugita T, Nishikawa A, Tsuboi R.

Molecular analysis of Malassezia microflora in the lesional skin of psoriasis patients. J Dermatol 2007; 34: 619–24.

27 Paulino LC, Tseng CH, Blaser MJ. Analysis of Malassezia microbiota

in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. FEMS Yeast Res 2008; 8: 460–71.

28 Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial

alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 2008; 3: e2719.

29 Fahlen A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of

bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res 2012; 304: 15–22.

30 Alekseyenko AV, Perez-Perez GI, De SA, Strober B, Gao Z, Bihan M,

et al. Community differentiation of the cutaneous microbiota in

psoriasis. Microbiome 2013; 1: 31.

31 Statnikov A, Alekseyenko AV, Li Z, Henaff M, Perez-Perez GI,

Blaser MJ, et al. Microbiomic signatures of psoriasis: feasibility and methodology comparison. Sci Rep 2013; 3: 2620.

32 Takemoto A, Cho O, Morohoshi Y, Sugita T, Muto M. Molecular

characterization of the skin fungal microbiome in patients with psoriasis. J Dermatol 2015; 42: 166–70.

33 Salava A, Pereira P, Aho V, Vakeva L, Paulin L, Auvinen P, et al.

Skin microbiome in small- and large-plaque parapsoriasis. Acta Derm Venereol 2017; 97: 685–91.

34 Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M, et al.

Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes 2017; 3: 14.

35 Ring HC, Thorsen J, Saunte DM, Lilje B, Bay L, Riis PT, et al. The

follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. JAMA Dermatology 2017; 153: 897–905.

36 Guet-Revillet H, Jais JP, Ungeheuer MN, Coignard-Biehler H,

Duchatelet S, Delage M, et al. The microbiological landscape of anaerobic infections in Hidradenitis Suppurativa: a prospective metagenomic study. Clin Infect Dis Official Pub Infectious Dis Soc Am 2017; 65: 282–91.

37 Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA,

et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008; 8: 43.

38 Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz

M, et al. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 2009; 4: e6462.

39 Price LB, Liu CM, Frankel YM, Melendez JH, Aziz M,

Buchhagen J, et al. Macroscale spatial variation in chronic wound microbiota: a cross-sectional study. Wound Repair Regen 2011; 19: 80–8.

40 Rhoads DD, Cox SB, Rees EJ, Sun Y, Wolcott RD. Clinical

identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing. BMC Infect Dis 2012; 12: 321.

41 Gjodsbol K, Skindersoe ME, Christensen JJ, Karlsmark T,

Jorgensen B, Jensen AM, et al. No need for biopsies: comparison of three sample techniques for wound microbiota determination. Int Wound J 2012; 9: 295–302.

42 Gardner SE, Hillis SL, Heilmann K, Segre JA, Grice EA. The

neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes 2013; 62: 923–30.

43 Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD, Wolcott

RA, et al. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen 2016; 24: 163–74.

44 Smith K, Collier A, Townsend EM, O’Donnell LE, Bal AM, Butcher

Referenties

GERELATEERDE DOCUMENTEN

It is the conclusion of this study that for the current design, the forces between the magnets and superconductors are not able to achieve the required forces for magnetic

This thesis deals with the question whether the contemporary archaeological treatment of Dutch Christian burials that date between the Christianization and the Reformation,

Appendix 3: Geology of the Mergelland region 84 Appendix 4: Archaeology and history of the Mergelland region 85 Appendix 5: Discovering the Rijckholt Flint mines 87

De probleemstelling die in deze scriptie centraal staat luidt: “Voldoet Nederland aan zijn internationale verplichtingen met betrekking tot de strafrechtelijke

THEORETICAL FRAMEWORK: In our proposal we used the project method according to Carl Rogers (Rogers, 1977), consisting of 4 phases: Students 1) define project and

production for adolescent slash fans is constructed to coincide with desires of romance; (2) adolescent sexuality is expressed through personal identification in erotic slash

Hierdie en ander sake noop dus dat daar gelet moet word na die beroepsleidingprogram soos dit in die skool daar uitsien.. Gesien in die lig van die rol wat

Verhoeven: “Men moet er in dat geval rekening mee houden dat de microben in de grond stikstof nodig hebben bij de vertering van de gewasresten, waardoor er te weinig