• No results found

Op weg naar de rwzi 2030

N/A
N/A
Protected

Academic year: 2021

Share "Op weg naar de rwzi 2030"

Copied!
42
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)NEWs: THE DUTCH ROADMAP FOR THE WWTP OF 2030 NEWs 2010. 24.

(2) NEWs. NEWs. NEWs. NEWs. NEWs. NEWs. NEWs.

(3) NEWS: THE DUTCH ROADMAP FOR THE WWTP OF 2030. 1. WWTP2030E.

(4) NEWs. WWTP2030E 2.

(5) PREFACE 5IF%VUDI8BUFSTFDUPSIBTCFFOBWFSZJOOPWBUJWFTFDUPSEVSJOHUIFMBTUEFDBEFT*OOPWBUJPOTIBWFCFFO OFDFTTBSZ JO PSEFS UP NFFU JODSFBTJOH FGGMVFOU RVBMJUZ TUBOEBSET BU BGGPSEBCMF DPTUT 5IJT /&8T TUVEZ TIPXTQPTTJCJMJUJFTGPSSFTPVSDFBQQSPBDIJOTUFBEPGBXBTUFBQQSPBDI5IFUFSN/&8TJNQMJFTUIBUUIF OFXXBZPGXBTUFXBUFSUSFBUNFOUJTSFTPVSDFNBOBHFNFOUGPSUIFUISFFCBTJDSFTPVSDFT/VUSJFOUT &OFSHZ BOE8BUFS5IF%VUDIFYBNQMFTQSFTFOUFEJOUIJTSFQPSU TIPXUIBUOFXUSFBUNFOUTDIFNFTCBTFEPOB SFTPVSDFBQQSPBDIBSFBMSFBEZQSBDUJDFE 5IFQSPKFDUXBTJOJUJBUFECZUIF(MPCBM8BUFS3FTFBSDI$PBMJUJPO (83$ 5IFJOUFSOBUJPOBMOFUXPSLPG XBUFSPSHBOJTBUJPOTHBUIFSFEJOUIF(83$XBOUFEBMPPLBUUIFGVUVSFPGPVSXBTUFXBUFSUSFBUNFOUGBDJMJ UJFT$PVMEJUCFVTFGVMUPBQQMZSFTPVSDFUIJOLJOHUPXBTUFXBUFSUSFBUNFOU /FYUUPUIJT UIFHMPCBMJNQBDUPGUIFFDPOPNJDDSJTFT UIFFOFSHZDSJTFTBOEUIFDMJNBUFDIBOHFE DBVTFE DPVOUSJFTUPSFUIJOLUIFJSFOFSHZVTFBOEFNJTTJPOPGHSFFOIPVTFHBTFT*O5IF/FUIFSMBOET UIFXBUFS TFDUPSIBTTFUMJNJUTUPFOFSHZVTFBOEIBTQSPQPTFENPSFMBSHFQSPKFDUTPOFOFSHZFGGJDJFODZPGXBTUFXB UFSUSFBUNFOUGBDJMJUJFT *O5IF/FUIFSMBOETUIFXBUFSTFDUPSJTEJWJEFEJOEJGGFSFOUPSHBOJTBUJPOTGPSESJOLJOHXBUFS XBUFSTVQQMZ DPNQBOJFT  TFXBHF TZTUFNT NVOJDJQBMJUJFT  BOE XBTUFXBUFS USFBUNFOU XBUFSCPBSET  $PPQFSBUJPO CFU XFFOUIFTFPSHBOJTBUJPOTJTFODPVSBHFE CFDBVTFPGDPTUFGGJDJFODZQVSQPTFT 5IFTFUISFFEJGGFSFOUESJWFSTXFSFUBLFOBTUIFTUBSUJOHQPJOUPGUIJTTUVEZ8FCFMJFWFUIBUXBTUFXBUFS USFBUNFOU XJMM BMXBZT CF OFDFTTBSZ  CVU UIF GVUVSF JT GPVOE JO SFTPVSDF UIJOLJOH (PPE /&8T GPS UIF XPSMEXBTUFCFDPNFTBSFTPVSDF5IF%VUDI8BUFSTFDUPSJTTFUUJOHTUFQTUPXBSET "NFSTGPPSU +VOF %JSFDUPSPG4508" JS+.+-FFOFO. 3. WWTP2030E.

(6) WWTP2030E 4.

(7) TA B L E O F C O N T E N T S 1. INTRODUC T ION. . . THE PRO JEC T. . . .FUIPE. . . 4UBSUJOHQPJOUT. . 3. PER SPEC T I VE. . . %FWFMPQNFOUTBOEUSFOET. . . 'BDUPST. . . *NBHFT. . 4. T R E AT M E N T T E C H N O L O G Y . . . *OUSPEVDUJPO. . . 1SFUSFBUNFOU. . . #BTJDUSFBUNFOU. . . 1PTUUSFBUNFOU. . . 4MVEHFUSFBUNFOU. . . 5SFBUNFOUPGSFKFDUJPOXBUFS. . . &OFSHZDPOWFSTJPO. . 5. O U T L I N E O F 2 030 WA S T E WAT E R T R E AT M E N T P L A N T . . . 8BUFSGBDUPSZ. . . &OFSHZGBDUPSZ. . . /VUSJFOUGBDUPSZ. . 6. ROADMAP. . . %FTUJOBUJPO. . . 3PVUF. . . (14. . 5. WWTP2030E.

(8) 1. WWTP2030E 6.

