• No results found

An experimental and first-principles study of the effect of B/N doping in TiO 2 thin films for visible light photo-catalysis

N/A
N/A
Protected

Academic year: 2022

Share "An experimental and first-principles study of the effect of B/N doping in TiO 2 thin films for visible light photo-catalysis"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal of Photochemistry and Photobiology A:

Chemistry

j o u r n al hom ep age : w w w. e l s e v i e r . c o m / l o c a t e / j p h o t o c h e m

An experimental and first-principles study of the effect of B/N doping in TiO 2 thin films for visible light photo-catalysis

Md. Nizam Uddin

a,b,∗

, Sayed Ul Alam Shibly

a

, Rasim Ovali

c

, Saiful Islam

a

, Md. Motiur Rahaman Mazumder

a

, Md. Saidul Islam

a

, M. Jasim Uddin

d,e

, Oguz Gulseren

c

, Erman Bengu

b

aDepartmentofChemistry,ShahjalalUniversityofScienceandTechnology,Sylhet-3114,Bangladesh

bDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

cDepartmentofPhysics,BilkentUniversity,06800Ankara,Turkey

dHigh-PerformanceMaterialsInstitute,FloridaStateUniversity,Tallahassee,FL32310,USA

eDepartmentofChemicalEngineeringandPolymerScience,Sylhet-3114,Bangladesh

a r t i c l e i n f o

Articlehistory:

Received30July2012 Receivedinrevisedform 15December2012 Accepted30December2012 Available online 19 January 2013

Keywords:

TiO2

Photo-catalyst Thinfilm Doping Dipcoating

a b s t r a c t

ThinfilmsofTiO2andboron–nitrogen(B/N)co-dopedTiO2onglasssubstrateshavebeenpreparedby asimplesol–geldipcoatingroute.Titanium(IV)isopropoxide,boricacidandureahavebeenusedas titanium,boronandnitrogensources,respectively.ThefilmswerecharacterizedbyX-raydiffraction, X-rayphoto-electronspectroscopy,scanningelectronmicroscopy,RamanspectroscopyandUV–visspec- troscopy.TheTiO2thinfilmswithco-dopingofdifferentB/Natomicratios(0.27–20.89)showedbetter photo-catalyticdegradationabilityofmethylenebluecomparedtothatofbare-TiO2undervisiblelight.

TheTiO2filmdopedwiththehighestatomicconcentrationofNshowedrepeatedlythebestphoto- catalyticperformance.Thehighactivityofco-dopedTiO2thinfilmstowardorganicdegradationcanbe relatedtothestrongerabsorptionobservedintheUV–visregion,redshiftinadsorptionedgesandsur- faceacidityinducedbyB/Ndoping.Furthermore,severalatomicmodelsforB/Ndopinghavebeenused toinvestigatetheeffectofdopingonelectronicstructureanddensityofstatesofTiO2throughab-initio densityfunctionaltheorycalculations.Thecomputationalstudysuggestedasignificantnarrowingofthe bandgapduetotheformationofmidgapstatesandtheshiftofFermi-levelfortheinterstitialNmodel supportingtheexperimentalresults.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Theutilizationofsolarirradiationtosupplyenergyortoinitiate chemicalreactionsisalreadyawellestablishedidea[1].Anatase phaseoftitaniumdioxide(TiO2),anon-toxicandbiocompatible wide-bandgap semiconductor, when irradiatedwitha suitable wavelengthlightisknowntofacilitatechemicalprocessesonits surfaceincludingdegradationreactions.Inaddition,TiO2isoneof themostimportantandwidelyinvestigatedphoto-catalystmateri- als[2].Itcanbeusedindecompositionofvariousenvironmentally hazardouscompounds(organic,inorganicandbiologicalmaterials) inbothgaseousandliquidphases[3].

ItiswellknownthatTiO2hasthreepolymorphs:brookite,rutile andanatase.Mixed-phasephoto-catalystswithrutileandanatase,

∗ Correspondingauthorat:DepartmentofChemistry,ShahjalalUniversityofSci- enceandTechnology,Sylhet3114,Bangladesh.Tel.:+8801926372680;

fax:+88082171525.

E-mailaddresses:nizam3472@yahoo.com,uddinnizam@hotmail.com (Md.N.Uddin).

e.g.P25Degussa[4],phaseshavebeenreportedtoexhibitenhanced photo-activityrelativetosingle-phaseanatase.However,synthe- sisofrutile–anatasephasemixturerequiresahightemperature treatment; heatinganatase upto 600–700C is needed for the transformationofanatasetorutile[5].Furthermore,therearestill problemsintheuseofTiO2forpracticalandwide-spreadphoto- catalyticapplications:

(1)Recycling of nano-particulate TiO2 requires costly separa- tion/filteringprocesses.

(2)TiO2photo-catalysthasawidebandgap(3.2eV,foranatase), and can only be activated by UV radiation (<387nm) which constitutes only a small fraction (3–5%) of the solar spectrum. Thus, the use of visible light (400–750nm,

∼45% of thesolar spectrum) byanatase shouldbe enabled [6].

(3)TiO2 has a relatively low rate of electron transfer to oxy- genandahighrateofrecombinationwhichresultsinalow quantum yield rateand also a limited photo-oxidation rate [7].

1010-6030/$seefrontmatter © 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jphotochem.2012.12.024

(2)

remediationoftheissueslistedabove.Someoftheeffortsarelisted asaccordingly:

(1)Nano-crystallineTiO2thinfilmshaveattractedagreatdealof attention[8,9]owingtotheirflexibilityintreatingwastes,e.g.

noseparationrequiredandreuseofphoto-catalyticproducts.

(2)AnyredshiftintheopticalresponseofTiO2fromtheUVband towardthevisiblespectrumwillhaveaprofoundeffectonthe photo-catalytic efficiency[10,11].Withthis view,doping of pureTiO2hasbeenundertakenbyanumberofresearchgroups [12–30]in thelast decade.Modificationby noble-transition metalshasbeenhistoricallyregardedasthefirststrategyandby nonmetalsasthesecondstrategy[12].However,thesemetal- doped TiO2 materials suffered from thermal instability and low-quantumefficiencybecauseofincreasedcarriertrapping afterdoping[13,14].

Incontrastaniondopinghasshowngreatpotentialinintroduc- ingbathochromismandintensiveeffortshavebeenundertakento synthesizeanion-dopedtitaniatowardvisible-light-activephoto- catalysts[15–23],usually byintroducing localizedstates inthe bandgap.Fittipaldietal.hascriticallydiscussedthelimitations andfuturechallenges intheuseofelectronparamagneticreso- nancetechniquein theinvestigationofaniondopedTiO2 based photocatalyst[31].Recentemphasishasbeenplacedonco-doped systems,thatis,thoseinvolvingcombinationsofcationsandanions [24]ortwoanionstogetherwithintheoxidelattice,inwhichadra- maticenhancementofphoto-catalyticbehaviorhasbeenreported [25–28].

