• No results found

Blind detection, spectral estimation, and demodulation of OFDM signals for ultra-wideband cognitive radio applications*

N/A
N/A
Protected

Academic year: 2021

Share "Blind detection, spectral estimation, and demodulation of OFDM signals for ultra-wideband cognitive radio applications*"

Copied!
43
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Blind detection, spectral estimation,

and demodulation of OFDM signals

for ultra-wideband cognitive radio

applications*

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: AA

Toon van Waterschoot (ESAT-SCD, K.U.Leuven, Belgium) visit TU Delft – 20/08/2010

* joint work with Vincent Le Nir (Royal Military Academy, Brussels, Belgium), Jonathan Duplicy (Agilent Technologies, Rotselaar, Belgium), and Marc Moonen (ESAT-SCD, K.U.Leuven, Belgium),

in the frame of European research project FP7-2007-ICT-1-216785 (“Ultra-wide band real-time interference monitoring and cellular management strategies (UCELLS)”)

(2)

Outline

Introduction

–  ultra-wideband cognitive radio applications –  observed signal model

–  power spectral density of OFDM signals

Blind detection and spectral estimation of OFDM signals

–  blind detection and spectral estimation block scheme

–  joint carrier frequency estimation and detection algorithm

–  joint bandwidth-power-SNR estimation algorithm

Blind demodulation of OFDM signals

–  blind synchronization by time offset estimation

–  blind OFDM demodulation by modulation parameter estimation

–  blind equalization by phase offset and channel estimation –  blind subcarrier demodulation by constellation estimation

(3)

Introduction: UWB CR applications (1)

Ultra-wideband cognitive radio applications:

–  UWB management: adapt UWB carrier frequency (CF) and/or

power to activity of other radio signals (UWB and non-UWB)

ü blind detection of other radio signals

ü blind estimation of frequency band occupied by other radio signals

ü blind estimation of signal powers

–  UWB reception: demodulate and recover UWB data without

knowledge of UWB transmission parameters

ü blind detection of UWB signals

ü blind estimation of UWB RF modulation parameters (CF, bandwidth)

ü blind estimation of UWB OFDM modulation parameters (symbol duration,

time guard interval duration, number of subcarriers)

ü blind estimation of channel parameters (channel model, noise variance)

(4)

Introduction: UWB CR applications (2)

Radio environment:

–  UWB covers 3.1–10.6 GHz range (WiMedia ECMA-368)

–  other radio signals in this range are WiFi (802.11a) and WiMAX

Consequences for estimation/detection algorithm design:

–  all signals of interest are OFDM signals

–  spectral overlap possible in 3.3–3.8 and 5.15–5.85 GHz bands –  algorithms operate at 20 GHz (Nyquist sampling)

–  OFDM time guard interval can be cyclic prefix or zero padding

–  signal bandwidth ranges from 1.25 (WiMAX) to 528 MHz (UWB)

3.3 3.4 3.6 3.8 5.15 5.725 5.85 freq (GHz) 802.11a (WiFi) WIMAX

(5)

Introduction: Observed signal model (1)

Observed signal model (continuous time):

–  = pth transmitter’s analog baseband signal (compl. env.) –  = pth transmitter’s RF carrier signal parameters –  = channel impulse response w.r.t. pth transmitter

(6)

Introduction: Observed signal model (2)

Observed signal model (continuous time):

Transmitted OFDM signal model (continuous time):

–  = pth transmitter’s discrete-time baseband signal –  = pth transmitter’s sampling period

(7)

Introduction: Observed signal model (3)

Observed signal model (continuous time):

Transmitted OFDM signal model (continuous time):

Transmitted OFDM signal model (discrete time):

–  = pth transmitter’s complex data symbol (fin. alph. constell.) –  = pth transmitter’s pulse shaping window

–  = pth transmitter’s number of OFDM subcarriers –  = pth transmitter’s OFDM symbol length

(8)

Introduction: Power spectral density (1)

Power spectral density (PSD) definition:

–  = truncated version of in time interval –  = expectation and Fourier operators

(9)

Introduction: Power spectral density (2)

Power spectral density (PSD) definition:

Existing OFDM PSD expressions:

1.  sum of subcarrier spectra [Pauli & Kuchenbecker, 1998] [Zhao, 2000] [Jayalath & Tellambura, 2001] [Liu & Li, 2004]

–  = variance of data symbols

–  = subcarrier separation

–  based on assumption of rectangular pulse shaping window

(10)

Introduction: Power spectral density (3)

Power spectral density (PSD) definition:

Existing OFDM PSD expressions:

1.  sum of subcarrier spectra [Pauli & Kuchenbecker, 1998] [Zhao, 2000] [Jayalath & Tellambura, 2001] [Liu & Li, 2004]

2.  sum of periodic subcarrier spectra [Cuypers et al., 1998]

[Talbot & Farhang-Boroujeny, 2008]

–  = periodic sinc function (Dirichlet kernel)

–  based on assumption of sampled rectangular pulse shaping window

(11)

Introduction: Power spectral density (4)

Derivation of new OFDM PSD expression (1):

–  general PSD expression for digital signals [Couch, 1997]:

•  = frequency response of pulse shape

•  = (time-averaged) autocorrelation function of data symbols

(12)

Introduction: Power spectral density (5)

Derivation of new OFDM PSD expression (1):

–  general PSD expression for digital signals [Couch, 1997]:

–  recall the continuous-time transmitted OFDM signal model

–  one particular mapping between the above expressions, with

(13)

Introduction: Power spectral density (6)

Derivation of new OFDM PSD expression (2):

–  the (time-averaged) autocorrelation function can be reduced to

under the assumption that:

1.  the data symbols are i.i.d.

2.  the pulse shape is sufficiently localized in time, i.e.,

[T. van Waterschoot, V. Le Nir, J. Duplicy, and M. Moonen, “Analytical expressions for the power spectral density

(14)

Introduction: Power spectral density (7)

PSD expression for CP-OFDM signals:

Example: PSD of IEEE 802.11a WiFi signal

-20 -15 -10 -5 0 5 10 15 20 0 1 2 3 4 5 6 f (MHz) Px ( f ) ( W / H z ) 6 7 8 9 10 11 12 0 1 2 3 4 5 6 f (MHz) Px ( f ) ( W / H z ) estimated PSD (without NS) estimated PSD (with NS) analytical PSD

(15)

Introduction: Power spectral density (8)

PSD expression for ZP-OFDM signals:

Example: PSD of ECMA-368 UWB signal

160 180 200 220 240 260 280 300 320 0 0.5 1 1.5 2 2.5 3 3.5 f (MHz) Px ( f ) ( W / H z ) estimated PSD (without NS) estimated PSD (with NS) analytical PSD -4000 -300 -200 -100 0 100 200 300 400 0.5 1 1.5 2 2.5 3 3.5 f (MHz) Px ( f ) ( W / H z )

(16)

Outline

Introduction

–  ultra-wideband cognitive radio applications –  observed signal model

–  power spectral density of OFDM signals

Blind detection and spectral estimation of OFDM signals

–  blind detection and spectral estimation block scheme

–  joint carrier frequency estimation and detection algorithm

–  joint bandwidth-power-SNR estimation algorithm

Blind demodulation of OFDM signals

–  blind synchronization by time offset estimation

–  blind OFDM demodulation by modulation parameter estimation

–  blind equalization by phase offset and channel estimation –  blind subcarrier demodulation by constellation estimation

(17)

Blind detection and spectral estimation:

Block scheme

[T. van Waterschoot, V. Le Nir, J. Duplicy, and M. Moonen, “Spectral estimation and detection of OFDM signals for ultra-wideband cognitive radio applications", ESAT-SISTA Technical Report TR 09-150, K.U.Leuven, Belgium, Jul. 2010]

(18)

Blind detection and spectral estimation:

Carrier frequency estimation (1)