(9) INTRODUCTION *O UIF(MPCBM8BUFS3FTFBSDI$PBMJUJPOUPPLUIFJOJUJBUJWFUPSFGMFDUPOUIFGVUVSFPGNVOJDJQBMXBT UFXBUFSUSFBUNFOU DPOTJTUJOHPGDPMMFDUJPO USBOTQPSUBOEUSFBUNFOU BJNJOHBUDMJNBUFBOEFOFSHZOFV USBMJUZ8JUIJOUIFDPOUFYUPGUIJTHMPCBMSFTFBSDIQSPHSBN TPNFDPVOUSJFTBHSFFEUPGPDVTPOUIFNVOJ DJQBMTFXBHFUSFBUNFOUQMBOU BOJNQPSUBOUFMFNFOUPGVSCBOXBTUFXBUFSNBOBHFNFOU5IF/FUIFSMBOET BSFQBSUPGUIBUHSPVQ MFBECZUIF1VCMJD6UJMJUZ#PBSEPG4JOHBQPSF5IJTSFQPSUTVNNBSJ[FTUIF%VUDI SFTFBSDIDPOUSJCVUJPO 5IFNBJOPCKFDUJWFPGUIF%VUDISFTFBSDIXBT UPFMBCPSBUFUIFPVUMJOFTPGUIFNVOJDJQBMTFXBHFUSFBU NFOU QMBOU PG  'JSTU  DVSSFOU BOE GVUVSF EFWFMPQNFOUT BOE USFOET UIBU NJHIU IBWF BO JNQBDU PO TFXBHFUSFBUNFOUXFSFTVNNBSJ[FEGSPNMJUFSBUVSFBOEBOBMZ[FEXJUIBOFYQFSUUFBN DIBQUFS /FYU  DVSSFOU BOE QPUFOUJBM USFBUNFOU UFDIOJRVFT XFSF TVNNBSJ[FE DIBQUFS   4VCTFRVFOUMZ  FYBNQMFT PG GVUVSFUSFBUNFOUQMBOUT DBMMFEUIFXBUFSGBDUPSZ FOFSHZGBDUPSZBOEOVUSJFOUGBDUPSZ XFSFEFTJHOFECZ UIFFYQFSUUFBN DIBQUFS 'JOBMMZ BSPBENBQMFBEJOHUPBOBQQSPQSJBUFDIPJDFPGUFDIOPMPHZBOEEFTJHO XBTESBGUFE. 7. WWTP2030E.

(10) 2. WWTP2030E 8.

(11) THE PROJECT 2 .1. ME THOD. 5IFGJSTUQSPKFDUBDUJWJUZXBTUPBOBMZ[FBOETVNNBSJ[FOBUJPOBMBOEJOUFSOBUJPOBMMJUFSBUVSFPOUSFOET BOEEFWFMPQNFOUTUIBUXJMMPSNBZBGGFDUUIFVSCBOXBTUFXBUFSNBOBHFNFOUJOHFOFSBMBOEXBTUFXBUFS USFBUNFOUJOQBSUJDVMBS *OUIFOFYUQSPKFDUQIBTF OBUJPOBMFYQFSUTXFSFJOWPMWFE*UXBTEFDJEFEUPESBJOUIFJSLOPXMFEHF FYQF SJFODFBOEWJTJPOUISPVHIUXPXPSLTIPQT*OUPUBM FYQFSUTPGXBUFSCPBSET XBUFSDPNQBOJFTBOEDPO TVMUBOUTKPJOFEUIFFYQFSUUFBN5IFGJSTUXPSLTIPQGPDVTFEPOUSFOETBOEEFWFMPQNFOUT UIFTFDPOEPO UFDIOPMPHZBOEUIFPVUMJOFPGUIFNVOJDJQBMXBTUFXBUFSUSFBUNFOUQMBOU 5IFGJOBMQSPKFDUQIBTFGPDVTFEPOFMBCPSBUJPOPGUIFSPBENBQ SFQPSUJOHBOEDPNNVOJDBUJPO 2.2. S TA R T I N G - P O I N T S. 3FGMFDUJOHPOUIFGVUVSF FBTJMZHFOFSBUFTQBOPSBNBTUIBUEJWFSHFGSPNBMJLFMZSFBMJUZ0OUIFPUIFSIBOE  DSFBUJWJUZTIPVMEOPUCFMJNJUFECZVOOFDFTTBSZCPVOEBSZDPOEJUJPOT"XFMMCBMBODFEQMBZJOHHSPVOEXBT EFGJOFECZTFUUJOHBTFSJFTPGHFOFSBMTUBSUJOHQPJOUT 1SFEJDUBCMFDIBOHFTPGXBTUFXBUFSQSPEVDUJPOBOEDPNQPTJUJPOBSFUBLFOJOUPBDDPVOU 8BTUFXBUFSUSFBUNFOUBMTPDPNQSJTFTTMVEHFQSPEVDUJPOBOEUSFBUNFOU 5IFFYJTUFODFJOPGUSFBUNFOUQMBOUTCVJMECFGPSFNBZOPUCFBMJNJUJOHGBDUPS 5IFXBTUFXBUFSUSFBUNFOUQMBOUJTBDFOUSBMJ[FEGBDJMJUZUIBUPGGFSTJOUFHSBMUSFBUNFOUPGXBTUFXBUFSUIF FGGFDUTPGMPDBMQSFUSFBUNFOUBSFOPUUBLFOJOUPBDDPVOU 5IFFGGMVFOURVBMJUZUIBUXJMMCFQSPEVDFEJOJTIJHIFSUIBOUPEBZ *UJTBMMPXFEUPQBTTUIFMJOFPGDVSSFOUMFHBMMJNJUBUJPOTXJUISFTQFDUUPBQQMJDBUJPOPGDFSUBJOBQQBSBUVT  BQQMJDBUJPOPGSFTJEVFT FUDFUFSB 8BUFSCPBSETNBZVUJMJ[FUIFJSDBQBDJUJFTGPSPUIFSQVSQPTFTUIBOUIFDVSSFOUUBTLPGQSPUFDUJOHUIFBRVB UJDFOWJSPONFOU 5IFMPDBMTJUVBUJPOBUBTQFDJGJDUSFBUNFOUMPDBUJPONBZCFVUJMJ[FE. 9. WWTP2030E.

(12) 3. WWTP2030E 10.

(13) PERSPECTIVE 3.1. DE VELOPMENT S AND TRENDS. 5BCMFMJTUTUIFNBKPSEFWFMPQNFOUT EFSJWFEGSPNMJUFSBUVSF UIBUXJMMPSNBZBGGFDUNVOJDJQBMXBTUFXB UFSUSFBUNFOUJO5IF/FUIFSMBOET Table 3.1. Important developments and impact on wastewater treatment. D E V EL O P ME NT. DIR E CT ION. IMPACT. Demographic. Population growth. Treatment capacity. Urbanization. Treatment capacity. Aging. Wastewater: hormones, medicines. Shortage of technicians. Water(technology) capability. Economic. Environmental policy. Shortage of raw materials. Capital and Operational costs. Globalization; commercialization. Exchange; organizational change. Declining industrial discharge. Wastewater: less degradable matter. Increasing operational costs. Operational costs. Demand of higher efficacy. Efficiency, efficacy, quality. Effect of European legislation. Discharge standards. Sustainability. Policies on purchase, impacts. Strategy of containment, storage and. Treatment capacity. discharge (of wastewater) Ecological. Social. Technological. Cooperation in water cycle. Optimization. Climate change. Peak capacity. Sustainability becomes natural. Reuse of resources. Increase of treatment plant loading. Fraction non-degradable matter. Individualization. Acceptance of public activities. Demand of higher quality, luxury, comfort of life. Dilution wastewater. (virtual) Webs. Knowledge exchange. Raw materials from wastewater. Water, N, P. Energy from wastewater. Production, providing. ICT development. Process management, information. Decentralized pretreatment. Chemical use. Increasing knowledge of hazardous compounds. Treatment performance standard. Increase of build and paved area. Treatment capacity. Scaling-up of treatment plants. Economics; technology. Nano particles. ?. Application of nanotechnology. Technology. New treatment techniques. Technology. 11 WWTP2030E.

