• No results found

The evolution and prevention of Antibiotic resistance in Human pathogens

N/A
N/A
Protected

Academic year: 2021

Share "The evolution and prevention of Antibiotic resistance in Human pathogens"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

   

The  evolution  and  prevention  of    

Antibiotic  resistance  in  Human  pathogens  

 

   

 

                       

Bachelorthesis      Marlies  Oomen  

Supervisors:  Jan-­  Willem  Veening                          Robin  A.  Sorg  

Molecular  Genetics,  GBB,  University  of  Groningen

 

(2)

       

Index  

                         

Abstract                      3  

   

Introduction                      4  

     

Current  use  of  antibiotics              4  

   

    Evolution  of  antibiotics              4  

 

 

Evolutionary  pressure                  6  

   

Resistance  genes                    7  

   

 

Antibiotic  resistance  in  the  human  microbiome          8    

 

Monotherapy  vs.  synergistic  use              8  

 

  Conclusion                      10  

 

   

References          11  

 

(3)

 

Abstract    

Antibiotic  resistance  is  a  big  problem  worldwide.  If  we  do  not  learn  how  to  prevent  resistance   from  occurring,  we  might  go  back  to  the  times  before  the  discovery  of  antibiotics.  However,  the   more   is   known   about   the   evolution   of   antibiotic   resistance   in   pathogens,   the   more   difficult   it   seems  to  prevent  it.  Antibiotic  resistance  is  not  new  since  the  discovery  of  penicillin,  however   the  spread  is  new.  Antibiotic  resistance  is  spreading  rapidly,  because  most  genes,  which  acquire   resistance,  are  located  at  mobile  elements.  Therefore  bacteria  can  pass  it  on  easily  via  horizontal   gene  transfer  to  cells  in  their  environment.  Because  a  lot  of  cells  are  exposed  to  concentrations   of  antibiotic,  by  therapeutically  use  in  humans,  but  also  in  agriculture  and  animal  farming,  the   evolutionary   pressure   is   high.   This   makes   that   the   resistance   cells   have   a   big   advantage   and   makes   them   spread   easily   in   pathogens   and   in   non-­‐pathogenic   cells.   Nowadays   resistant   cells   are  all  around  us  and  it  is  inevitable  that  there  will  be  resistance  in  pathogens  for  each  antibiotic   if  it  is  biochemically  possible.  It  is  still  guessing  how  to  prevent  this,  however  it  is  most  likely   that  the  answer  lies  in  altering  the  dose,  the  combination  and  the  structures  of  the  antibiotics  we   use.    

(4)

Introduction  

Antibiotic   resistance   in   human   pathogens   is   a   growing   worldwide   problem.   The   European  centre  for  disease  prevention  and  control  (ECDC)  estimated  that  250000  people  in  the   European  union  die  annually  due  to  an  infection  by  multi  resistant  bacteria  (ECDC,  2009).  The   antibiotic  resistance  is  caused  by  the  excessive  use  of  antibiotics  for  treatment  of  humans,  but   also   in   cattle   and   other   animals.   Although   the   demand   for   new   antibiotics   against   the   multi   resistant   bacteria   is   growing   everyday,   the   development   of   new   antibiotics   has   slowed   down.  

This  is  because  it  is  expensive  and  difficult  to  get  new  antibiotics  approved  in  clinical  trials.  Also,   the  new  antibiotics,  which  are  getting  approved  currently,  are  often  second  of  third  generation   agents  of  an  already  used  antibiotic.  But  resistance  for  those  follow-­‐up  generation  antibiotics  is   easy   to   gain   when   the   bugs   are   already   resistant   to   the   first   generation   of   the   antibiotic.  

Daptomycin  was  the  only  new  class  of  new  antibiotics  to  be  discovered  in  the  past  50  years,  and   there   are   no   indications   that   pharmaceutical   companies   are   trying   to   find   them   (Walsh,   2003)(Lewis,  2012).    

Nowadays  there  is  a  lot  known  about  the  development  of  resistance  in  bacteria,  however   it   is   difficult   to   apply   this   knowledge   in   the   therapeutically   use   of   antibiotics.   This   will   be   necessary   to   prevent   the   new   development   of   resistance   in   pathogens.   In   this   thesis   will   be   described  what  the  mechanisms  behind  the  development  of  antibiotics  are  and  will  be  proposed   how  the  pathogens  could  be  stopped  in  becoming  multi  resistance.    

 

Current  use  of  antibiotics  

  Antibiotics  are  drugs  that  kill  or  inhibit  the  growth  of  bacteria  and  are  effective   on  growing  cells  (Madigan  M.  ,  Martinko,  Stahl,  &  Clark).  Antibiotics  are  used  for  the  treatment  of   a  bacterial  infection,  but  also  to  prevent  bacterial  infections  in  a  lower  dose.  The  concentration   of   antibiotic   used   in   therapy   mainly   depends   on   the   minimal   inhibitory   concentration   (MIC).  