Step 1: non-parametric carrier frequency estimation

–  DFT magnitude spectrum estimation followed by peak picking

–  provides a (coarse) initial estimate for parametric CFE algorithm

Step 2: parametric carrier frequency estimation

–  CFE data model:

P bandpass signals in WGN ~ WGN shaped by P bandpass filters

–  CFE criterion:

least-squares criterion maximizes residual spectral flatness → notch filters are expected to align with bandpass signals

(19)

Blind detection and spectral estimation:

Carrier frequency estimation (2)

Parametric carrier frequency estimation algorithm (1)

–  decoupling of CFE criterion into P subproblems:

→ each subproblem is scalar estimation problem

→ detection algorithm can be “interleaved ” with CFE algorithm

–  subproblem solution using line search optimization method:

•  = step length

•  = search direction

–  step length calculation:

backtracking with Armijo’s sufficient decrease condition

(20)

Blind detection and spectral estimation:

Carrier frequency estimation (3)

Parametric carrier frequency estimation algorithm (2)

–  search direction calculation:

scalar simplification of quasi-Newton method with damped Broyden-Fletcher-Goldfard-Shanno (BFGS) updating

[Powell, 1977] [Nocedal & Wright, 2006] [van Waterschoot & Moonen, 2008]

–  gradient calculation:

based on IIR filtering residual signal from previous subproblem

(21)

Blind detection and spectral estimation:

Carrier frequency estimation (4)

Example: CFE of ECMA-368 UWB signal

4 4.2 4.4 4.6 4.8 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Frequency (GHz) Po w e r UWB-OFDM signal PSD true CF value non-parametric CFE parametric CFE, k=0 parametric CFE, k=1 parametric CFE, k=2 parametric CFE, k=3

(22)

Blind detection and spectral estimation:

Carrier frequency estimation (5)

Performance evaluation:

–  Monte Carlo simulations with 1000 trials per simulation

–  performance measure = absolute CFE error/bandwidth (%)

vs. frame length (# observed samples) with fixed SNR = 10 dB vs. SNR with fixed frame length = 16384 samples

–  lack of prior knowledge on OFDM bandwidth and power values

→ fixed bilinear filter pole and zero radii:

–  OFDM signals under consideration:

•  IEEE 802.11a WiFi signal (fc = 5.24 GHz)

•  IEEE 802.16 WiMAX signal (fc = 3.6 GHz)

•  ECMA-368 UWB signal (fc = 4.488 GHz or 3.432 GHz)

–  observed signal scenarios:

•  single OFDM signal in observed signal

•  three OFDM signals in observed signal (no spectral overlap)

(23)

Blind detection and spectral estimation:

Carrier frequency estimation (6)

single OFDM signal three OFDM signals

(no spectral overlap)

three OFDM signals (overlap WiMAX-UWB) 103 104 105 106 0 2 4 6 8 10 12

Frame length (samples)

[C F E e rro r] /Ba n d w id th (% ) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 3.432 GHz) 103 104 105 106 0 1 2 3 4 5

Frame length (samples)

[C F E e rro r] /Ba n d w id th (% ) WiFi (fc = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) 103 104 105 106 0 1 2 3 4 5 6

Frame length (samples)

[C F E e rro r] /Ba n d w id th (% ) WiFi (fc = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) -20 -10 0 10 20 0 2 4 6 8 10 12 SNR (dB) [C F E e rro r] /Ba n d w id th (% ) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 3.432 GHz) -20 -10 0 10 20 0 1 2 3 4 5 SNR (dB) [C F E e rro r] /Ba n d w id th (% ) WiFi (fc = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) -20 -10 0 10 20 0 1 2 3 4 5 6 SNR (dB) [C F E e rro r] /Ba n d w id th (% ) WiFi (fc = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz)

(24)

Blind detection and spectral estimation:

Detection (1)

Detection algorithm

–  binary hypothesis test for a given carrier frequency estimate

–  decision variable:

(25)

Blind detection and spectral estimation:

Detection (2)