Thus,manyresearchersstartedtoinvestigateanionicnonmetal dopantssuchasC[32–35],N[34,36–43],S[44,45],andB[46,47]for extendingthephoto-catalyticactivityintothevisible-lightregion because,therelatedimpuritystatesforsuchdopantsappearnear thevalencebandedgebutdonotactaschargecarriers[34].Gom- bacetal.havestudiedBandNco-dopedpowdered-TiO2,where asignificantimprovementinactivityarisesmainlyfromthered shift in the absorption edge, and also B is reported to inhibit growththerebyresultinginhighsurfaceareapowders[48].Espe- cially,surface constructionof titaniaduring N-dopinghasbeen demonstratedbothexperimentallyandtheoretically[37,49].How- everN-dopingoftitaniabythermaltreatmentunderanammonia atmoshphereusuallyleadstoverylimitedvisiblelightactivitybut greatlyimpairstheUVactivity[11].Divergentresultshavebeen reportedforless-studiedsysteminvolvingB-dopedTiO2[17,46,47].

Itisthereforehighlyimportanttodesignandconstructeffective photocatalystsurfacestructureswithsomesortsofco-dopingwith properratioofdifferentanionsaimingsynergyeffectsthatenhance theseparationandtransferofthecarrierstodevelopefficientvis- iblelightphotocatalysts.However,there isstillgreat debateon thelocationof thedopants,thesynergyeffects onphotoactivi- tiesandtheimportanceoftherelativeratiosonphotoactivities [17,50].

In this work, we focused on thesynthesis of B/N co-doped anatasethinfilmsonglasssubstratesbyasimplesol–geldipcoat- ingroute.Itwasouraimtoexplorepossiblesynergisticadvantages arisingfromthesimultaneouspresenceofBandNasdopantsin theTiO2structure.Asmentionedearliertherearealreadyreports onthephoto-catalyticbehaviorofboronandnitrogendopedTiO2 nano-powders[51–54]andmesoporousforms[50].Tothebestof ourknowledge,thereisnoreportonthephoto-catalyticactivity ofboronandnitrogendopedanatasethin films.Detailedstruc- tural,compositionalandopticalcharacterizationoftheco-doped titaniathinfilmshasbeendone.Then,thesefilmswereemployed asphoto-catalystsundervisiblelightirradiationinthedegrada- tionofaqueousmethyleneblue(MB),adyeofteninvestigatedas

tivestudyofthecatalyticefficiencywasevaluatedasafunctionof thedopantnatureandatomicratioofthedopant.

A varietyof internal charge transfersmay takeplace inthe dopedsystems[57].Co-dopingmayalsobebeneficialtoreducethe numberofintrinsicdefectswhicharesupposedtobedetrimen- talinphotocatalyticprocessessincetheyareconsideredtofavor electron–holerecombination[57].Inordertoexplaintheimprove- mentinthephoto-catalyticactivityobservedfortheco-dopedfilms weperformedfirst-principlesplane-wavecalculations[58]based onthedensityfunctionaltheory(DFT)[59,60]onvariousatomic modelsdepictingB/Ndopinginanatasestructure.Theresultsof thesetheoreticalworkswereusedtobetterexplainthechanges inducedinthebondingbehaviorandthebandgapofanataseby doping.

2. Experimental 2.1. Materials

Titanium(IV)isopropoxide(TIP)(≥97.0%,SigmaAldrich)and triethylamine(TA)(≥99%,SigmaAldrich)wereusedasTisource andstabilizer,respectively.Microscopicsodalimeslideglasswas usedassubstrate.MBwaspurchasedfromMerck.Solutionsof1M HCland1MNaOHwereusedtoadjustthepHofthesolution.All reagentswereanalyticalgradeandusedwithoutfurtherpurifica- tion.

2.2. PreparationofTiO2film

TIP (1.5ml) was added to anhydrous (Anh.) ethanol (10ml) under vigorous stirring conditions and then TA (0.35ml) was addedas a stabilizerof thesolutionand stirredat 200rpm for 2–3min under N2 environment (solution-A). A secondsolution wasprepared separatelyby mixing hydrochloricacid(0.92ml), water(0.15ml)andAnh.ethanol(10ml)usingamagneticstirrer at200rpm(solution-B).Thetwosolutionswerethenmixeddrop wiseandstirredvigorouslyfor60minunderN2environment.The formedTiO2solwastransparent,quitestableandhighlysensitive totheamountofTAandwater.Thenthesolwasagedfor24hand servedforfilmpreparation.Thetransparentsolwasstableforthree weeks.

TiO2 thinfilmswerepreparedbyadip-coatingmethod.Prior tothecoating process,soda-lime–silicaglasssubstrates(micro- scopeslides)withdimensionof 10mm×60mm×1.5mmwere grinded by a commercial bench grinder (model: ST-150), then cleanedinpotassiumdichromateanddichloromethanesolution.

Finally those abrasive substrateswere rinsed withalcohol and deionizedwaterandthendriedat100Cinamicrooven.TheTiO2 gelfilmwasobtainedbydippingthesubstrateintheprecursor solutionbathandpulledupwardswithaspeedabout4cm/min.

Thesubstratescoatedwithgelwerepretreatedinroomtemper- atureandthenannealedfor20minusingamicroovenat200C and finally thefilm wasvapor treated in the vapor of boiling waterfor30storemovethelooselybondedparticles.Thecoat- ingprocesswasrepeatedfivetimesforthickfilmpreparationand finallyannealedat500Cfor2husingamufflefurnace(JSMF-30T, Korea).

B/NdopedTiO2 wassynthesizedbyasimilarmethodwhere appropriateamountsofboricacid(H3BO3)(solution-C)andurea (solution-D)weredissolvedseparatelyinAnh.ethanol(5ml)and rapidly added to the mixture of solution-A and solution-B. A schematicflow chartof thepreparationof dopedTiO2 filmsby sol–geldipcoatingisshowninFig.1.

(3)

Fig.1.SchematicflowchartofthepreparationofdopedTiO2thinfilmonglasssubstratebysol–geldip-coatingprocess.

2.3. Filmcharacterization

Thesurfacemorphologyand thethicknessofthefilmswere investigated by scanning electron microscopy (Carl-Zeiss EVO 40 usingLaB6 filament).TheRamanspectrafromtheannealed sampleswererecordedwithaHoriva(Jobin–YvonMicroRaman) spectrometer.XRDpatternswererecordedbyRigaku(MiniFlesx) usingCuK␣radiation(=1.5406 ˚A).TheScherrer equationwas appliedtotheanatase(101)diffractionpeaktocalculatetheaver- agecrystallinesizes.XPSinaSPECSPHOIBOS100hemispherical electrostaticenergyanalyzerwasusedforthecheckingofatomic percentage of the dopant and others species of thefilms. The absorptionspectraofthebandwidthofthedopedandbare(un- doped)-TiO2filmsrangingfrom300to800nmwereinvestigated byUV–visspectroscopy(ThermoScientific:Evolution160).