This  is  the  lowest  concentration  possible  at  which  the  growth  of  the  bacterial  cells  is  inhibited   (Lambert  &  Pearson,  2000).  The  concentration  of  antibiotic  given  in  therapy  is  always  above  the   MIC   value.   The   MIC   value   can   be   determined   by   an   epsilon   test   (Etest).   The   Etest   is   an   experiment   by   which   a   gradient   of   the   antibiotic   of   interest   is   created   over   a   plate   with   the   organism   of   interest.   After   incubation   the   plate   will   show   for   which   concentration   of   the   gradient   the   cells   will   grow   and   were   not   (Jacobs,   Bajaksouziana,   &   Appelbaumb,   1992).   The   borderline  is  the  MIC  value.  A  MIC  value  can  be  different  for  species,  but  even  for  different  strain   in  one  species.  This  is  because  the  strains  have  different  mechanisms  to  adapt  themselves  for  the   antibiotic  pressure.  The  mean  MIC  value  for  one  species  is  represented  in  the  MIC50  value.  This  is   the  concentration  of  an  antibiotic  for  which  50  percent  of  the  strains  is  inhibited  in  growth  by   the  antibiotic  (Goldstein,  Soussy,  &  Thabaut,  1996).  Although  the  MIC  value  inhibits  the  cells,  it  is   still  possible  for  the  pathogens  to  evolve  antibiotic  resistance  for  antibiotic  concentrations  above   the   MIC   value   (Zhao   &   Drlica,  

2003).      

 

Evolution  of  antibiotic  resistance     For   the   development   of   antibiotic  resistance  are  two  things   necessary.  First  of  all,  evolutionary   pressure   (Davies   &   Davies,   2010);  

as  long  as  becoming  resistant  isn’t   a   advantage,   the   new   characteristic   wont   spread   over   the   population.   However,   when   there   is   an   advantage   for   the   resistant   cells   over   the   non-­‐

adapted   cells,   the   resistant   cells  

will   take   over   the   population,   Figure  1  -­  Illustration  mutant  selection  window  (Drlica & Zhao, 2007)  

(5)

because  they  survive  longer  and  divide  faster  in  higher  doses  of  the  antibiotic.  The  new  resistant   population  will  have  a  new  niche  in  which  they  can  survive  and  other  cells  cannot.      

  However   the   concentration   of   the   antibiotic   in   the   environment   is   important   in   the   evolution  of  becoming  resistant.  If  the  concentration  is  too  low,  usually  the  antibiotic  does  not   affect   non-­‐resistant   cells   and   the   advantage   for   the   resistant   cells   is   not   present   anymore.  

However,  if  the  concentration  of  the  antibiotic  is  too  high,  the  cells  do  not  have  enough  time  to   adjust  and  to  gain  resistance.  For  the  lower  concentration  is  the  MIC  value  used  and  the  upper   concentration   is   defined   as   the   mutant   prevention   concentration   (MPC).   The   concentration   window  in  between  those  values  is  the  mutant  selection  window  (MSW)  (Drlica  &  Zhao,  2007).  

This  is  illustrated  in  figure  1.  Drlica  et  al  give  the  example  in  their  article  of  the  behaviour  of  a   fluoroquinolone,  but  this  principle  is  applicable  for  all  classes  of  antibiotics.  Illustration  A  shows   the   behaviour   of   different   concentrations   of   the   antibiotic   versus   the   fraction   of   affected   cells,   which   can   still   recover.   The   MIC   value   is   at   the   point   where   the   fraction   of   survival   cells   is   getting  lower.  The  higher  the  concentration  of  antibiotic,  the  less  cells  survive.  However  it  also   shown   that   there   is   a   clear   ‘plateau’   phase   and   that   the   fraction   of   survival   cells   is   not   linear   going   down.   The   cells   that   are   adapted   to   the   environment   with   antibiotic   cause   this   plateau   phase;  the  cells  are  resistant.  The  curve  drops  down  again  after  the  plateau  phase,  because  the   antibiotic  concentration  is  too  high,  even  for  the  cells  that  gain  resistance.  The  concentration  for   which   the   curve   drops   down   and   the   fraction   of   survival   cells   is   close   to   zero,   is   the   MPC   value(Drlica   K.   ,   2003).   The   MSW   window   is   clearly   visualized   as   the   concentration   window   between   MIC   and   MPC.   This   includes   the   plateau   phase.   Illustration   B   visualizes   how   the   concentration  of  the  antibiotic  in  the  body  can  change  over  time.  This  causes  that  however  the   initial  dose  is  above  the  mutant  selection  window,  over  time  the  serum  concentration  becomes   less  and  possible  in  between  the  MSW  (Drlica  &  Zhao,  2007).    

 

Figure  2  -­  Mechanisms  for  gaining  resistance(Allen, Donato, Wang, Cloud-Hansen, Davies, & Handelsman, 2010)  

(6)

The  second  important  requirement  for  gaining  antibiotic  resistance  is  the  presence  of  a   way   to   gain   this   new   property   (Davies   &   Davies,   2010).   There   are   different   mechanisms   for   bacteria  to  become  resistant  (figure  2).  The  cell  could  prevent  the  antibiotic  from  inserting  in  the   cell   (2a)   by   altering   the   cell   wall   or   cell   membrane   properties.   The   cell   could   also   actively   transport   the   antibiotic   molecules   out   the   cells   via   efflux   pumps   (2b).   Both   changing   the   properties   of   the   cell   wall   and   transporting   antibiotic   out   of   the   cells,   is   not   specific   for   one   antibiotic,   but   could   work   for   multiple   antibiotics.   However   there   are   also   mechanisms   for   resistance,   which   are   specific   for   one   antibiotic   only.   For   instance   changing   the   target   of   the   antibiotic  and  therefore  making  the  antibiotic  non-­‐effective  (2c).  Another  mechanism  for  specific   resistance   is   the   expression   of   an   enzyme,   which   can   inactivate   the   antibiotic   molecules   (2d)   (Allen,   Donato,   Wang,   Cloud-­‐Hansen,   Davies,   &   Handelsman,   2010).   Officially   only   the   third   mechanism,  in  which  the  target  is  changed,  is  a  mutation,  which  results  in  resistance.  However,   the  other  mechanisms  have  of  course  also  an  underlying  genetic  change  by  which  the  cells  gain   resistance.    