(14) 3. 2. FAC T O R S. *OBEEJUJPOUPUIFEFWFMPQNFOUTNFOUJPOFE DFSUBJOGBDUPSTNBZJOGMVFODFPSFWFOTFUUIFXBTUFXBUFSUSF BUNFOUUFDIOPMPHZUPCFBQQMJFEJOUIFGVUVSF5IFFYQFSUUFBNXBTBTLFEUPHFOFSBUFBOESBOLTVDIGBD UPSTJOUFSNTPGQSJPSJUZ5IFSFTVMUTBSFTIPXOJOGJHVSF 5IFGBDUPSTFGGMVFOU RVBMJUZ FOFSHZ OFVUSBMJUZ BOEOVUSJFOUT SFDPWFSZ QPJOUUIFEJSFDUJPOPGNBOVGBD UVSJOHPGQSPEVDUTBOEDBOCFNBUFSJBMJ[FEJOUFSNTPGBXBUFSGBDUPSZ BOFOFSHZGBDUPSZBOEBOVUSJFOU GBDUPSZ5IFTFGBDUPSJFTXFSFBEPQUFEUPCFUIFMFBEJOHDPODFQUBUUIFEFWFMPQNFOUPGUIFUSFBUNFOU QMBOUPVUMJOF. Factors of influence 10. -. Landuse. 9. -. Water scarcity. 8. -. Operation, maintenance. 7. -. Sustainability. 6. -. Risc profile. 5. -. Wastewater policy. 4. -. Nutrientrecovery. -. Energy neutrality. 3. -. Costs. 2. -. Effluent quality. 1 -. Priority (1: low; 10: high). Figure 3.1. Priority of expert group for factors of influence. 3. 3. I M AG E S. #BTFEPOEFWFMPQNFOUT USFOETBOEGBDUPSTJEFOUJGJFE UIFFYQFSUUFBNXBTBTLFEUPSFGMFDUPOUIFEJSFD UJPOTNVOJDJQBMXBTUFXBUFSUSFBUNFOUNJHIUUBLFJOUIFZFBSTUPDPNF5IFSFGMFDUJPOIBEUPPDDVS XJUIJOUIFGSBNFXPSLPGBUXPEJNFOTJPOBMTQBDF EFGJOFECZDPPSEJOBUFTPGUFDIOPMPHZBOETPDJFUZ5IF NFBOJOHPGUIFGPVSTFHNFOUT JOGBDUTDFOBSJPT XBTFYQMBJOFEPOBOVNCFSPGBTQFDUT GJHVSF 5IF FYQFSUT XFSF BTLFE UP TDPSF UIF QSPCBCJMJUZ PG UIF TDFOBSJPT UP PDDVS JO  BOE  5IF SFTVMUT BSF TIPXOJOGJHVSF5IFUBCMFDMFBSMZEFNPOTUSBUFTBMBOETMJEFUPCFFYQFDUFE. WWTP2030E 12.

(15) A. To live is to experience. B. Sustainable living together. Comfort and ease. Sustainable and committed. High tech end of pipe technology. Advanced innovative technology. Tailor made. Quality products. Invisible government. Synergy with environment. D. Solitaire and simple. C. Economical and diligence. Simple and modest. Economical and traditional. Cheap, proven technology. Robust and conventional technology. Operate at the boundaries. Life-cycle prolongation. Autarchy. Cooperation at water chain management. Figure 3.2. Images and aspects.. 2010 (%). Collective society. Individual society. Innovative technology. Traditional technology. 2030 (%) 5% 5% 24%. 90% 90%. 24%. A. To live is to experience B. Sustainable living together C. Economical and diligence D. Solitair and simple. 52%. Figure 3.3. According to expert group the situation in 2010 (left) and in 2030 (right).. 13 WWTP2030E.

(16) H4. WWTP2030E 14.

(17) TREATMENT TECHNOLOGY 4 .1. INTRODUC T ION. .VOJDJQBMXBTUFXBUFSUSFBUNFOUJO5IF/FUIFSMBOETDBOCFTDIFNBUJ[FEJOUPTJYQSPDFTTTUFQT GJHVSF  'PSFBDIQSPDFTTTUFQEJGGFSFOUUFDIOJRVFTBSFBQQMJFE BWBJMBCMFPSVOEFSEFWFMPQNFOU4PNFUJNFT UIFZ BSFDPNQBSBCMFJOUFSNTPGUSFBUNFOUPCKFDUJWF JOPUIFSDBTFTUIFZBSFBQQMJFEJOTFSJFTGPSEJGGFSFOUQVS QPTFT*UJTUPCFFYQFDUFEUIBUCFGPSFDVSSFOUUFDIOJRVFTBSFBCBOEPOFE BWBJMBCMFUFDIOJRVFTCFDP NFPQFSBUJPOBMBOEOFXUFDIOJRVFTBSFEFWFMPQFE *OUIJTDIBQUFS USFBUNFOUUFDIOJRVFTBSFTVNNBSJ[FEBOEDMBTTJGJFEBDDPSEJOHUPQVSQPTF FYQFSJFODF  SFMFWBODFUPXBUFS FOFSHZBOEOVUSJFOUGBDUPSJFT BOETQFDJBMGFBUVSFT. Influent. Additives. Pretreatment. Basic treatment. Post treatment. Rejection water treatment. Sludge treatment. Energy conversion. Raw materials (water, N, P, Energy). Residues, sludges, etc.. Figure 4.1. Scheme of various process steps of a wastewater treatment plant.. 15 WWTP2030E.