2.4. Photo-catalyticstudies

Photo-chemicaldegradationwascarriedout inanopenvisi- blelightchamberasshowninFig.2.Anouterwaterpumpwas usedtocirculateconstanttemperaturewaterthroughthesystem continuouslytokeepthetemperatureconstantduringthedegra- dationstudy.Thatchamberconsistedoftwomagneticstirrers,two coolingfansanda200Wtungstenlamp.Degradationwascarried outundervisiblelight.50ml1×10−5MMBsolutionwastaken andtwocatalystfilmswereusedfordegradationstudy.Thesur- faceareaofeachfilmwas6cm2.Changeintheconcentrationof MBsolutionduringphoto-catalyticdegradationatdifferenttime intervalswasmonitoredbyUV–visspectroscopy(Simadju1800).

Theabsorptionspectrawererecordedandrateofdecolorizationof

MBwasobservedintermsofchangeintheintensityatmaxofthe dye.Thedecolorizationefficiency(%)hasbeencalculatedas:effi- ciency(%)=((A0−At)/A0)×100,whereA0isthelightabsorbanceof MBbeforethetreatmentandAtisthatofaftertreatmentattimet.

Beforetakingthesamplesundervisiblelightirradiation,thesolu- tionofMBwastreatedwithcoatedfilmsfor30mininthedarkto getadsorptionanddesorptionequilibrium.

2.5. Computationaldetails

Wehaveperformedthefirstprinciplesplane-wavecalculations [58] basedonDFT [59,60]using theprojector-augmented-wave (PAW)potentials[61,62]implementedinViennaab-initiosimu- lationpackage(VASP)program[61–65].Theexchange-correlation potential was expressed in terms of the generalized gradient approximation(GGA)(Perdew–Wang91type)[66].Aplane-wave cut-offenergyof500eVwasusedinallcalculationstoachievethe desiredaccuracy.Thevariable-cellstructuraloptimizationwasper- formedfordopedmodelsinsuchawaythattheexternalpressure waslessthan1.0Kbarandmaximumforcemagnituderemained oneachatomwassetatmostto0.05eV/Å.Weused2×2×2cell forwhichthepureanatasecellcontains48ionsintotal.7× 7×7 Monkhorst–Pack(MP)[67]meshwasusedfork-pointsamplingin theBrillouinzone.ThepartialoccupancyaroundtheFermilevel wastreatedbyGaussiansmearingwithasmearingparameterof 0.05eV.Spinpolarizationwasincludedandthetotalenergywas minimizedupto10−5eVaccuracyforallcalculations.Duringthe optimizations no symmetry constraintswere imposed in order toavoidentrapmentinlocalminimumconfigurationsfordoped models.

(4)

Fig.2. Experimentalsetupforphoto-catalyticreactions.

3. Resultsanddiscussion 3.1. Morphologyandstructure

Inordertoinvestigatethemorphologyoftheobtainedsam- ples,acomparisonbetweentheSEMimagesofthe500Cfor2h annealedsamplesweremade;bare-TiO2 anddifferentco-doped TiO2 filmsisillustratedinFig.3(a)–(d).Topandbottomimages ofthosefiguresshowedlowandhighmagnificationoftheimages, respectively.Fig.3(e)showsatypicalcrosssectionviewtakenfrom sample‘b’.AsestimatedfromtheFig.3(e),thethicknessofthe filmswasapproximately4␮m.Significantcrackingwasobserved onthesurfaceofallfilms.Thefilmsmorphologyarecomparableto thoseofFe3+andW6+dopedTiO2filmspreparedonceramicand Tisubstrate,respectivelybyYaoetal.[68].

Fig.4showstheRamanspectraofthestandardTiO2(anatase) andthesampleswithdifferentB/Nratios.Comparisonwiththe RamanspectrumofpureanataseTiO2(curved),whichshowsband at143,196,396,515,and638cm−1,demonstratesthatthesurface layerismainlyconstitutedbyanatase.Conversely,Ramanspec- trumofthesampleswithN andBdopingshowastrongsharp bandat140.7cm−1 (Eg),threemid-intensity bandsat393(B1g), 513.5(A1gandB1g)and634.8cm−1(Eg),andaveryweakbandat

∼200cm−1(Eg).ThosebandshavebeenascribedforanataseTiO2 [69–71].TheintensitiesofvariousTiO2featureshavebeenclearly decreasedwithB/NdopingwithrespecttothatofbareTiO2[69].

SincechangeintheparticlesizeswithrespecttoB/Ncontentisnot sosignificantforoursamples(havebeenexplainedinXRDpart) comparetothoseshowninRef.[69],thereisnotveryclearpicture ofintensitychangesofdifferentanatasefeatureswithindifferent

Fig.3. SEMimagesoftheB/Nco-dopedandbare-TiO2filmsobtainedonglasssubstratesandannealedat500Cfor2hwhereatomicratioofeachdopingisgivenatthe bottomofeachpair.

(5)

0 100 200 300 400 500 600 700 800 900 B/N: 0.27 (a)

B/N: 3.83 (b) B/N: 20.89 (c) Bare TiO2 (d)

Eg

Raman Intensity (a.u.)

634.8 Eg 513.5

A1g

B1g 393 B1g

Raman shift (cm-1)

140.7 Eg

Fig.4.RamanspectraofdifferentTiO2thinfilms.Themodesofsymmetryofthe anataseareindicated.

B/Ndopingfilms.ItisusefultounderlinethattheRamanpeaksof theB/NdopedTiO2arebroaderthanthoseofthepureanatase.In particular,particleshavingsmalldimensionandlowcrystallinity arecharacterizedbyRamanpeakbroadening.Theshifts(5cm−1) intheRamanbandscomparetothereferences[69]mightbedue totheNdopinganddifferenceinparticlesizephononconfinement andoxygendeficiency.

XRDpatternsofdopedand bare-TiO2 thin filmsannealedat 500C for 2h are shown in Fig. 5. It is identified that all the diffraction peaks can beindexed tothe anatase phase of TiO2 (101),(004),(200),(105),(211),(204),(116)and(215)planes [JCPDS:00-002-0406] and noother phase can be detected.No B-and N-derived peaksdue tootheroxides andnitrides have alsobeendetectedinallthepatterns,indicatingthatBandNas dopantin TiO2 exhibitnotendencytosegregateand/orprecip- itate indifferent phases duringthe syntheticprocess [72].The Band N in thematrix are assumed to beeither interstitial or systematicallysubstituteTiorOwithoutchangingthehostTiO2

matrix.ItcanbefoundthattheXRDpeakpositionsofdopedsam- plesareingoodagreementwiththosereferenceanatasephaseof TiO2[48,JCPDS:00-002-0406].

Fig.5. XRDpatternsofthethinfilmsofco-dopedTiO2:(a)B/N;0.27,(b)B/N;3.83, (c)B/N;20.89and(d)bare-TiO2.

600 550 500 450 400 350 300 250 200 150 100 50 0

N 1s Si 2s Si 2pAr Ti 3pTi 3s

O 1s

Ti 2s Ti 2p B 1sC 1s

B/N: 20.89 (c) Bare-TiO2 (d)

Intensity (a.u)

Binding Energy (eV)

Fig.6. TypicalXPSsurveyscansofbare-TiO2andB/N:20.89dopedTiO2films.