Depending  on  the  antibiotic,  the  target  and  the  way  of  gaining  resistance,  the  resistance   is  evolved  by  only  one  or  two  mutations,  but  for  other  combinations  of  drug  and  bacterium,  a   complete  set  of  genes  is  necessary.  An  example  of  an  antibiotic  that  only  need  one  mutation  to   gain  resistance,  is  rifampicin  in  S.  pneumoniae  (Katzung,  Masters,  &  Trevor,  2012).  As  one  can   imagine,  the  likelihood  of  this  happening  is  very  high  opposed  to  the  gaining  of  a  complete  set  of   genes.  The  genes,  which  cause  resistance,  are  r  genes  and  are  classed  as  the  resistome  (Wright,   2007).   It   is   known   that   these   r   genes   can   easily   spread   via   integrons   or   plasmids   between   different  cells  and  even  different  species  via  horizontal  gene  transfer  (Davies  J.  ,  1994;  Drlica  &  

Zhao,  2007).  This  is  also  why  antibiotic  resistance  is  such  a  big  problem,  one  cell  does  not  have   to  go  through  all  steps  of  evolution  by  them  self,  one  step  of  horizontal  gene  transfer  (if  the  r   genes  are  present  in  cells  in  the  environment)  is  enough  (Wright,  2010).    

 

Evolutionary  pressure  

  As  described  above  is  a  concentration  in  the  MSW  a  key  ingredient  for  the  evolution  of   antibiotic   resistance.   In   this   concentration   window   is   the   evolutionary   pressure   high,   but   not   high   enough   to   instantly   kill   all   the   bacteria.   The   MSW   is   different   for   each   combination   of   antibiotic   and   bacterium   (Drlica   &   Zhao,   2007).   However   the   dose   for   therapy   is   for   most   antibiotics  set  in  respect  to  the  MIC  value.  Besides  that,  the  concentration  of  the  antibiotic  in  a   human  body  is  not  constant  as  shown  in  figure  1B.  This  results  in  the  fact  that  the  concentration   of   antibiotic   in   the   environment   of   the   bacteria   that   cause   the   infection,   is   most   times   in   the   MSW  and  therefore  enriches  the  change  for  the  bacteria  to  become  resistant.  This  is  of  course   not  preferable  (Drlica  K.  ,  2003).  To  prevent  that  the  concentration  of  the  antibiotic  gets  in  the   MSW,   the   initial   dose   given   to   the   patient   can   be   set   to   a   higher   concentration.   However   the   more   antibiotic   you   give   to   a,   sick,   person,   the   higher   the   changes   for   severe   unwanted   side   effects  of  the  antibiotic  (Madigan  M.  ,  Martinko,  Stahl,  &  Clark).    

Another  option  minimise  the  changes  of  the  antibiotic  concentration  getting  in  between   the   MSW,   is   to   narrow   the   MSW.   Narrowing   the   MSW   has   as   a   result   that   the   changes   of   the   antibiotic  concentration  get  lower,  and  therefore  the  changes  that  the  pathogens  gain  resistance.  

Narrowing   the   MSW   therefore   minimises   the   changes   of   the   spread   of   resistant   pathogens   (Drlica  K.  ,  2003).  Lowering  the  mutant  prevention  concentration  could  be  one  way  to  narrow   the   MSW.   It   is   known   that   altering   the   molecule   of   the   antibiotic   agent   could   make   the   MPC   lower.   This   has   for   example   already   been   done   for   fluoroquinolones.   Zhao   et   all   compared   fluoroquinolones,  which  only  differed  in  one  extra  functional  group.  They  discovered  that  only   one  functional  group  could  make  a  big  difference  in  the  MPC  of  the  antibiotics  and  therefore  the   MSW.  For  example  moxifloxacin  and  the  compound  Bay  y3114  only  differ  a  methoxy-­‐group  on   the   C8   of   a   quinolone,   however   the   MSW   of   moxifloxacin   is   one   third   of   Bay   y3114   in   E.   coli   (Zhao  &  Drlica,  2003).  This  could  be  important  in  designing  second  or  third  generations  of  an   antibiotic   or   in   identifying   and   choosing   the   compound   with   the   most   narrow   MSW.   A   second   way  to  narrow  the  MSW  is  by  using  multiple  antibiotics  at  the  same  time.  The  bacteria  have  to   gain   resistance   for   both   antibiotics,   of   which   the   changes   will   be   smaller   of   course   (Yeh,  

(7)

Hegreness,  Presser  Aiden,  &  Kishony,  2009).  This  will  be  described  more  extensively  later  on  in   the  section  monotherapy  vs.  synergistic  use.  