(18) 4.2. P R E T R E AT M E N T. 5IFNBJOQVSQPTFTPGQSFUSFBUNFOUBSF UPSFNPWFDPBSTFNBUFSJBMT HSJUBOETVTQFOEFENBUUFS"USFNP WBMPGTVTQFOEFENBUUFSBMTP$0%JTSFNPWFE5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF Tabel 4.1. Overview of techniques for pretreatment. SYSTEM. FE AT U RE S. Basic Screen. Purpose: removal of coarse materials. Grit chamber. Purpose: grit removal. Pre-sedimentation. Purpose: removal of settleble suspended matter (COD) Special: The suspended matter removed is a residue (primary sludge). It mainly consists of organic matter and water, and is a raw material of energy (biogas) production The ratio of organic matter (COD) over N and P of the wastewater is reduced (higher removal of organic matter). This may negatively impact the subsequent biological treatment. Improved Coagulation + pre-sedimentation. Purpose: removal of settleble and colloidal matter (COD) and P Special: In the case of inorganic coagulants, also P is removed and can be valued positive. However, again it may have adverse effects on subsequent biological treatment (ration COD/N). Necessity for the E-factory. Use of chemicals might have a negative environmental impact. Biological adsorption. Purpose: removal of suspended and colloidal COD. (A step of AB system). Special: post separation of wastewater and biomass is required. Advanced Membrane filtration. Purpose: optimized removal of suspended and colloidal matter through a combination of. Sand filtration. straining and adsorption. Micro sieve, drum sieve. Special: Advanced separation of contaminants/raw materials (COD removed, N and P not removed). Reduction of COD over N and P ratio. Higher removal of suspended matter and lower sludge production (lower water content). Alternative Anaerobic pretreatment. Purpose: removal of COD and nutrients Special: suitable as a local pretreatment; not suitable at municipal wastewater treatment (temperature and concentrations too low). WWTP2030E 16.

(19) 4.3. B A S I C T R E AT M E N T. 5IFNBJOPCKFDUJWFTBUUIFCBTJDQSPDFTTTUFQBSF UPSFNPWFSFNBJOJOH$0% /BOE1.PTUTZTUFNTBSF DPNQPTFEPGBCJPSFBDUPSBOETVCTFRVFOUTFQBSBUJPOPGXBUFSBOECJPNBTT SFTJEVFTMVEHF 5IFUFDIOJ RVFTDPOTJEFSFEBSFMJTUFEJOUBCMF8JUISFTQFDUUPUIFCJPSFBDUPS JUTIPVMECFNFOUJPOFEUIBUFWFO NPSFUFDIOJRVFTIBWFCFFOEFWFMPQFE"MMPGUIFNBSFFJUIFSBFSPCJDPSBOBFSPCJDTVTQFOEFEPSBUUBDIFE HSPXUITZTUFNT Table 4.2. Overview of techniques. SYSTEM. FE AT URE S. Conventional: Suspended growth Activated sludge. Purpose: removal of COD, N (nitrification, denitrification), P. Activated sludge + chemical P-precipitation. Special: the reliability of these systems may hamper development of a new. Activated sludge treatment +. generation of treatment plants; external biomass-water separation (secondary. biological P-removal. sedimentation); return and excess biomass. Basic treatment option in all scenarios. Attached growth Trickling filter + Sedimentation. Purpose: removal of COD, transformation of N (nitrification) Special: extended removal of COD and P at pretreatment required; external biomass-water separation (secondary sedimentation); excess biomass. Submerged systems (e.g. Biostyrtion). Purpose: removal of COD, transformation or removal of N (nitrification, denitrification) Special (Biostyr): attached growth at a synthetic carrier material; upflow treatment; packed fluidized bed retained by a screen; aerobic or anoxic and aerobic reactor; backwashing; external clarification of backwash water; hardly any experience in The Netherlands. Airlift fluidized systems (e.g. Circox). Purpose: removal of COD, transformation of N (nitrification), removal of P Special (Circox): attached growth at a carrier material; internal plate separator for clarification of effluent; limited excess biomass production; limited space consumption; hardly any experience in The Netherlands. Moving-bed biofilm systems (MBBR; e.g. Kaldness). Purpose: removal of COD, N (nitrification, denitrification), P Special (Kaldness): no P-removal; attached growth on a synthetic carrier material; aerobic and anaerobic reactors; air mixing and mechanical mixing; internal clarification (screen); no return biomass required; applicable as full treatment or pretreatment; hardly any experience in The Netherlands. Alternative systems Aerobic suspended bed reactor (Nereda). Experience: promising system: first full scale reactor will start up in 2011. Cold Anammox reactor. Purpose: removal of N through anaerobic oxidation of ammonia by nitrite Special: less space consumption, reduced CO2-emission, reduced power consumption, no external C-source required, minimal surplus sludge; until now only theoretical. Membrane bioreactor (MBR). Purpose: removal of COD and N Special: high costs and energy consumption. Alternatives for sedimentation Upflow sludge blanket filtration. Special: compact system. Lamella filtration (e.g. Actiflo). Special: widely applied abroad but not in The Netherlands; compact system. 17 WWTP2030E.

(20) 4.4. P O S T T R E AT M E N T. 5IFPCKFDUJWFTBUUIFQPTUUSFBUNFOUQSPDFTTTUFQEJGGFS1PTUUSFBUNFOUIBTUPGJMMUIFHBQUIBUNBZSFNBJO CFUXFFOUIFUSFBUNFOUSFTVMUTBDIJFWFEUISPVHIQSFUSFBUNFOUBOECBTJDUSFBUNFOUBOEEJTDIBSHFHVJEFMJ OFT5IFPCKFDUJWFBUQPTUUSFBUNFOUDBOBMTPCFTFUCZUIFFGGMVFOURVBMJUZSFRVJSFEGPSXBUFSSFVTFQVSQP TFT5BCMFMJTUTUIFUFDIOJRVFTDPOTJEFSFE Tabel 4.3. Overview of techniques for post treatment. SYSTEM. FE AT URE S. Removal of particulate matter Rapid sand filtration. Purpose: depending on design and operation - Removal of suspended matter and N (biological) - Removal of suspended matter and P (floc filtration) - Combined removal Special: high energy consumption. Micro sieve, rotary drum sieve. Purpose: removal of suspended matter and included N and P. Fabric sieve. Special: micro sieve and drum sieve are attractive because of low energy. Fuzzy filter. consumption; in The Netherlands only minor experience on full scale. Removal of colloidal and dissolved matter and microorganisms Membrane techniques Microfiltration. Purpose: removal of organic and inorganic compounds and pathogens; except. Ultra filtration. microfiltration effective at disinfection. Nanofiltration. Special: high treatment costs, production of a residue (brine); proven technology,. Reverse osmosis. mainly used for water production. Other techniques Activated carbon filtration. Purpose: removal of (hazardous) organic compounds. Ion exchange. Purpose: removal of inorganic compounds. Ozonisation. Purpose: removal of pathogens. UV disinfection. Special: regeneration and residue (carbon, ion); relatively high treatment costs;. Hydrogen peroxide. very limited experience on effluent treatment in The Netherlands. General effluent polishing Reed bed filter (constructed wetland). Purpose: removal of colloidal organic matter (sedimentation), N and P. Algae pond. (plant uptake), heavy metals (adsorption), addition of oxygen Purpose: ‘natural’ bridging of the water quality gap between effluent and surface water (vitalization of effluent) Special: large space requirements; no removal of pathogens; possibility of harvesting plants en algae; until now no full-scale experience in The Netherlands. WWTP2030E 18.