ThecrystalsizesofallthesamplesareestimatedusingtheScher- rerequation:

B(2)= K

Lcos

whereListhefullwidthathalfmaxima(FWHM)ofthediffrac- tionpeakofanatase,K=0.89istheshapefactor,isthediffraction angleandistheX-raywavelengthcorrespondingtotheCuK␣ irradiation.Consideringpeakof(101)planesinaccount,theaver- agecrystallinesizesofthesample‘a’,‘b’,‘c’and‘d’are13.43,11.67, 12.99and13.43nm,respectively.Itsuggestedthatthechangein particlesizewithrespecttoB/Ncontentisnotsignificant.Inaddi- tion,thereisnochangeinthedspacingvalue;3.5 ˚A,whichimplies that B/N modificationin co-doping samplesdo not change the averageunitcelldimension.Foroursamplestheaveragelattice parametersareasfollows:a=3.78 ˚A,c=9.44 ˚Aandunitcellvol- ume=134.52 ˚A3.

3.2. XPSstudy

XPSstudiesusingmono-chromatedAlK␣X-raysourcewere performedtochecktheatomicpercentageofdifferentdopingele- mentswithintheannealedfilmsandbondingenvironmentamong Ti,Oanddopant.Atomicpercentagesofdifferentelementswere calculatedfromtheXPSnarrowscanpeakintensityconsidering therelativesensitivityfactorofeachelement.Theatomicratiosof borontonitrogen(B/N)fordifferentsamplesareasfollows;0.27(a), 3.83(b)and20.89(c).Fig.6showsthetypicalXPSspectrumofthe B/N:20.89co-dopedTiO2film.Thespectrumfrombare-TiO2sam- pleisalsoshowninthatfigureforcomparison.XPSpeaksshowed thatthedopedsamplescontainedTi,O,C,SielementswithBand Nasdopant.Thepresenceofcarboncouldbeascribedtotheresid- ualcarbonfromtheprecursor’ssolution.Fig.7(i)showstheB1s XPSspectrumforthesample‘c’whichcontainshighestatomicper- centageofB.Itshowssinglepeakcenteredatbindingenergy(BE) of192.1eV.ReferringtothestandardBEofB1sinB2O3(193.1eV, B Obond)[73]andTiB2(187.5eV,B Tibond)[74],itisspeculated thatboronatommightprobablybeincorporatedintoTiO2matrix andformTi O BorTi B OorO Ti Bbond[52,75].Hencepeak at192.1eVhavebeenassignedtoTi O BorTi B OorO Ti B bond.Fig.7(ii)showstheN1sXPSspectrumforthesample‘a’which containshighestatomicpercentageofN.Consideringsignificant asymmetry,N1speakhasbeendeconvolutedwithintwopeaksat

(6)

196 195 194 193 192 191 190 189 192.1

B/N : 20.89 (c)

(i)

B1s

Intensity (a.u.)

Binding Energy (eV)

405 404 403 402 401 400 399 398 397 396 395 B/N: 0.27 (a)

(ii )

400.0 398.5 N1s

Intensity (a.u.)

Binding Energy (eV)

Fig.7.XPSnarrowscanofB1sandN1sofdoped-TiO2thinfilmswithB/N:20.89 and0.27,respectively.

398.5and400.0eV.Thepeakat398.5eVmaybebecauseofanionic NincorporatedinTiO2inO Ti Nlinkages[22,76],whichmight beresponsibleforvisiblelightphoto-catalysis.Thehigherbind- ingenergypeakat400.0eVareattributedtooxidizednitrogenin theformofTi O NorTi N Olinkages[22,76].Theabsenceofa peakatornear396eVfortheN1scorelevelimpliedthattheTiN phaseorchemisorbednitrogenisnotformedinthenanomaterials [77].

3.3. UV–visabsorptionspectra

Fig.8comparestheUV–visabsorptionspectraofthinfilmsof bare-andB/Nco-dopedTiO2 withdifferentatomicratios.After B/Nco-dopingtotheTiO2,theabsorptionsofcatalystsincreased significantlyintherangeofwavelengthsfrom400to800nm.This clearred-shiftinUV–visspectrarevealsthevisiblelightabsorp- tionwithB/Nco-dopedTiO2[52,78–81].Thered-shiftwithinthe absorptionedgesfollowsanincreasingorderas(a)>(b)>(c)(d).

ItimpliesthatasatomicpercentageofNishigherinB/Nco-doping case,theredshiftintheabsorptionedgeishigherwhichisingood agreementwiththeresultinreference[52].Morevertheredshift observedintheco-dopingcasesaresignificantlyhighercompare tothatofbare-TiO2case.

300 350 400 450 500 550 600 650 700 750 800

Absorbance (a.u.)

(nm)

B/N:0.27 (a) B/N:3.83 (b) B/N:20.89 (c) Bare TiO

2 (d)

Fig.8. UV–visabsorptionspectraofco-dopedandbare-TiO2thinfilms.

3.4. Evaluationofphoto-catalyticactivity

Thephoto-catalyticactivityofbare-andB/Nco-dopedTiO2has beenexaminedbyphoto-catalyticdegradationofMB.Fig.9shows thepercentageofdegradationefficiencyforthesamefilmsin(i) cyclenumber1(1 cycle),(ii)cyclenumber2(2cycle)and(iii) cyclenumber3(3cycle).Dataclearlyshowsthatthedegradation efficiencyincreasescontinuouslyduringtheprocessofdegradation forallcycles.Howevertherateofdegradationisclearlydiffered frombare-toco-dopedTiO2films.ThedopedTiO2filmswithB/N atomicratios:0.27,3.83and20.89showedhigherdegradationper- formance,upto70%,whereasbare-TiO2filmsshowedthatof30%.

Thephoto-catalyticperformancewithintheco-dopedfilmswere increasedwithNcontentsanddecreasedwithBcontents.However allco-dopedfilmsshowedsignificantlybetteractivityundervisible rangelightcomparetobare-TiO2films.For1cycle,degradation performanceforco-dopedfilmsandbare-TiO2filmsare51–63%

and28%,respectively.

One of the main problems in the useof TiO2-based photo- catalystsisthedeactivation;mostlyattributedtoblockageofthe activesitesonthesurface,lossofcoatingmaterialfromthesurface duetoerosionoretc[82,83].Toevaluatethepossibilityofcatalyst recoveryand re-use,successivephoto-catalytic MBdegradation wasperformedforallofthedopedandbare-films.Aftereachcycle, filmswereannealedfor1hat500Candthenre-used.Fig.9(ii) showsthatsuccessiveutilizationfor2cycleinducedevenbetter performanceforallthefilms(a),(b),(c)and(d).For2and3cycles theefficiencyincreasedto62–69%forco-dopedfilmswhereasthat increasedto32–34%forbare-films.Theincreasingofefficiencyfor 2and3cyclesmightbe(i)duetothesurfacechemistrychanging ateachtimeheattreatmentaftereachdegradationstudyand/or(ii) thenitrogenconcentrationwithinthestructuremightbeincreased fortheMBsolutionadsorptiononthefilm.Itisstillingreatdebate ofthesynergyeffectsonphotoactivitiesandtheimportanceofthe relativeratiosonphotoactivities[17,50].Furtherworkisongoing tounderstandthisbehavior.