Example: decision variable for ECMA-368 UWB signal

NF1 output power > NF2 output power

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Frequency (GHz) Po w e r NF1 residual PSD NF2 residual PSD NF1 response NF2 response

(26)

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Frequency (GHz) Po w e r NF1 residual PSD NF2 residual PSD NF1 response NF2 response

Blind detection and spectral estimation:

Detection (3)

Example: decision variable for noise

(27)

Blind detection and spectral estimation:

Detection (4)

single OFDM signal three OFDM signals

(no spectral overlap)

three OFDM signals (overlap WiMAX-UWB) 103 104 105 106 0 20 40 60 80 100

Frame length (samples)

Pro b a b ili ty o f d e te ct io n (% ) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 3.432 GHz) 103 104 105 106 0 20 40 60 80 100

Frame length (samples)

Pro b a b ili ty o f d e te ct io n (% ) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) 103 104 105 106 0 20 40 60 80 100

Frame length (samples)

Pro b a b ili ty o f d e te ct io n (% ) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) GWN (f c = 5.240 GHz) GWN (f c = 3.600 GHz) GWN (f c = 4.488 GHz) -20 -10 0 10 20 0 20 40 60 80 100 SNR (dB) Pro b a b ili ty o f d e te ct io n (% ) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 3.432 GHz) -20 -10 0 10 20 0 20 40 60 80 100 SNR (dB) Pro b a b ili ty o f d e te ct io n (% ) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) -20 -10 0 10 20 0 20 40 60 80 100 SNR (dB) Pro b a b ili ty o f d e te ct io n (% ) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz)

(28)

Blind detection and spectral estimation:

Bandwidth-power-SNR estimation (1)

Bandwidth estimation algorithm

–  spectral “isolation” of pth OFDM signal:

1.  downconversion of (p-1)th CFE algorithm residual signal

2.  downsampling of downconverted signal using fixed

–  DFT-based estimation of isolated signal PSD

–  definition of spectral mask:

–  bandwidth estimation criterion:

1.  (closed-form) minimization of w.r.t. 2.  (numerical) minimization of w.r.t.

(29)

Blind detection and spectral estimation:

Bandwidth-power-SNR estimation (2)

Signal power and SNR estimation

–  estimation of signal+noise PSD and noise PSD:

(30)

Blind detection and spectral estimation:

Bandwidth-power-SNR estimation (3)

Example: B-P-SNR estimation of ECMA-368 UWB signal

-500 -400 -300 -200 -100 0 100 200 300 400 500 -90 -80 -70 -60 -50 -40 -30 -20 -10 Frequency (MHz) Po w e r (d B) UWB-OFDM signal PSD optimal spectral mask signal+noise PSD estimate noise PSD estimate

(31)

Blind detection and spectral estimation:

Bandwidth estimation

single OFDM signal three OFDM signals

(no spectral overlap)

three OFDM signals (overlap WiMAX-UWB) -20 -10 0 10 20 0 20 40 60 80 100 SNR (dB) [BW E e rro r] /Ba n d w id th (% ) WiFi (B = 20 MHz) WiMAX (B = 10 MHz) UWB (B = 528 MHz) -20 -10 0 10 20 0 5 10 15 20 SNR (dB) [BW E e rro r] /Ba n d w id th (% ) WiFi (B = 20 MHz)WiMAX (B = 10 MHz) UWB (B = 528 MHz) -20 -10 0 10 20 0 5 10 15 SNR (dB) [BW E e rro r] /Ba n d w id th (% ) WiFi (B = 20 MHz)WiMAX (B = 10 MHz) UWB (B = 528 MHz) 103 104 105 106 0 5 10 15

Frame length (samples)

[BW E e rro r] /Ba n d w id th (% ) WiFi (B = 20 MHz) WiMAX (B = 10 MHz) UWB (B = 528 MHz) 103 104 105 106 0 10 20 30 40 50

Frame length (samples)

[BW E e rro r] /Ba n d w id th (% ) WiFi (B = 20 MHz) WiMAX (B = 10 MHz) UWB (B = 528 MHz) 103 104 105 106 0 20 40 60 80 100