(21) 4.5. S L U D G E T R E AT M E N T. 4MVEHFJTBMJRVJESFTJEVFPGXBTUFXBUFSUSFBUNFOU DPOUBJOJOHPSHBOJDNBUUFSBOEIBWJOHIJHIXBUFSDPO UFOU4MVEHFTBSFMJCFSBUFEBUQSFUSFBUNFOU TFEJNFOU BUCBTJDUSFBUNFOU TVSQMVTCJPNBTT BOEBUTPNF QPTUUSFBUNFOUUFDIOJRVFT FHDMBSJGJDBUJPOPGCBDLXBTIXBUFSPGGJMUSBUJPO  "CBTJDPCKFDUJWFPGTMVEHFUSFBUNFOUJT UPSFEVDFUIFWPMVNF5IJTDBOCFBDIJFWFECZSFEVDJOHUIFXBUFS BOE PSHBOJD NBUUFS DPOUFOU " IJHIFS PCKFDUJWF JT  UP SFEVDF UIF WPMVNF BOE VTF UIF PSHBOJD NBUUFS PG TMVEHFGPSFOFSHZSFDPWFSZ5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF Tabel 4.4. Overview of techniques for sludge treatment. SYSTEM. FE AT URE S. Physical dewatering (free water) Gravity-belt thickener. Purpose: reduction of water content (sludge volume) in view of successive sludge. Centrifuge. treatment. Belt-filter press Biochemical dewatering (entrapped water) Enzymatic hydrolysis. Purpose: reduction of water content by breaking down a complex chemical. Thermal hydrolysis. structure of macromolecules or the structure of microorganisms. Disintegration (cavitation). Special: experience in The Netherlands limited. Worldwide experience show. Biological techniques. possibilities for larger scale sludge treatment. Organic mass reduction Mesophylic digestion. Purpose: reduction of sludge organic matter and recovery of energy and heat. Thermophylic digestion. Special: the energy produced is mostly applied at the wastewater treatment plant. Combined digestion. and sometimes elsewhere ; the water separated from digested sludge is rich of N and P. The residue requires final treatment. Final treatment Composting. Purpose: reduction of mass and volume of energy recovery residue. Thermal drying. Experience: mostly direct incineration (sludge only). In some cases first. Incineration. composting or thermal drying and subsequently co-incineration (domestic waste,. Gasification and pyrolysis. coal, cement ovens). Pyrolysis, gasification and wet oxidation are not applied. Wet oxidation. 19 WWTP2030E.

(22) 4.6. T R E AT M E N T O F R E J E C T I O N WAT E R. "UTMVEHFUSFBUNFOU TPMJENBUUFSJTTFQBSBUFEGSPNTPDBMMFESFKFDUJPOXBUFS5IFSFKFDUJPOXBUFSPGEJHF TUFETMVEHFIBTBIJHI/BOE1DPOUFOU5IFCBTJDPCKFDUJWFBUGVSUIFSUSFBUNFOUJT UPSFEVDFUIF/BOE1 DPOUFOU5IFIJHIFSPCKFDUJWFJT UPSFDPWFS/BOE15BCMFMJTUTUIFUFDIOJRVFTDPOTJEFSFE Tabel 4.5. Overview of techniques for treatment of rejection water. SYSTEM. FE AT URE S. N removal Sharon process. Purpose: removal of dissolved N (ammonia) from water. De-ammonification (e.g. Anammox). Special: Sharon process requires an external (added) C-source, deammonification processes not; widely accepted as proven technology. N recovery Steam stripping Air stripping. Purpose: removal of N from water and recovery of N from stripping gas (after partial oxidation as NH4NO3) Special: in general N is a renewable resource. Recovery from wastewater may not be competitive to other options. Limited experience. P recovery Crystalactor technology. Purpose: removal of P from water and recovery of P. Recovery as calciumphosphate. Struvite reactor. grains (Crystal) or magnesiumammoniaphosphate (Struvite) Special: reuse may be obstructed by pollution of phosphate produced; high operation costs (Crystalactor). WWTP2030E 20.

(23) 4 .7. E N E R G Y CO N V E R S I O N. "UTMVEHFEJHFTUJPO HBTJTQSPEVDFE5IFNBJOPCKFDUJWFPGHBTUSFBUNFOUJT UPSFDPWFSUIFFOFSHZDPO UBJOFE5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF Tabel 4.6. Overview of techniques for energy conversion. SYSTEM. FE AT URE S. Basic Boiler. Purpose: combustion of digestion gas and recovery of heat for heating purposes. Cogenerator. Purpose: combustion of digestion gas for production of electricity and recovery of combustion heat for heating purposes Special: relatively low efficiency at electricity production (35%); contamination of digestion gas. Advanced Dual fuel. Purpose: combustion of digestion gas for production of electricity and recovery of. Cogenerator applying ORC. combustion heat for heating purposes. (organic ranking cycle). Special: higher efficiency at energy production (> 40%); NOx-emission (Dual Fuel),. Fuel cell. high costs (fuel cell); all systems require a certain scale; limited experience in The Netherlands. Alternatives Heat pump. Purpose: use of combustion gas heat to produce work Special: reuse should be possible in the vicinity of the treatment plant, because of heat losses at transport. Geothermal heat pump. Purpose: subsurface storage and use of combustion gas heat Special: low thermal efficiency; not applied for wastewater treatment heat in The Netherlands; increasing applications at reuse of other forms of residual heat. Production of green gas. Purpose: production of natural gas from digester gas Special: maximal thermal efficiency (at direct delivery of gas); the energy required by the wastewater treatment plant has to be purchased. 21 WWTP2030E.

(24) 5. WWTP2030E 22.