Furthermore,   the   MIC   value,   the   mutant   prevention   concentration   and   therefore   the   MSW,   differs   for   each   antibiotic   bacterial   strain   combination.   One   could   argue   that   only   antibiotics   with   low   MIC   and   MPC   concentrations   and   narrow   MSW   should   be   used   for   the   bacterium   that   causes   the   infection.   However   to   do   this   it   is   necessary   to   know   exactly   which   bacterial  strain  it  is.  This  is  called  streamlining  and  is  already  now  done  for  hospitalized  persons   to   check   whether   the   bacteria   are   resistant   to   some   antibiotics   (Kerremans,   et   al.,   2007).   The   testing  to  identify  the  bacterial  strain  takes  time,  which  is  not  always  possible  when  someone  is   critically   ill   because   of   the   infection.   Therefore   a   broad-­‐spectrum   antibiotic   is   administered   to   the  patient.  A  broad-­‐spectrum  antibiotic  is  an  antibiotic,  which  affects  a  wide  variety  of  bacteria,   to   prevent   the   condition   of   the   patient   from   getting   even   more   severe.     After   the   cause   of   the   infection   is   identified,   the   broad-­‐spectrum   antibiotic   is   switched   to   an   antibiotic,   which   is   specific  for  the  bacterium  causing  the  infection  (Madigan,  Martinko,  &  Stahl).    

 

Resistance  genes

 

  To   understand   the   evolution   of   resistance   genes,   it   is   important   to   know   about   the   evolution  of  antibiotics.  Antibiotics  are  natural  products,  produced  by  organisms  to  protect  their   environment   from   enemies   or   competitive   organisms   (Madigan   M.   ,   Martinko,   Stahl,   &   Clark).  

Although   the   discovery   of   the   first   antibiotic,   penicillin,   dates   from   1929   (Flemming,   1929),   natural   antibiotics   are   much   older.   This   implies   that   not   only   antibiotics,   but   also   antibiotic   resistance  are  older  than  the  discovery  of  antibiotics.  D’Costa  et  al  proved  this  by  taking  samples   from   late   Pleistocene   permafrost   sediments.   After   DNA   sequence   analysis,   they   conclude   that   already   then   there   were   resistance   genes   present   in   microorganisms.   And   most   of   all,   they   proved  that  antibiotic  resistance  is  an  ancient  and  natural  occurring  phenomenon   (D'Costa,  et   al.,  2011).    Also,  the  resistant  genes  are  widely  spread.  Glad  et  all  proved  that  even  environments   isolated   from   the   extensive   use   of   antibiotic,   contain   the   r   genes.   They   found   genes   that   can   cause   resistance   are   present   in   the   faeces   of   polar   bears   in   arctic   areas   (Glad,   et   al.,   2010)(Wright,  2010).      

So  the  resistance  genes  are  no  new  phenomenon  and  the  genes  are  present  even  in  the   most  deserted  places.  However,  the  combination  of  the  presence  of  the  resistance  genes  and  the   evolutionary   pressure   arise   from   the   use   of   antibiotics   as   described   above,   is   new.   This   could   explain   the   quick   and   widely   spread   of   resistance   for   multiple   antibiotics.   This   is   also   why   Davies   states   that   if   antibiotic   resistance   is   biochemically   possible,   it   is   inevitable   that   it   will   emerge  (Davies  &  Davies,  2010).    

  As  described  before,  all  the  resistance  genes  and  precursors  for  r  genes  in  pathogens  and   in  non-­‐pathogens  form  the  resistome  (Wright,  2007).  As  said,  the  resistance  genes  are  ancient,   but   were   did   they   come   from   originally?   It   is   not   very   likely   that   specific   antibiotic   resistance   evolved   in   non-­‐producers.   This   evolution   of   resistance   should   have   been   quick   enough   to   prevent  the  cells  from  dying.  Especially  for  the  highly  adapted  resistance  mechanisms,  this  does   not  seem  very  likely.  A  more  likely  origin  of  antibiotic  resistance  is  the  producer  of  the  antibiotic   itself  (Davies  &  Davies,  2010).  To  produce  antibiotics  in  toxic  concentration,  the  bacteria  should   not  be  affected  by  it.  The  hypothesis  is  that  the  properties  for  antibiotic  production  emerged  at   the   same   time   as   antibiotic   resistance.   However,   most   of   the   producers   of   antibiotics   used   in   clinic   are   fungi   (Madigan   M.   ,   Martinko,   Stahl,   &   Clark).   Fungi   do   not   need   the   resistance   mechanism  when  they  produce  agents,  which  are  specific  against  bacteria.    

  The  hypothesis  also  does  not  explain  the  wide  spread  of  the  resistance  genes.  However   the   localisation   of   the   resistance   genes   in   the   genome   can   explain   this.   If   these   features   to   produce   antibiotic   and   in   the   same   time   protect   themselves   from   it,   was   placed   on   a   mobile   genetic  elements,  the  characteristic  can  pass  on  to  the  neighbouring  cells.  In  this  way  the  cells,   which  did  have  the  genes  for  antibiotic  production  and  resistance,  take  over  the  cells,  which  did   not   have   the   adaptation.   However,   not   only   the   cells   of   the   same   species   can   take   over   this   features,  but  also  neighbouring  cells  of  other  species.  The  cells  of  the  other  species  probably  do   not  have  the  right  abilities  to  produce  the  antibiotic  themselves,  but  the  resistance  genes  can  be  

(8)

used  for  defence  against  the  antibiotic  in  their  environment.  As  already  said  in  the  introduction,   many  of  the  resistance  genes  identified,  are  originated  on  a  mobile  element,  such  as  an  integron   or   a   plasmid.   This   way   the   spread   of   the   r   genes   is   fairly   quick   via   horizontal   gene   transfer   (Davies   &   Davies,   2010)   (Ochman,   Lawrence,   &   Groisman,   2000).   Only   one   cell   with   the   resistance  genes  is  needed,  to  make  the  entire  microbial  biome  resistant.    