3.5. Theoreticalresults

WehavealsoperformedDFTcalculationsforbulkanatase,single dopedB-toO-andN-toO-andco-dopedBN-orNB-toTiO-cases whereatitaniumatomwasreplacedwithBorNandanoxygen atomwasreplacedbyNorB,respectively.Wehaveinvestigated varioussingledopedcases(e.g.BandNsubstitutiononTisiteand

(7)

0 40 80 120 160 200 240 0

10 20 30 40 50 60 70

(i)

B/N : 0.27 (a)

B/N : 3.83 (b) B/N : 20.89 (c)

Bare TiO2 (d)

% of effeciency

Irradiation time (min)

0 40 80 120 160 200 240

0 10 20 30 40 50 60 70

(ii)

B/N : 0.27 (a)

B/N : 3.83 (b) B/N : 20.89 (c)

Bare TiO2 (d)

% of efficiency

Irradiation time (min)

0 40 80 120 160 200 240

0 10 20 30 40 50 60

70

(iii)

B/N : 0.27 (a)

B/N : 3.83 (b) B/N : 20.89 (c)

Bare-TiO2 (d)

% of Efficiency

Irradiation time (min)

Fig.9.Percentageofdegradationefficiencyoffilms(i)incyclenumber1(1cycle),(ii)incyclenumber2(2cycle)and(iii)incyclenumber3(3cycle).

onOsite,andinterstitialofBandN)andco-dopedcases(e.g.sub- stitutionofBandNondifferentsites,andfordifferentseparations betweenBandN).Wearepresentingthemostrelevantcasesfor theexperimentalsituations.Thelatticeparametersofbulkanatase werefoundtobe3.81 ˚Aand9.72 ˚A(aandc),andc/aratiowas2.55 whichareclosetoourexperimentalvalues(a=3.78 ˚A,c=9.44 ˚A andc/a=2.50).Contrarytotheearlierreportclaiminglargevol- umeexpansion,whichhassignificanteffectontheelectronicband structures,upondoping[84],thevolumechangeislessthan1.5%

forallofthedopedstructuresinourcalculations.

Fig.10displaysthestructuralmodelsandthetotal(DOS)and partialdensityofstates(PDOS)ofpureTiO2,singledopedB-orN- toO-site andinterstitialN.Thebandgapofanataseis2.04eV, lowerthan experimentalvalue; 3.2eV [85] butconsistent with theprevioustheoreticalstudies[39,86]underestimationofband gapisawell-knowndeficiencyofDFTcalculations.Acorrection canbemadeusinghybridfunctional, self-interactioncorrection or‘DFT+U’methods,butinthisstudyourprimarypurposeisto understandthechangesinducedbythedopantsontheelectronic structuresofbulkanatase,nottheexactvalueofthebandgap.PDOS analysisshowsthatthetopmostvalencebandsareformedmainly fromO2pstateswhiletheconductionbandsminimumareformed fromTi3dstates.ForthecaseofBsubstitutingOatom(Fig.10(b)), thehybridizationofB2p,Ti3dandO2porbitalsgivesrisetogap statesappearingat0.27eVbelowtheconductionbandforB-doped O-model.Inthisstructure,Batommakesastrongbondingwithone oftheneighborOatomswithbondlengthas1.36 ˚A.B Tibonddis- tanceis2.11 ˚AwhichisevenlargerthanTi Obonddistanceofpure anatase(1.95 ˚A).Thesystematicinvestigationofnon-metaldoping

ofspeciesofB,C,NandFforsubstitutionalandinterstitialcases hasbeencarriedbyValentinandPacchioni[57].Thegapstatesare expectedforsubstitutionalnon-metaldopingandthepositionsof thesestatesaremainlydependonthenucleareffectivechargeof thedopant.Forlighterelements,the2pstatesinthegapappear higherinthegapthatisclosetotheconductionbandminimum (CBM).OurresultsforBsubstitutiontoOcaseareingoodagree- mentwiththisobservation.However,thestates inthegapalso containTi3dstates.ThetypicalpositionofTi3+statesisjustbelow theCBM.Thissituationcanalsobeaddressedtolowelectroneg- ativityofBatomcomparedtoOandlesschargetransferfromTi toB.We canconcludethatsubstitutionof BtoOsite produces statesinthegap,whichprovidestheabsorptionofvisiblelight,as wellasTi3+ionswhichactlikeelectron–holerecombinationcen- tersandthereforediminishthephotocatalyticactivity.Moreover, ahighfrequencyelectronparamagneticresonance(HF-EPR)mea- surementsonBdopedanatase[51]observedsomespindensity onB,TiandOatomswhichmightbeexplainedastheformation ofsubstitutionofBtoOsite.ThevalenceelectronsfromBmight betransferredtolatticeTiions(Ti4+)producingTi3+ionsanditis well-knownthatthepresenceofTi3+ionsproducemidgapstates [85].

ForthecaseofNsubstitutingOatom(Fig.10(c)),N2pdefect statesarelocatedatthetopofthevalancebandmaximum.The positionofthesestatesmightberelatedwiththeeffectivenuclear chargeofNatom[57],thatistheN2pstatesappearlowcompared tothatofB2pintheforbiddenregionduetohigheffectivenuclear chargeofNatomcomparedtoBatom.TheN2pstatesarelocalized atthedefectsiteandthepositionofN2pstates.Alongwiththis,

(8)

Fig.10.Relaxedstructuresandpartialdensityofstates(PDOS)of(a)pureanatase,(b)B-dopedO-,(c)N-dopedO-and(d)Ninterstitialmodels.Energiesareshiftedsuch thatFermilevelsarematchedwithzeroofenergy.Thebondlengthsbetweendopedatomsandfirstneighborsareindicated.Solidlines,grayshaded,greenshadedandblue shadedareasrepresentthetotalDOS,PDOSofTi3d,O2pandN2pstates,respectively.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthearticle.)

theEPRmeasurementsalsoindicatethelocalizationofunpaired electrononNdopant[37].Thevisiblelightabsorptionmightbe enhancedbythesubstitutionofNatomtoOsiteduelocalizedstates inthegapregion.Duetothesedefectstates,bandgapisreduced to1.66eVand1.87eVfordownandupspinstates,respectively.

Nitrogenatomhasfiveelectronsinthevalanceshellthereforethe structureisparamagneticandanacceptorstateappearsjustabove theFermilevel.

FortheinterstitialNmodel(Fig.10(d)),therewillbeastrong N Obondingwithabondlengthof1.34 ˚A.Sincetheelectronega- tivityofOishigher,NtendstodonateelectronstoOandN O Ti configurationisformedatthedefectregion.Theseexcesselectrons behaveinthesamemannerofB-toO-model(Fig.10(b))result- ingtheformationofmidgapstates[37].However,inthiscase,in

additiontotheun-occupiedstateformedattheedgeofconduction band,extramidgapstatesappearbelowtheFermilevel.