(25) OUTLINE OF 2030 WASTEWATER TREATMENT PLANT 5 .1. WAT E R FA C T O R Y. *GPOFDPOTJEFSTBXBTUFXBUFSUSFBUNFOUQMBOUUPCFBXBUFSQSPEVDUJPOGBDJMJUZ BUQSFTFOUUIFQSPEVDUJO NPTU%VUDIDBTFTIBTUPNFFUBEJTDIBSHFQFSNJUBJNJOHBUNBJOUBJOJOHBHPPERVBMJUZPGUIFSFDFJWJOH TVSGBDFXBUFS5IFEJTDIBSHFQFSNJUJTCBTFEPOBEFHSFFPGEJMVUJPOPGFGGMVFOU*OTPNFFYDFQUJPOBMDBTFT  UIFQSPEVDURVBMJUZJTTFUCZNPSFTFWFSFRVBMJUZHVJEFMJOFTEFUFSNJOFECZJUTBQQMJDBUJPO%VUDIFYBNQMFT BSFBQQMJDBUJPOGPSJOEVTUSJBMDPPMJOHBOEQSPDFTTFTBOEBHSJDVMUVSBMJSSJHBUJPO"OPUIFSUZQFPGBQQMJDBUJ POJTUIFVTFBTTVSGBDFXBUFSJOBSJEBSFBT XJUIMJNJUFEQPTTJCJMJUJFTPGEJMVUJPO*O5IF/FUIFSMBOET UIFTF BQQMJDBUJPOTNBZSFNBJOFYFNQUJPOTPOUIFTIPSUUFSN CFDBVTFPGUIFBCVOEBOUOBUVSBMXBUFSSFTPVSDFT "QSFEJDUBCMFUSFOEBUUIFNPNFOUJT UIBUGVUVSF&VSPQFBOTVSGBDFXBUFSRVBMJUZHVJEFMJOFTXJMMJOEVDF UIFOFFEPGGVSUIFSOVUSJFOUSFNPWBM Influent. Additives. Pretreatment. Basic treatment. Post treatment. Rejection water treatment. Sludge treatment. Energy conversion. Raw materials (water, N, P, Energy). Residues, sludges, etc.. Figure 5.1. Scheme of various process steps of a wastewater treatment plant, in blue treatment scheme for a Water Factory. 5 .1 .1 WAT E R FA C T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S. 5FSOFV[FOXBTUFXBUFSUSFBUNFOUQMBOU QSPDFTTXBUFS. 5IF;FFVXT7MBBOEFSFO8BUFS#PBSEBOE&WJEFT*OEVTUSJBM8BUFSIBWFTUBSUFEUIFDPOTUSVDUJPOPGBNFN CSBOF CJPSFBDUPS BU UIF 5FSOFV[FO XBTUFXBUFS USFBUNFOU QMBOU 4JODF   &WJEFT VTFT FGGMVFOU GPS UIF QVSQPTFPGQSPEVDUJPOPGEFNJOFSBMJTFEXBUFS5IFOFXNFNCSBOFCJPSFBDUPS IBWJOHBEFTJHOFEDBQB DJUZPGNIPVS JTNFBOUUPVQHSBEFUIFFGGMVFOURVBMJUZ JOPSEFSUPQSPEVDFQSPDFTTXBUFS GJHVSF  . 23 WWTP2030E.

(26) &NNFOXBTUFXBUFSUSFBUNFOUQMBOU CPJMFSGFFEXBUFS. "KPJOUWFOUVSFPGUIF%SFOUIF8BUFS$PNQBOZBOEUIF7FMUBOE7FDIU8BUFS#PBSEIBTFNCBSRVFEPO VQHSBEJOHPGFGGMVFOUUPCPJMFSGFFEXBUFSGPSTUFBNQSPEVDUJPO5IFVQHSBEJOHQSPDFTTDPNQSJTFTTUFQT 5IFTF BSF JO DISPOPMPHJDBM PSEFS VMUSB GJMUSBUJPO  CJPMPHJDBM BDUJWBUFE DBSCPO GJMUSBUJPO  QIBTF SFWFSTF PTNPTJT BOEQPMJTIJOHCZFMFDUSPEFJPOJTBUJPO GJHVSF  ,BBUTIFVWFMXBTUFXBUFSUSFBUNFOUQMBOU SFDSFBUJPOXBUFS. 4JODF UIFFGGMVFOUJTVTFEBTSFDSFBUJPOXBUFS JOPSEFSUPBWPJEBCTUSBDUJPOPGTDBSDFHSPVOEXBUFS 5IFFGGMVFOUJTQPMJTIFEJOBDPNQBSUNFOUSFFECFEGJMUFS*OPSEFSUPCFUUFSDPOUSPMUIFOVUSJFOUDPO UFOU BSBQJETBOEGJMUFSJTJOTFSUFECFGPSFUIFSFFECFEGJMUFS5IFGJMUFSIBTBDBQBDJUZPGBCPVUN QFSZFBS GJHVSF  -BOEWBO$VJKLXBTUFXBUFSUSFBUNFOUQMBOU BHSJDVMUVSBMXBUFS. *O UIF"BBOE.BBT8BUFS#PBSEJOUSPEVDFEBSFFECFEGJMUFSGPSQPMJTIJOHPGUIFFGGMVFOU*OESZ QFSJPET UIFFGGMVFOUJTEJTDIBSHFEUPUIFTVSGBDFXBUFSTZTUFNPGBOFBSCZBHSJDVMUVSBMBSFB5IFTVSGBDF XBUFSJTVTFEGPSTQSBZJSSJHBUJPO*OPSEFSUPQSPEVDFBNPSFOBUVSBMDPNQPTJUJPOPGUIFXBUFSEJTDIBSHFE  UIFSFFECFEGJMUFSXBTUSBOTGPSNFEJOUPBTXBNQTZTUFNDPNQPTFEPGTVDDFTTJWFMZBTVQQMZQPOE QBSBMMFM SFFECFEDBOBMT BEJTDIBSHFDBOBMBOEBRVBUJDQMBOUQPOET GJHVSF . F 5.2. F 5.4. F 5.3. F 5.5. Figure 5.2. Design of Membrane Bioreactor at wwtp Terneuzen (NWP, 2009). Figure 5.3. Building of facility for ultrapure water at wwtp Emmen (Kampen Industrial Care, 2009). Figure 5.4. Reed bed at wwtp Kaatsheuvel (Brabants Dagblad, 2007). Figure 5.5. Reed beds at wwtp Land van Cuijk (STOWA, 2004).. WWTP2030E 24.