 

Antibiotic  resistance  in  the  human  microbiome  

  Humans   have   a   big   microbiome,   for   example   on   their   skin   and   in   their   gut.   This   microbiome   contains   mainly   non-­‐pathogenic   bacteria   and   are   good   for   our   health.   However,   when   someone   takes   an   antibiotic   to   cure   an   infection,   it   affects   the   microbiome   as   well,   especially  when  a  broad-­‐spectrum  antibiotic  is  used.  And  just  as  pathogens  can  gain  resistance,   the   non-­‐pathogenic   bacteria   of   the   microbiome   can   gain   resistance   for   the   used   antibiotic.  

Sommer  et  al  found  a  lot  of  known  and  unknown  resistance  genes  in  the  microbiome  of  healthy   individuals  (Sommer,  Dantas,  &  Church,  2009).  At  first  sight,  this  seems  as  a  good  thing,  because   of   this   the   most   common   side   effect   of   antibiotics,   that   it   kills   the   microbial   flora   as   well,   is   prevented.  However,  because  those  resistance  genes  are  also  mobile  elements,  the  r  genes  can   also  be  passed  on  to  pathogens,  if  these  are  near  the  resistant  cells.  This  makes  our  microbiome   in  a  resistance  reservoir  for  pathogens,  which  cause  new  infections.  This  is  a  big  problem  when   someone  uses  the  same  antibiotic  multiple  times  for  new  infections.  When  the  new  non-­‐resistant   pathogens  are  in  the  environment  of  the  resistant  microbial  flora,  it  is  likely  that  they  take  over   the  resistant  genes  under  antibiotic  pressure.  This  makes  that  specific  antibiotic  useless  for  that   individual.  Also,  less  harmful  bacteria  such  as  opportunistic  bacteria  get  more  dangerous  when   they  are  antibiotic  resistant.  Another  important  aspect  of  this  resistant  reservoir  as  that  we  as   humans  play  a  crucial  role  in  the  spread  of  the  resistant  genes.  The  resistant  human  microbiome   is  in  contact  with  other  cells  via  our  faeces  and  sewage  system.    

A   way   to   be   able   to   predict   the   spread   of   the   resistance   genes   is   to   make   ecological   models  and  map  the  entire  genetic  framework  of  resistance  (MacLean,  Hall,  &  Perron,  2010).  In   combining  the  information  of  the  working  mechanisms  with  the  behaviour  of  resistance  genes,   will  help  predict  the  occurrence  of  resistance  in  antibiotics  that  are  used  right  now,  and  in  future   antibiotics.   If   resistance   can   be   predicted,   the   use   of   antibiotics   can   be   optimized   as   well,   in   order  to  slow  down  the  evolution  of  resistance.    

 

Monotherapy  vs.  synergistic  use  

  It   is   getting   more   and   more   standardised   to   give   a   combination   of   two   classes   of   antibiotics  to  severe  ill  patients.  Most  used  is  a  combination  of  beta-­‐lactams,  such  as  amoxicillin,   and   macrolides,   as   clarithromycin   (Lim,   et   al.,   2009).   However,   studies   to   the   effect   of   combination   therapy   in   those   patients   are   ambiguous.   Some   studies   show   that   the   death   rate   does   get   lower   when   combination   therapy   is   used   and   some   studies   does   not   show   any   differences  in  monotherapy  versus  combination  therapy  (Rodrigo,  Mckeever,  Woodhead,  &  Lim,   2013).     This   is   mainly   because   these   studies   are   done   for   patient   populations,   which   are   not  

Figure  3  -­  Illustration  synergistic  (A)  and  antagonistic  (B)  combination  of  antibiotics  and  the  chances  for   occurance  of  resistance  (Yeh, Hegreness, Presser Aiden, & Kishony, 2009).  

(9)

always  comparable.  Besides  that,  the  results  differ  per  combination  of  antibiotics,  dose  and  the   pathogen.    

  The  main  reason  to  use  combination  therapy  is  to  increase  the   effect  of  the  antibiotics   without   using   high   concentrations   of   one   antibiotic.   High   concentrations   of   one   antibiotic   are   unwanted,  because  than  the  unwanted  side  effects  of  the  antibiotic  are  more  severe  as  well.  By   using   multiple   antibiotics   at   once,   the   concentration   of   the   antibiotics   can   stay   low,   while   the   effect  is  high.  This  way  the  mortality  rate  because  of  an  infection  and  the  change  that  antibiotic   resistance   occur   should   be   lower.   Combinations   of   broad-­‐spectrum   antibiotics   are   also   used   when  it  is  uncertain  what  the  infection  in  a  critically  ill  patient  is  causing  (Katzung,  Masters,  &  

Trevor,  2012).    

  When   using   multiple   drugs   at   the   same   time   the   concepts   of   antagonism   and   synergy   should  be  taken  into  account.  Synergy  is  what  happens  when  the  effect  of  two  agents  used  at  the   same  time  is  more  than  just  the  sum  of  the  effects  when  taken  as  a  monotherapeutic  agent.  The   agents   work   even   better   when   they   are   taken   together.   Antagonism   is   the   phenomenon   what   happens  when  the  effect  of  two  agents  is  less  than  the  sum  of  the  effects.  This  concept  could  also   be  applied  on  genes  or  compounds  in  cells.  When  these  concepts  are  applied  on  drugs,  another   aspect   is   important,   namely   the   dose   both   the   agents.   Also   it   is   not   a   binairy   concept,   it   is   a   gradient  from  strongly  antagonistic,  in  which  the  effects  of  both  the  agents  can  be  even  less  than   the   effect   of   one   individual   agent,   to   a   strong   synergistic   effect   (Katzung,   Masters,   &   Trevor,   2012)  (Yeh,  Hegreness,  Presser  Aiden,  &  Kishony,  2009).    