Inordertounderstandtheeffectofco-dopinginanatasewesub- stitutedBandNatomsforvariouspositionsofTiandOsites.Fig.11 displaystherelaxedstructuresandPDOSforBN-andNB-doping toTiO-positionsaswellasthebondlengthstonearestatomsof dopedspeciesisindicated.ForBN-dopedtoTiO-model,Batom transfersitselectronstoOatomsandreachesclosed-shellconfigu- rationwhichpreventsBNbonding.TheinteractionofNatomwith itssurroundingatomsproduces midgapbandswhichbehaveas acceptorstatesandalocalizednitrogenstateappearsatthetop ofthevalenceband.Thus,N Ti Otypeofhybridizationproduces midgapstates.PDOSanalysisindicatesthatthereisnoboroncon- tributiontoDOSaroundFermilevelbutbandgapofthiscaseis

Fig.11.Co-dopingofanatase:(a)BatomreplacedwithTiandNatomreplacedwithOand(b)NatomreplacedwithTi,andBatomreplacedwithO.Solidlines,grayshaded, greenshadedandblueshadedareasrepresentthetotalDOS,PDOSofTi3d,O2pandN2pstates,respectively.(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthearticle.)

(9)

-4.7 -4.0 -3.0 -2.0 -1.0 0.0 0

1 2 3 4 5 6 7

Ti-Rich O-Rich

N doped O B doped O N Interstitial BN doped TiO NB doped TiO

Formation Energy (eV)

O

Fig.12.Formationenergyasafunctionofchemicalpotentialofoxygenforthe dopedstructures.

foundtobe1.76eVforthespinupstatesand1.2eVforspindown states.Comparedtosingle-dopedmodels,thisisarelativelylarger narrowinginthebandgap.Thus,co-dopingofanatasewithB/Ncan beexpectedtoimprovephoto-degradationwithrespecttosingle- dopedcasesviabandgapnarrowing.

Incontrastwiththepreviousco-dopingcase,fortheNB-doped TiO-model,thereisabondingbetweenBandNatomswithbond- lengthof1.617 ˚A.SimilartotheB-toO-case,theFermilevelis alsopinnedforthismodeltothebottomoftheconductionband causingaconductorlikebandstructure,whichobviouslydoesnot contributeinthephoto-catalyticactivityofTiO2.

In summary, band gap narrowing leads to the red shift of the absorbance spectra to the visible light region. Meanwhile, the appearance of midgap states could be responsible for the enhancementofthephoto-catalyticactivityeitherbyimproving theabsorbance oravoiding the recombinationof electron–hole pairs[87].

XPS results of the doped films suggested the formation of N Ti OconfigurationupontheexaminationoftheN1sandTi2p spectra(Section3.2).AsshowninFig.10(c)and(d),N Ti Ocon- figurationcanbeformedinbothN-toO-andNinterstitialcases.

Therefore,in ordertounderstandtheenergetically morestable structures,we havecompared theformation energies ofdoped modelsusingthefollowingformalism:

Eform=E



TiO2+B N



−E(TiO2)−kB−lN+mO+nTi

whereE(TiO2+B/N)and E(TiO2)arethetotalenergies ofdoped structureand pureanatase,respectively and’sarethechemi- calpotentialsofcorrespondingspecies.ChemicalpotentialsofN andBarecalculatedfromgaseousphaseofN2and␣-boronphase, respectively.Oissetasthechemicalpotentialofthegasstateof O2forthecaseofOrichenvironment.Ontheotherhand,Tiisset frommetallicTiphaseforthecaseofOpoor(Tirich)environment.

FurthermoreweimposedtheconstraintasTi+2O=TiO2 in ordertoensuretheequilibriumofbulkanatasephase.Integersm andnarethenumbersofOandTivacancies,respectivelywhilek andlarethenumbersofdopedBandNatoms(ifany),respectively.

Fig.12displaystheformationenergyofthedifferentdopedmodels asafunctionofthechemicalpotentialofoxygenwithrespecttothe valueofgasphase(O).Variationofoxygenchemicalpotential indicatestherelativeabundanceofoxygeninthesynthesismedium withintwolimitingcases;O2-richandO2-poorenvironments.Two limitsinthefigurerepresenttheenvironments;O=0eVforthe

O2-richandO=−4.7eVfortheO2-poororTi-rich.Asdepictedin Fig.12,N-dopedO-caseisenergeticallythemostfavorabledoping modelintheOpoorenvironment,whileBN-dopedTiO-isthestable oneintheOrichenvironment.Thereisacrossoverbetweenthese twomodelsatO=−2.3eV.HoweverNinterstitialcasemight bestabilizedinOrichenvironmentwithinthesingledopedmod- els.ThismightbethereasonfortheformationofN O Tior/and N Ti Obondinginthecaseofourexperiment.

4. Conclusions

Anexperimentalandtheoreticalstudyhasbeenperformedto realizethesynergisticeffectofnonmetaldopinginTiO2forphoto- catalytic degradation.Co-doped TiO2 thinfilmswithboronand nitrogenhavebeensuccessfullysynthesizedbysimplesol–geldip coatingmethod.TheB/Nco-dopedTiO2filmsdemonstratedupto 40%higherphoto-catalyticactivitiesthanbare-TiO2 filmsunder visiblelightirradiation.Theabsorptionedgesforthedopedfilms werefoundtobeshiftedtowardthevisibleregion,whiletheover- allabsorptionremarkablyincreasedfordopedfilms.Thefilmwith theB/Natomicratioof0.27displayedthehighestdegradationrate amongalldopedfilms.Thedopedfilmsretainedtheirsuperiorcat- alyticactivityforextended periods.Computationalstudieswere conducted onseveralatomic models describing various doping schemes.TheresultsshowedthatdopingwithBand/orNinduced (a)bandgapnarrowing (redshiftof theabsorbance spectrato thevisiblelightregion)and(b)formationofmidgapstatesespe- ciallyincaseofNinterstitialmodel.Theseresultsalsosupported theobservedsynergisticeffectsofB/Ndopingforhigherphoto- degradationactivity.Thesecomputationalfindingssupportedour experimentaldatabyindicatingthepossibleroutesthat canbe responsiblefortheimprovementofthephoto-catalyticactivityin TiO2 duetoBand Ndoping.Itis revealedthatB/NdopedTiO2 filmscouldbeapotentialcandidateforscalingupforindustrial applications.

Acknowledgments

WeacknowledgethesupportsfromtheDepartmentofChem- istryofShahjalalUniversityofScienceandTechnology,Bangladesh andTÜB˙ITAK, TheScientificandTechnologicalResearchCouncil ofTurkey(Grantno:TBAG110T394).Computingresourcesused inthisworkwereprovidedbytheNationalCenterforHighPer- formance Computing of Turkey (UYBHM) under grant number 10362008.OGacknowledgesthesupportofTheTurkishAcademy ofSciences,TÜBA.PartialfundingforM.N.Uddinisprovidedbythe TurkishUndersecretariatforDefenseIndustries.

References

[1]O.Carp,C.L.Huisman,A.Reller,A.Reller,ProgressinSolidStateChemistry32 (2004)33–177.