Frame length (samples)

[BW E e rro r] /Ba n d w id th (% ) WiFi (B = 20 MHz) WiMAX (B = 10 MHz) UWB (B = 528 MHz)

(32)

Blind detection and spectral estimation:

Power estimation

single OFDM signal three OFDM signals

(no spectral overlap)

three OFDM signals (overlap WiMAX-UWB) 103 104 105 106 -20 -15 -10 -5 0 5

Frame length (samples)

[PW E e rro r] /Po w e r (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) 103 104 105 106 -30 -20 -10 0 10 20 30 40

Frame length (samples)

[PW E e rro r] /Po w e r (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) 103 104 105 106 -30 -20 -10 0 10 20 30

Frame length (samples)

[PW E e rro r] /Po w e r (d B) WiFi (fc = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 3.432 GHz) -20 -10 0 10 20 -20 -10 0 10 20 30 40 50 SNR (dB) [PW E e rro r] /Po w e r (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) -20 -10 0 10 20 -10 0 10 20 30 40 50 SNR (dB) [PW E e rro r] /Po w e r (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) -20 -10 0 10 20 -10 0 10 20 30 SNR (dB) [PW E e rro r] /Po w e r (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 3.432 GHz)

(33)

Blind detection and spectral estimation:

SNR estimation

single OFDM signal three OFDM signals

(no spectral overlap)

three OFDM signals (overlap WiMAX-UWB) -20 -10 0 10 20 -10 0 10 20 30 SNR (dB) [SN R E e rro r] /SN R (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 3.432 GHz) -20 -10 0 10 20 -10 0 10 20 30 40 SNR (dB) [SN R E e rro r] /SN R (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) -20 -10 0 10 20 -10 0 10 20 30 40 50 SNR (dB) [SN R E e rro r] /SN R (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) 103 104 105 106 -30 -20 -10 0 10 20 30

Frame length (samples)

[SN R E e rro r] /SN R (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 3.432 GHz) 103 104 105 106 -30 -20 -10 0 10 20 30

Frame length (samples)

[SN R E e rro r] /SN R (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz) 103 104 105 106 -25 -20 -15 -10 -5 0

Frame length (samples)

[SN R E e rro r] /SN R (d B) WiFi (f c = 5.240 GHz) WiMAX (f c = 3.600 GHz) UWB (f c = 4.488 GHz)

(34)

Outline

Introduction

–  ultra-wideband cognitive radio applications –  observed signal model

–  power spectral density of OFDM signals

Blind detection and spectral estimation of OFDM signals

–  blind detection and spectral estimation block scheme

–  joint carrier frequency estimation and detection algorithm

–  joint bandwidth-power-SNR estimation algorithm

Blind demodulation of OFDM signals

–  blind synchronization by time offset estimation

–  blind OFDM demodulation by modulation parameter estimation

–  blind equalization by phase offset and channel estimation –  blind subcarrier demodulation by constellation estimation

(35)

Blind demodulation: Requirements

first two steps based on spectral estimation algorithms

1.  blind RF demodulation using carrier frequency estimate

2.  blind downsampling using bandwidth estimate

four more steps to blind data recovery

1.  blind synchronization

–  estimation of time offset

2.  blind OFDM demodulation:

–  estimation of time guard interval length –  estimation of number of subcarriers

3.  blind equalization

–  estimation of phase offset

–  estimation of channel response

4.  blind subcarrier demodulation

–  estimation of subcarrier constellation

(36)

Blind demodulation: synchronization (1)

OFDM symbol synchronization required for time guard

interval removal and OFDM demodulation

existing CP-OFDM time offset estimation criterion:

[Speth et al., 2001]

→ estimates first arrival path rather than predominant arrival path → cannot be used for ZP-OFDM signals

(37)

Blind demodulation: synchronization (2)

OFDM symbol synchronization required for time guard

interval removal and OFDM demodulation

existing CP-OFDM time offset estimation criterion:

[Speth et al., 2001]

novel time offset estimation criteria:

–  CP-OFDM:

–  ZP-OFDM:

[V. Le Nir, T. van Waterschoot, J. Duplicy, and M. Moonen, “Blind coarse timing offset estimation for CP-OFDM and ZP-OFDM transmission over frequency selective channels", EURASIP J. Wireless. Commun. Networking, vol. 2009.