(27) 5 .1 . 2 E X P E R I E N C E I N T H E N E T H E R L A N D S. *OPSEFSUPJOTQJSF BOFYBNQMFDPOGJHVSBUJPOPGBXBUFSGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN GJHVSF 5IFUFSNTPGSFGFSFODFXFSFUPNBOVGBDUVSFQSPEVDUT CPJMFSGFFEBOETVSGBDFXBUFS. Oxidation (O3). A step. MBR. Metalsalts + C-source. Contact reactor. Reverse Osmosis. Biological Activated Carbon 30% Filtration. 20% 10%. Boiler feedwater/ drinking water. Filtration wastewater 70% Conventional sludge treatment. Regeneration of Activated Carbon. Reed beds and surface water. Figuur 5.6. Water factory scheme by expert group.. "GBWPVSBCMFDPOEJUJPOBUBQQMJDBUJPOPGUIJTDPOGJHVSBUJPOJT UIBUXBTUFXBUFSJTDPMMFDUFECZBTFQBSBUFE TFXFSBHFTZTUFN5IJTHVBSBOUFFTUIFNPTUDPOTUBOUTVQQMZBOERVBMJUZPGUIFSBXNBUFSJBM UIFXBTUFXB UFS BOEUIFSFGPSFPGGFSTUIFCFTUUSFBUNFOUDPOEJUJPOT"MTPBHSJUDIBNCFSDBOCFBWPJEFE 4PNFJNQPSUBOUDIBSBDUFSJTUJDTPGUIFDPOGJHVSBUJPOBSF 1IZTJDBMSFNPWBMPG$0% #JPMPHJDBMSFNPWBMPG/ #JPMPHJDBMBOEDIFNJDBMQIZTJDBMSFNPWBMPG1 #JPMPHJDBMQSPDFTTFTCBTFEPOBDUJWBUFETMVEHFBOEBUUBDIFEHSPXUI NFNCSBOF BDUJWBUFEDBSCPO. *OTIPVMECFOPUFE UIBUUSFBUNFOUPGSFTJEVFTXBTOPUFMBCPSBUFECVUXJMM UPTPNFFYUFOU BMTPCFQBSUPG UIFXBUFSGBDUPSZ. 25 WWTP2030E.

(28) 5.2. E N E R G Y FAC T O R Y. 5SBEJUJPOBMMZ FOFSHZQSPEVDUJPOXBTOPUUIFNBJOJTTVFBUXBTUFXBUFSUSFBUNFOU)PXFWFS FOFSHZJTCFDP NJOHBTQFBSIFBE DPOTJEFSJOHUIBU PVUPG XBUFSCPBSETJO5IF/FUIFSMBOETTUBSUFEUPDPPQFSBUFJO EFWFMPQJOHUIFGVUVSFFOFSHZGBDUPSZ Influent. Additives. Pretreatment. Basic treatment. Post treatment. Rejection water treatment. Sludge treatment. Energy conversion. Raw materials (water, N, P, Energy). Residues, sludges, etc.. Figuur 5.7. Scheme of various process steps of a wastewater treatment plant, in red treatment scheme for a Energy Factory. 5.2.. E N E R G Y FAC T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S. "QFMEPPSOXBTUFXBUFSUSFBUNFOUQMBOU 0OFPGUIFNBKPSTUFQTUBLFOUPNBLFUIFXBTUFXBUFSUSFBUNFOUQMBOUFOFSHZOFVUSBM XBTUPTVQQMZSFTJ EVBMIFBUGPSIFBUJOHPGOFXMZCVJMEIPVTFTJOUIFWJDJOJUZPGUIFQMBOU'PSUIJTQVSQPTF BDPPQF SBUJPOXBTTUBSUFEPGUIF7FMVXF8BUFS#PBSE UIFNVOJDJQBMJUZPG"QFMEPPSOBOE&TTFOU1PXFS4VQQMZ "TBTJEFFGGFDU BUPSFEVDUJPOPGUIFDBSCPOEJPYJEFGPPUQSJOUPGUIFIPVTJOHBSFBJTBDIJFWFE "OPUIFSTUFQXBTUIFJOUSPEVDUJPOPGBDPEJHFTUFSBOETVCTFRVFOUEFBNNPOJGJDBUJPOSFBDUPS %&.0/  5IFDPEJHFTUFSOPUPOMZUSFBUTTMVEHFCVUBMTPFYUFSOBMXBTUFT GJHVSF  (BSNFSXPMEFXBTUFXBUFSUSFBUNFOUQMBOU "MTPBUUIJTQMBOUTUFQTXFSFBJNJOHBUFOFSHZOFVUSBMJUZ"O"TUFQXBTJOTFSUFEJOUIFXBTUFXBUFSUSFBU NFOUQSPDFTTBOEUIFQSPDFTTGVSUIFSDPNQSJTFTEJHFTUFSTJOTFSJFT5IFEJHFTUFSOPUPOMZUSFBUTMPDBMMZ QSPEVDFETMVEHFCVUBMTPTMVEHFTPGPUIFSQMBOUT'SPNUIFCJPHBT FMFDUSJDJUZJTQSPEVDFE DPWFSJOHBCPVU PGUIFJOUFSOBMEFNBOE3FTJEVBMIFBUJTVTFEGPSIFBUJOHPGUIFEJHFTUFST"UUSFBUNFOUPGEJHFTUFS SFKFDUJPOXBUFSUIFFOFSHZFGGJDJFOU4)"30/QSPDFTTXBTDIPTFO GJHVSF . WWTP2030E 26.

(29) F 5.8. F 5.10. F 5.9. F 5.11. F 5.12. Figure 5.8. Co-digestion, de-ammonification (DEMON) and digestion at wwtp Apeldoorn (Waterschap Veluwe, 2009). Figure 5.9. Wwtp Garmerwolde (Waterschap Noorderzijlvest, 2006). Figure 5.10. Wwtp Amsterdam-West (Waternet, 2010). Figure 5.11. Biogas as car fuel at wwtp Beverwijk (HHNK, 2009). Figure 5.12. Treatment of sludge from wwtp Ede and wwtp Apeldoorn (GMB, 2010).. 27 WWTP2030E.