Until  now  combinations  of  antibiotic  are  made  for  antibiotics  that  work  synergistically,   this   is   also   the   most   intuitively.   However   Yeh   et   al   propose   that   antagonistic   instead   of   synergistic   use   should   have   the   preference   (Yeh,   Hegreness,   Presser   Aiden,   &   Kishony,   2009).    

This   is   because   antagonistic   combinations   are   the   best   combinations   to   prevent   antibiotic   resistance.   When   a   synergistic   combination   is   used,   the   cells   that   gain   resistance   are   immediately   better   off   than   the   non-­‐resistant   cells,   because   the   synergistic   effect   is   undone.  

However,  when  a  strong  antagonistic  combination  is  used,  the  cells  that  gain  resistance  are  at   first  more  affected  than  the  non-­‐resistant  cells.  Therefore  the  chances  for  gaining  resistance  for   the  second  antibiotic  as  well  are  very  low.  This  is  represented  in  figure  3,  in  which  for  3A  the   combination   of   agent   A   and   B   is   a   synergistic   combination   and   for   3B   an   antagonistic   combination.   As   illustrated   results   the   resistance   for   one   of   the   agents   of   a   synergistic   combination   in   a   lower   inhibition   percentage.   However,   for   the   antagonistic   situation   results   resistance  in  an  even  higher  inhibition,  which  makes  is  unlikely  that  the  cells  gain  resistance  for   both  the  antibiotics  (Yeh,  Hegreness,  Presser  Aiden,  &  Kishony,  2009).    

  This   can   also   be   seen   in   the   light   of   the   concept   of   mutant   selection   window,   which   is   introduced   by   Drlica   and   Zhao   (Zhao   &   Drlica,   2003).   The   main   reason   why   a   synergistic   combination  is  now  mostly  used  is  because  the  MIC  value  is  low.  However,  because  the  MPC  of   an  antagonistic  combination  is  generally  much  lower.  Because  the  MIC  value  is  high  and  the  MPC   is  low,  the  MSW  is  much  more  narrow.  This  explains  also  why  it  is  so  unlikely  that  resistance   occurs.    

  Another  point  to  take  into  account  is  the  way  the  agents  are  antagonistic  to  each  other.  

This   can   be   because   of   induction   of   enzymatic   inhibition,   but   also   because   one   of   the   agents   inhibits   the   growth   of   the   cells,   while   the   other   agent   requires   growing   cells   to   kill   them   (Katzung,   Masters,   &   Trevor,   2012).   There   are   two   groups   of   antibiotics,   bactericidal   and   bacteriostatic  agents.  Bacteriostatic  agents  inhibit  the  growth  of  bacteria,  while  cidal  agents  kill   the  cells.  However,  for  bactericidal  agents  to  be  effective,  the  cells  need  to  be  growing.  When  the   combination  of  antibiotics  is  antagonistic  because  one  is  a  static  agent  and  the  other  is  a  cidal   agent,   the   likelihood   for   resistance   to   occur   is   minimal,   however   the   effectiveness   is   also   very   low.  Therefore  it  is  important  to  use  antibiotic  form  the  same  group  to  prevent  resistance,  and  in   the  same  time  cure  the  infection.    

   

(10)

Conclusion    

  Despite   we   now   know   a   lot   about   the   consequences   and   the   evolution   of   antibiotic   resistance,   we   still   do   not   know   how   to   prevent   antibiotic   resistance.   The   ideal   situation,   by   which  we  can  prevent  antibiotic  resistance  completely  at  once,  is  not  very  presumably.  Resistant   bacteria,  pathogenic  and  non-­‐pathogenic,  are  and  will  be  all  around  us.  Until  we  find  a  way  to   prevent  antibiotic  resistance  or  a  complete  new  type  of  antibiotic,  for  which  no  resistance  can  be   evolved,   we   need   to   try   to   postpone   for   each   antibiotic   the   moment   that   all   the   pathogenic   bacteria  are  resistant.  If  we  do  not  do  that,  we  will  be  set  back  in  time,  before  the  discovery  of   antibiotics   or   we   need   to   start   pushing   the   pharmaceutical   companies   in   developing   new   antibiotics  (Lewis,  2012).    

  Ways   to   postpone   the   moment   of   complete   resistance   lie   in   finding   the   right   combinations   of   drug   and   bug,   the   right   doses   and   the   right   combinations   of   antibiotics.   The   easiest  way  to  slow  down  the  spread  of  resistance  is  to  not  use  the  antibiotics  for  those  bacteria   that  only  need  a  few  mutations  to  gain  resistance,  like  rifampicin  in  S.  pneumoniae.  Another  way   is  to  not  use  the  antibiotic  bacterium  combinations  with  a  broad  mutant  selection  window.  By   doing  this,  the  spread  of  the  specific  resistance  gene  is  slowed  down,  because  the  evolutionary   pressure  is  not  there  anymore.  However,  this  is  of  course  only  possible  if  there  are  alternatives.    