(38)

Blind demodulation:

OFDM demodulation (1)

OFDM symbol synchronization and OFDM demodulation rely

on time guard interval length and number of subcarriers

CP-OFDM parameter estimation:

–  CP induces non-zero autocorrelation at lag N

→ number of subcarriers N estimated by autocorrelation peak picking

(39)

Blind demodulation:

OFDM demodulation (2)

OFDM symbol synchronization and OFDM demodulation rely

on time guard interval length and number of subcarriers

CP-OFDM parameter estimation:

–  CP induces non-zero autocorrelation at lag N

→ number of subcarriers N estimated by autocorrelation peak picking

[Ishii & Wornell, 2005] [Li et al., 2007] [Shi et al., 2007]

–  CP-OFDM signal is cyclostationary with cyclic period M [Bolcskei, 2001]

(40)

Blind demodulation:

OFDM demodulation (3)

OFDM symbol synchronization and OFDM demodulation rely

on time guard interval length and number of subcarriers

ZP-OFDM parameter estimation:

–  ZP induces non-zero “power autocorrelation” between lags

N and N + 2(M-N)

→ number of subcarriers N and symbol length M estimated by fitting a

periodic triangular “mask” to power autocorrelation function

[V. Le Nir, T. van Waterschoot, J. Duplicy, and M. Moonen, “Blind CP-OFDM and ZP-OFDM parameter estimation in frequency selective channels", EURASIP J. Wireless. Commun. Networking, vol. 2009.

(41)

Blind demodulation: Equalization

per-tone phase offset estimation by modulation stripping

[Cowley, 1996] [Rezki et al., 2003]

blind channel magnitude response estimation by assuming

(42)

Blind demodulation:

Subcarrier demodulation

estimation of subcarrier constellation by calculating

normalized fourth-order cumulant

example of data recovery performance:

“WiMAX” signal on SUI-1 channel model

CP-OFDM

ZP-OFDM

(43)

Conclusion

simple yet accurate closed-form PSD expressions for

CP-OFDM and ZP-OFDM signals

blind algorithms for OFDM detection, spectral estimation,

and demodulation

applications ranging from UWB management to blind

reception and data recovery

promising estimation and detection performance even in

difficult conditions (spectral overlap, low SNR, …)

moderate computational complexity ~ FFT complexity

future work includes:

–  theoretical analysis of spectral estimation and detection algorithms –  getting rid of Nyquist sampling

–  extension to other types of bandpass signals (e.g., CDMA) –  …

Referenties

GERELATEERDE DOCUMENTEN

In calculating stable cutting conditions in the case of turning compliant shafts, the system may be reduced to a one-degree- of-freedom system, its direction of

Het probleem zou opgelost kunnen worden door zowel buiten- als binnenzijde van de stalen wals af te draaien zodat een constante wanddikte bereikt kan

Severin, J. Superconducting YBa2Cu3Ox thin layers by solid state diffusion. There can be important differences between the submitted version and the official published version

On the other hand, if the j th column label equals one, the background model that describes the expression of those background genes should only be constructed with the

Although artificial data are helpful to gain understanding in properties of algorithms, creating realistic scenarios and choosing good performance measures remains extremely

The literature study is considered a part of the qualitative data as it is used to obtain in-depth knowledge of which elements to include in the data. It also evaluates the

In dit onderzoek wordt gekeken of er ook op de basisschool samenhang tussen ongewenst gedrag in de klas en de mate waarin een leerkracht tegemoetkomt aan de drie

Het leerdoel sociale vaardigheden wordt significant vaker door samenwerkingsscholen genoemd, namelijk door 60% van deze scholen, dan door openbare scholen.. Geen van de