[2]B.Tryba,A.W.Morawski,M.Inagaki,AppliedCatalysisB:Environmental46 (2003)203–208.

[3]T.Watanabe,K.Hashimoto,A.Fujishima,in:D.F.Ollis,H.A.Ekabi(Eds.),Pho- tocatalyticPurificationandTreatmentofWaterandAir,Elsevier,Amsterdam, 1993.

[4]X.Qin,L.Jing,G.Tian,Y.Qu,Y.Feng,JournalofHazardousMaterials172(2009) 1168–1174.

[5]D.A.H.Hanaor,C.C.Sorrell,JournalofMaterialsScience46(2011)855–874.

[6]M.Mrowetz,W.Balcerski,A.J.Colussi,M.R.Hoffmann,JournalofPhysical ChemistryB108(45)(2004)17269–17273.

[7]X.Z.Li,F.B.Li,C.L.Yang,W.K.Ge,JournalofPhotochemistryandPhotobiology A:Chemistry141(2001)209–217.

[8]C.H.Kwon,J.H.Kim,I.S.Jung,H.Shin,K.H.Yoon,CeramicsInternational29 (2003)851–856.

[9]J.Yu,X.Zhao,Q.Zhao,JournalofMaterialsScienceLetters19(19)(2000) 1015–1017.

[10] R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,Y.Taga,Science293(5528)(2001) 269–271.

(10)

(2003)5483–5486.

[12]X.Chen,S.S.Mao,ChemicalReviews107(2007)2891–2959.

[13]W. Choi, A. Termin, M.R. Hoffmann, Angewandte Chemie 106 (1994) 1148–1149.

[14]C. Wang,D.W.Bahnemann,J.K. Dohrmann,Chemical Communications16 (2000)1539–1540.

[15] R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,Y.Taga,Science293(2001)269–271.

[16]S.U.M.Khan,M.Al-Shahry,W.B.Ingler,Science297(5590)(2002)2243–2245.

[17] S.In,A.Orlov,R.Berg,F.Garcia,S.P.Jimenez,M.S.Tikhov,D.S.Wright,R.M.

Lambert,JournaloftheAmericanChemicalSociety129(2007)13790–13791.

[18] K.Yang,Y.Dai,B.Huang,S.J.Han,TheJournalofPhysicalChemistryB110(2006) 24011–24014.

[19] J.C.Yu,W.Ho,J.Yu,H.Yip,P.K.Wong,J.Zhao,EnvironmentalScienceand Technology39(4)(2005)1175–1179.

[20] M.Sathish,B.Viswanathan,R.P.Viswanath,C.S.Gopinath,ChemistryofMate- rials17(2005)6349–6353.

[21] L.Lin,W.Lin,J.L.Xie,Y.X.Zhu,B.Y.Zhao,Y.C.Xie,AppliedCatalysisB75(2007) 52–58.

[22] K. Yang, Y. Dai, B. Huang, Journal of Physical Chemistry C 111 (2007) 12086–12090.

[23](a)M.Maitri,K.S.Thushara,B.Saha,P.Chakraborty,C.M.Janet,R.P.Viswanath, C.M.Nair,K.V.G.K.Murty,C.S.Gopinath,ChemistryofMaterials21(2009) 2973–2979;

(b) M. Maitri, K. Sivaranjani,D.S. Bhange, B. Saha, P. Chakraborty, A.K.

Viswanath,C.S.Gopinath,ChemistryofMaterials22(2010)565–578;

(c)M.Maitri,C.S.Gopinath,ChemistryofMaterials21(2009)351–359.

[24]H.Liu,L.Gao,JournaloftheAmericanCeramicSociety87(2004)1582–1584.

[25]J.Yu,M.Zhou,B.Cheng,X.Zhao,JournalofMolecularCatalysisA:Chemical246 (2006)176–184.

[26]J.Xu,J.Li,W.Dai,Y.Cao,H.Li,K.Fan,AppliedCatalysisB79(2008)72–80.

[27] M.Satish,B.Viswanathan,R.P.Viswanath,C.S.Gopinath,JournalofNanoscience andNanotechnology9(2009)423–432.

[28](a)P.Xu,T.Xu,J.Lu,S.Gao,N.S.Hosmane,B.Huang,Y.Dai,Y.Wang,Energy&

EnvironmentalScience3(2010)1128–1134;

(b)K.Yang,Y.Dai,B.Huang,JournalofPhysicalChemistryC111(2007) 18985–18994.

[29]E.Mete,D.Uner,O.Gulseren,S.Ellialtioglu,PhysicalReviewB79(2009)125418 (1–15).

[30] E.Mete,O.Gulseren,S.Ellialtioglu,PhysicalReviewB80(2009)035422(1–9).

[31]M.Fittipaldi,D.Gatteschi,P.Fornasiero,CatalysisToday,inpress

[32]Y.Nakano,T.Morikawa,T.Ohwaki,Y.Taga,AppliedPhysicsLetters87(2005) 052111–052114.

[33] C.K.Xu,S.U.M.Khan,Solid-StateLetters10(2007)B56–B59.

[34] H. Wang, J.P. Lewis, Journal of Physics: Condensed Matter 18 (2006) 421.

[35]Y.F.Lee,K.H.Chang,C.C.Hu,K.M.Lin,JournalofMaterialsChemistry20(2010) 5682–5688.

[36] O.Diwald,T.L.Thompson,T.Zubkov,E.G.Goralski,S.D.Walck,J.T.Yates,Journal ofPhysicalChemistryB108(2004)6004–6008.

[37]C.D.Valentin,G.Pacchioni,A.Selloni,S.Livraghi,E.Giamello,JournalofPhysical ChemistryB109(2005)11414–11419.

[38] C.D.Valentin,G.Pacchioni,A.Selloni,PhysicalReviewB70(2004)085116(1–4).

[39]C.D. Valentin,G. Pacchioni, A.Selloni, Chemistry of Materials17 (2005) 6656–6665.

[40]Y.Liu,X.Chen,J.Li,C.Burda,Chemosphere61(2005)11–18.

[41]Z.Lin,A.Orlov,R.Lambert,M.C.Payne,JournalofPhysicalChemistryB109 (2005)20948–20952.

[42]S.Livraghi,M.C.Paganini,E.Giamello,A.Selloni,C.D.Valentin,G.Pacchioni, JournaloftheAmericanChemicalSociety128(2006)15666–15671.

[43]J.Y.Lee,J.Park,J.H.Cho,AppliedPhysicsLetters87(2005)011904(1–3).

[44]W.K.Ho,J.C.Yu,S.C.Lee,JournalofSolidStateChemistry179(2006)1171–1176.

[45]K.M.Reddy,B.Baruwati,M.Jayalakshmi,M.M.Rao,S.V.Manorama,Journalof SolidStateChemistry178(2005)3352–3358.

[46]W.Zhao,W.H.Ma,C.C.Chen,J.C.Zhao,Z.G.Shuai,JournaloftheAmerican ChemicalSociety126(2004)4782–4783.

Research45(2006)4110–4116.