  That   brings   us   to   developing   new   alternatives.   It   is   expensive   and   risky   to   develop   a   completely   new   antibiotic.   Although   it   is   for   the   long   time   important   that   new   classes   of   antibiotics   will   developed   for   therapy,   there   are   also   still   possibilities   for   new   generations   of   classes  (Walsh,  2003).  When  designing  new  structures,  the  mutant  selection  window  should  be   taken   into   account,   like   Zhao   and   Drlica   did   in   their   comparative   study   to   different   structures   and   their   MSW   for   fluoroquinolones   (Zhao   &   Drlica,   2003).   Though   the   MSW   differs   for   each   species  and  antibiotic  combination,  the  MSW  can  be  more  optimized  for  a  narrower  window  for   multiple  species.  It  is  also  important  to  optimize  the  dose  in  which  a  specific  antibiotic  is  given.  

Now  the  dose  is  mainly  depending  on  the  MIC  value.  However,  if  possible  without  to  many  side   effects,   this   should   be   higher,   to   minimize   the   chances   that   the   serum   concentration   will   be   under  the  mutant  prevention  concentration.    

More  research  should  be  done  for  the  effect  of  resistance  in  our  microbiome  (Sommer,   Dantas,  &  Church,  2009).  How  easy  can  pathogens  interact  with  the  resistant  microbiome  and   what   happens   to   opportunistic   bacteria   once   they   are   resistant?   This   is   also   important   when   looking   at   the   use   of   broad-­‐spectrum   antibiotics.   If   they   are   used   too   elaborately,   our   microbiome  will  get  adapted  to  it  and  so  will  all  the  bacteria  that  are  in,  indirect,  contact  with   them   and   the   antibiotic.   If   we   still   want   to   be   able   to   use   the   broad-­‐spectrum   antibiotics   in   emergency   situations,   we   need   to   strictly   use   it   for   emergency   situations,   and   make   the   streamlining  to  a  narrow-­‐spectrum  antibiotic  as  quickly  as  possible.    

Furthermore,   combinations   of   antibiotics   could   be   very   useful.   However,   the   combination   should   be   chosen,   with   the   effect   of   the   combination   taken   into   account   (Yeh,   Hegreness,   Presser   Aiden,   &   Kishony,   2009).   With   regards   to   minimising   the   chances   for   resistance   to   occur,   an   antagonistic   combination   should   be   chosen.   However,   it   is   not   always   possible  to  use  an  antagonistic  combination  and  still  maintain  the  antibiotic  effect,  without  side   effects.   The   combinations   that   are   used   now   are   mainly   synergistic   combinations.   These   drug   combinations  should  be  checked  properly  again.  If  they  have  the  effect  as  they  were  intended  to   have,  otherwise  an  antagonistic  combination  or  even  monotherapy  should  have  the  preference.    

  To   conclude,   despite   taken   all   these   factors   into   account,   antibiotic   resistance   is   inevitable.   And   although   we   know   a   lot   about   the   occurrence   of   resistance,   we   cannot   predict   how   and   when   it   will   happen.   More   research   is   necessary   to   make   ecological   models   and   a   genetic  framework,  to  analyse  the  evolution  of  resistance,  which  is  already  in  pathogens,  and  to   predict   future   resistance   for   new   antibiotics.   Only   then   we   will   have   enough   information   to   optimize  the  use  of  antibiotics  and  to  be  able  to  cure  infections.    

   

(11)

References  

 

Allen,  H.,  Donato,  J.,  Wang,  H.,  Cloud-­‐Hansen,  K.,  Davies,  J.,  &  Handelsman,  J.  (2010).  Call  of  the  wild:  

antibiotic  resistance  genes  in  natural  environments  .  Nature  reviews  -­  Microbiology  ,  8:  251-­‐259.  

Davies,  J.  (1994).  Inactivation  of  antibiotics  and  the  dissemination  of  resistance  genes.  Science  ,  375-­‐

381.  

Davies,  J.,  &  Davies,  D.  (2010  йил  09).  Origins  and  Evolution  of  Antibiotic  Resistance.  Microbiology  and   Molecular  biology  reviews  ,  417-­‐433.  

D'Costa,  V.,  King,  C.,  Kalan,  L.,  Morar,  M.,  Sung,  W.,  Wright,  G.  S.,  et  al.  (2011).  Antibiotic  resistance  is   ancient.  Nature  ,  477:456;461.  

Drlica,  K.  (2003).  The  mutant  selection  window  and  antimicrobial  resistance.  Journal  of  Antimicrobial   Chemotherapy  ,  52,  11–17.  

Drlica,  K.,  &  Zhao,  X.  (2007).  Mutant  selection  window  updated.  Clinical  infectious  diseases  ,  681-­‐688.  

ECDC.  (2009).  The  bacterial  challenge:  time  to  react.  European  centre  for  disease  prevention  and   control  ,  Stockholm.  

Flemming,  A.  (1929).  On  the  antibacterial  action  of  cultures  of  a  penicillium,  with  special  reference  to   their  use  in  the  isolation  of  B.  influenza.  Britisch  jounal  of  experimental  pathology  ,  10:226-­‐236.  

Glad,  T.,  Bernhardsen,  P.,  Nielsen,  K.,  Brusetti,  L.,  Andersen,  M.,  Aars,  J.  S.,  et  al.  (2010).  Bacterial   diversity  in  faeces  from  polar  bear  (Ursus  maritimus)  in  Arctic  Svalbard.  BMC  Microbiology  ,  10:10.  