[48]V.Gombac,L.D.Rogatis,A.Gasparotto,G.Vicario,T.Montini,D.Barreca,G.

Balducci,P.Fornasiero,E.Tondello,M.Graziani,ChemicalPhysics339(2007) 111–123.

[49]M.Batzill,E.H.Morales,U.Diebold,PhysicalReviewLetters96(2006)026103 (1–4).

[50] G.Liu,Y.Zhao,C.Sun,F.Li,G.Q.Lu,H.M.Cheng,AngewandteChemieInterna- tionalEdition47(2008)4516–4520.

[51] A.M.Czoska,S.Livraghi,M.C.Paganini,E.Giamello,C.DiValentin,G.Pacchioni, PhysicalChemistryChemicalPhysics13(2011)136–143.

[52] M.Xing,Y.Wu,J.Zhang,F.Chen,Nanoscale2(2010)1233–1239.

[53]X.Zhou,F.Peng,H.Wang,H.Yu,J.Yang,JournalofSolidStateChemistry184 (2011)134–140.

[54]Y.G.Yang,Z.L.Ping,L.Shen,Y.J.Hua,ChineseJournalofStructuralChemistry 27(11)(2008)1353–1359.

[55]C.Baiocchi,M.C.Brussino,E.Pramauro,A.B.Prevot,L.Palmisano,G.Marci, JournalofMassSpectrometry214(2002)247–256.

[56]I.M.Arabatzis,T.Stergiopoulos,M.C.Bernard,D.Labou,S.G.Neophytides,P.

Falaras,AppliedCatalysisB:Environmental42(2003)187–201.

[57] C.D.Valentin,G.Pacchioni,CatalysisToday,inpress

[58]M.C.Payne,M.P.Teter,D.C.Allen,T.A.Arias,J.D.Joannopoulos,Reviewsof ModernPhysics64(1992)1045–1097.

[59]W.Kohn,L.J.Sham,PhysicalReview140(1965)A1133–A1138.

[60]P.Hohenberg,W.Kohn,PhysicalReviewA136(1964)B864–B871.

[61]P.E.Blöchl,PhysicalReviewB50(1994)17953–17979.

[62]G.Kresse,D.Joubert,PhysicalReviewB59(1999)1758–1775.

[63]G.Kresse,J.Hafner,PhysicalReviewB48(1993)13115–13118.

[64]G.Kresse,J.Furthmüller,ComputationMaterialsScience6(1996)15–50.

[65]G.Kresse,J.Furthmüller,PhysicalReviewB54(1996)11169–11186.

[66]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M.R.Pederson,D.J.Singh,C.

Fiolhais,PhysicalReviewB:CondensedMatter46(1992)6671–6678.

[67]H.J.Monkhorst,J.D.Pack,PhysicalReviewB13(1976)5188–5192.

[68]M.Yao,J.Chen,C.Zhao,Y.Chen,ThinSolidFilms517(2009)5994–5999.

[69]K. Sivaranjani, C.S. Gopinath, Journal of Materials Chemistry 21 (2011) 2639–2647.

[70]D.Bersani,P.P.Lottici,X.Z.Ding,AppliedPhysicsLetters72(1998)73–75.

[71]M.J.Uddin,F.Cesano,F.Bonino,S.Bordiga,G.Spoto,D.Scarano,A.Zecchina, JournalofPhotochemistryandPhotobiologyA:Chemistry189(2007)286–294.

[72] Y.H.Peng,G.F.Huang,W.Q.Huang,AdvancedPowderTechnology23(2012) 8–12.

[73]J.A. Schreifels,P.C. Maybury, W.E.Swartz, Journalof Catalysis 65(1980) 195–206.

[74] G.Mavel,J.Escard,P.Costa,J.Castaing,SurfaceScience35(1973)109–116.

[75] J.Xu,Y.Ao,M.Chen,D.Fu,JournalofAlloysandCompounds484(2009) 73–79.

[76]T.C.Jagadale,S.P.Takale,R.S.Sonawane,H.M.Joshi,S.I.Patil,B.B.Kale,S.B.Ogale, JournalofPhysicalChemistryC112(2008)14595–14602.

[77] C.D.Valentin,E.Finazzi,G.Pacchioni,A.Selloni,S.Livraghi,M.C.Paganini,E.

Giamello,ChemicalPhysics339(2007)44–56.

[78]J.Yang,H.Bai,X.Tan,J.Lian,AppliedSurfaceScience253(2006)1988–1994.

[79] J.Yang,H.Bai,Q.Jiang,J.Lian,ThinSolidFilms516(2008)1736–1742.

[80] C.H.Wei,X.H.Tang,J.R.Liang,S.Y.Tan,JournalofEnvironmentalSciences19 (2007)90–96.

[81]L.Mi,P.Xu,P.N.Wang,AppliedSurfaceScience255(2008)2574–2580.

[82]J.Arana,E.T.Rendon,J.M.D.Rodriguez,J.A.H.Melian,O.G.Diaz,J.P.Pena,Applied CatalysisB:Environmental30(2001)1–10.

[83]L.Cao,Z.Gao,S.L.Suib,T.N.Obee,S.O.Hay,J.D.Freihaut,JournalofCatalysis 196(2000)253–261.

[84]K.Yang,Y.Dai,B.Huang,PhysicalReviewB76(2007)195201(1–6).

[85]J. Pascual, J. Camassel, H. Mathieu, Physical Review Letters 39 (1977) 1490–1493.

[86]H.Weng,J.Dong,T.Fukumura,M.Kawasaki,Y.Kawazoe,PhysicalReviewB73 (2006)121201(R)(1–4).

[87]E.Finazzi,C.D.Valentin,G.Pacchioni,JournalofPhysicalChemistryC113(2009) 220–228.

Referenties

GERELATEERDE DOCUMENTEN

Voor verschillende varianten van aansluitingen van de nieuwe wegen op het oorspronkelijke wegennet van de Beemster is, uitgaande van de bijbehorende

Sociaaleconomische kengetallen (werkgelegenheid, omzet en inkomen) worden niet struc- tureel verzameld en gepubliceerd voor alle onderdelen van de vissector en waren daarom ook

Conclusies Integratie van de zorgfunctie moet passen bij de bedrijfsstrategie en motieven van de ondernemer Stakeholders zijn geïnteresseerd in zorgglastuinbouw De financiële

Volgens de betrokken docenten van het Stedelijk Gymnasium, wederom zeer aangenaam verrast door dit aansprekend en unieke resultaat, valt alle eer de leerlingen toe: ‘Er is

Aspects of objective convenience are correct use and understanding of the mats, a sufficiently long green phase and clearance periods, short waiting times and no conflicting

Alhoewel deze onderzoeken over het algemeen niet gelden voor de startende pilgebruikster, geven de resultaten meer aanleiding voor een (plausibele) associatie tussen

Figuur 7: Relatieve aantal soorten, waargenomen direct na de uitvoering van de herstelmaatregelen, die na de uitvoering zijn verdwenen of zich hebben gehandhaafd, uitgezet tegen

In keeping with the principle of increasing the visibility of Stellenbosch University research output and sharing that with the rest of the world, the University has become the first