Goldstein,  F.,  Soussy,  C.,  &  Thabaut,  A.  (1996).  Definition  of  the  Clinical  Antibacterial  Spectrum  of   Activity.  Clinical  Microbiology  and  Infection  ,  S40-­‐45.  

Jacobs,  M.,  Bajaksouziana,  S.,  &  Appelbaumb,  P.  B.  (1992).  Evaluation  of  the  E-­‐Test  for  susceptibility   testing  of  pneumococci.  Diagnostic  Microbiology  and  Infectious  Disease  ,  473–478.  

(2012).  Chemotherapeutic  drugs.  In  B.  Katzung,  S.  Masters,  &  A.  Trevor,  Basic  &  Clinical  Pharmacology   (12  ed.,  pp.  909-­‐911).  

Kerremans,  J.,  Verboom,  P.,  Stijnen,  T.,  Hakkaart-­‐van  Roijen,  L.,  Goessens,  W.,  Verbrugh,  H.,  et  al.  

(2007).  Rapid  identification  and  antimicrobial  susceptibility  testing  reduce  antibiotic  use  and   accelerate  pathogen-­‐directed  antibiotic  use.  Antimicrobial  chemotherapy  ,  428-­‐435.  

Lambert,  R.,  &  Pearson,  J.  (2000).  Susceptibility  testing:  accurate  and  reproducible  minimum   inhibitory  concentration  (MIC)  and  non-­‐inhibitory  concentration  (NIC)  values.  Journal  of  applied   Microbiology  ,  784-­‐790.  

Lewis,  K.  (2012).  Antibiotics:  Recover  the  lost  art  of  drug  discovery.  Nature  ,  485:439-­‐440.  

Lim,  W.,  Baudouin,  S.,  George,  R.,  Hill,  A.,  Jamieson,  C.,  Le  Jeune,  I.,  et  al.  (2009).  BTS  guidelines  for  the   management  of  community  acquired  pneumonia  in  adults:  update  2009.  Thorax  ,  64:iii1-­‐iii55.  

MacLean,  R.,  Hall,  A.,  &  Perron,  G.  B.  (2010).  The  population  genetics  of  antibiotic  resistance:  

integrating  molecular  mechanisms  and  treatment  contexts  .  Nature  reviews  genetics  ,  405-­‐414.  

In  M.  Madigan,  J.  Martinko,  &  D.  C.  Stahl,  Biology  of  Microorganisms  (13  ed.,  pp.  445-­‐446).  Pearson.  

Microbial  growth  control.  In  M.  Madigan,  J.  Martinko,  D.  Stahl,  &  D.  Clark,  Biology  of  Microorganisms   (13  ed.,  pp.  795-­‐802).  Pearson.  

Ochman,  H.,  Lawrence,  J.,  &  Groisman,  E.  (2000).  Lateral  gene  transfer  and  the  nature  of  bacterial   innovation.  Nature  ,  405:  299-­‐304.  

Rodrigo,  C.,  Mckeever,  T.,  Woodhead,  M.,  &  Lim,  W.  (2013).  Single  versus  combination  antibiotic   therapy  in  adults  hospitalised  with  community  acquired  pneumonia  .  Thorax  ,  68:493–495.  

Sommer,  M.,  Dantas,  G.,  &  Church,  G.  (2009).  Functional  Characterization  of  the  Antibiotic  Resistance   Reservoir  in  the  Human  Microflora  .  Science  ,  325:1128-­‐1131.  

Walsh,  C.  (2003).  Where  will  new  antibiotics  come  from?  .  Nature  reviews  ,  1:65-­‐70.  

Wright,  G.  (2010).  Antibiotic  resistance  in  the  environment:  a  link  to  the  clinic?  Current  Opinion  in   Microbiology  2010,  ,  13:589–594.  

Wright,  G.  (2007).  The  antibiotic  resistome:  the  nexus  of  chemical  and  genetic  diversity  .  Nature   reviews  -­  Microbiology  ,  175-­‐186.  

Yeh,  P.,  Hegreness,  M.,  Presser  Aiden,  A.,  &  Kishony,  R.  (2009).  Drug  interactions  and  the  evolution  of   antibiotic  resistance  .  Nature  reviews  -­  Microbiology  ,  460-­‐465.  

Zhao,  X.,  &  Drlica,  K.  (2003).  Restricting  the  Selection  of  Antibiotic-­‐ResistantMutant  Bacteria:  

Measurement  and  Potential  Use  of  the  Mutant  Selection  Window  .  Journal  of  Antimicrobial   Chemotherapy  ,  52,  11–17.  

 

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden.

the Indonesian population inside and outside hospital Chapter VII Optimizing antibiotic usage in adult admitted with fever. by a multifaceted intervention

Between September 2000 and May 2005 the AMRIN (Antimicrobial Resistance in Indonesia: Prevalence and Prevention) study was performed in the cities of Surabaya and Semarang

Compared with the relatives, patients visiting a health centre and patients on admission to hospital had a 2.4 fold and 3.3 fold higher risk, respectively, of having used

Patients who were hospitalised in the departments of Internal Medicine, Surgery, Obstetrics and Gynaecology (O&G) and Paediatrics for 5 days or more were eligible for

Key words: Substandard, counterfeit drugs, self-medication, drug content, Asia Running head: Availability and quality of antibiotics

This study analyzed recent antibiotic use as well as demographic, socioeconomic, disease-related and healthcare- related determinants of rectal carriage of resistant

Adherence to the guideline was expressed as: (1) the percentage of patients treated according to the guideline, (2) the percentage of patients in whom empirical antibiotic