(30) "NTUFSEBN8FTUXBTUFXBUFSUSFBUNFOUQMBOU 5IJTQMBOUPGJTPOFPGUIFCJHHFTUJO5IF/FUIFSMBOET IBWJOHBDBQBDJUZPGBCPVUNJMMJPOJOIBCJUBOU FRVJWBMFOUT5IFQMBOUBQQMJFTDPOWFOUJPOBMTMVEHFEJHFTUJPOBOEEFMJWFSTUIFCJPHBTUPUIFOFBSCZXBTUF JODJOFSBUJPOQMBOU UIBUBMTPUSFBUTUIFEJHFTUJPOTMVEHF5IFXBTUFJODJOFSBUJPOQMBOUTVQQMJFTIFBUUPUIF XBTUFXBUFSUSFBUNFOUQMBOU GJHVSF  #FWFSXJKLXBTUFXBUFSUSFBUNFOUQMBOU #JPHBT BU XXUQ #FWFSXJKL XBT VTFE GPS UIF QSPEVDUJPO PG FMFDUSJDJUZ BOE IFBU 5IF TVSQMVT CJPHBT XBT CVSOFE *O  B OFX CJPHBT USFBUNFOU GBDJMJUZ XBT CVJME  XIJDI QVSJGJFT UIF CJPHBT UP OBUVSBM HBT TUBOEBSET"UUIJTNPNFOU NPGOBUVSBMHBTBSFQSPEVDFEBEBZ IPVTFIPMET BOEDBSTPGUIF XBUFSCPBSE"UUIJTNPNFOU JNQSPWFNFOUTBSFCFJOHNBEFGPSBIJHIFSSFDPWFSZPGOBUVSBMHBTPVUPGCJP HBT VQUP  (PWFSEF ))/,   &EFBOE"QFMEPPSOXBTUFXBUFSUSFBUNFOUQMBOUT 5IF(.#DPNQBOZUSFBUTTMVEHFPGUIFQMBOUTPGUXPEJGGFSFOU8BUFS#PBSET 7FMVXFBOE7BMMFJBOE&FN 5IFNBKPSQBSUPGUIFTMVEHFTJTFYQPSUFEEJSFDUMZUP(FSNBOZBOEUSFBUFEJOBDPBMESZJOHQSPDFTT"MTPJO (FSNBOZ UIFNJOPSQBSUJTVQHSBEFEUPBTFDPOEBSZGVFM GJHVSF  5 . 2 .1 . E X P E R I E N C E I N T H E N E T H E R L A N D S. *OPSEFSUPJOTQJSF BOFYBNQMFDPOGJHVSBUJPOPGBFOFSHZGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN GJHVSF 5IFUFSNTPGSFGFSFODFXFSF UPDSFBUFBOFUQSPEVDUJPOPGFOFSHZ5IJTSFRVJSFTNJOJNJ[B UJPOPGFOFSHZDPOTVNQUJPOPGUIFQMBOUJUTFMGBOENBYJNJ[BUJPOPGJUTFOFSHZSFDPWFSZ*OUFSNTPGUSFBU NFOUPQUJPOT  4FQBSBUJPO PG $0% JOTUFBE PG BFSPCJD EFHSBEBUJPO PQUJNJ[BUJPO PG CJPHBT QSPEVDUJPO BOE FOFSHZ DPO TVNQUJPOBUBFSBUJPO. *OUFSNTPGFOFSHZDPOTVNQUJPO FDPOPNJDSFNPWBMPG/ 1BOESFTJEVBM$0% EFBNNPOJGJDBUJPOXJMMCF BOJNQPSUBOUUPPM. .BYJNBMSFDPWFSZPGTMVEHFDBMPSJDDPOUFOU *UTIPVMECFOPUFE UIBUTVQFSDSJUJDBMHBTJGJDBUJPOBOEBOBNNPYBSFOPUZFUBQQMJFEPOBUFDIOJDBMTDBMF. WWTP2030E 28.

(31) Metalsalt, polymer. A step or anaerobic reactor PreSieve? sedimentation Sedimentation. Screen. Heat recovery for houses Anammox. Dry weather flow COD 20%. Dry Solids 10-15%. CH4 P crystallization. Supercritical gasification Saltwaste H2 OH4. Water Fuel cell. Drying. Salt Electricity. Figure 5.13. Energy factory scheme by expert group.. 29 WWTP2030E.

(32) 5.3. N U T R I E N T FA C T O R Y. 5IFOVUSJFOUTFODPVOUFSFEJONVOJDJQBMXBTUFXBUFSTPGBSBSFDPOTJEFSFEBQPMMVUBOUSBUIFSUIBOBSBX NBUFSJBM)PXFWFS UIFGJSTUFYBNQMFTPG1SFDPWFSZIBWFFSBTFE. Influent. Additives. Pretreatment. Basic treatment. Post treatment. Rejection water treatment. Sludge treatment. Energy conversion. Raw materials (water, N, P, Energy). Residues, sludges, etc.. Figuur 5.14. Scheme of various process steps of a wastewater treatment plant, in green treatment scheme for a Nutrient Factory 5 . 3.1 N U T R I E N T FA C T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S. (FFTUNFSBNCBDIUXBTUFXBUFSUSFBUNFOUQMBOU 1IPTQIBUFDBOCFSFDPWFSFEBUBXXUQBT$BMDJVN1IPTQIBUF4JODFUIJTJTEPOFBUUIFXXUQ(FFTU NFSBNCBDIUCZVTJOHB$SZTUBMBDUPS HSBOVMBSSFBDUPS 5IJTQSPDFTTVTFEUPCFBQQMJFEBUNPSFXXUQµT  CVUGSPN(FFTUNFSBNCBDIUJTUIFMBTUPOF1IPTQIBUFJTSFNPWFEGSPNUIFTMVEHFXJUIUIF1IPTU SJQQSPDFTT VTJOHBDFUJDBDJESFTVMUJOHJO$BMDJVN1IPTQIBUFHSBOVMFT5IJTQSPEVDUJTUSBOTQPSUFEUPUIF 1IPTQIBUFJOEVTUSZ5IFQSPDFTTJTDPTUMZCFDBVTFPGUIFVTFPGMBSHFWPMVNFTPGDIFNJDBMT"MTPPQFSBUJP OBMQSPCMFNTMFEUPBEFDSFBTFPG1IPTUSJQQMBOUT 4508" D  8BTUFXBUFSUSFBUNFOUQMBOUTPG4UFFOEFSFOBOE0MCVSHFO "UXXUQ4UFFOEFSFOUIFXBTUFXBUFSPGBQPUBUPJOEVTUSZJTUSFBUFEUPHFUIFSXJUIUIFNVOJDJQBMXBTUFXB UFSGSPNXXUQ0MCVSHFO.BHOFTJVNPYJEF .H0 JTEPTFEJOPSEFSUPQSPEVDFTUSVWJUF4USVWJUFJTCFJOH VTFE BT B GFSUJMJ[FS "EEJUJPOBMMZ  UIJT QSPDFTT SFTVMUT JO B EFDSFBTFE CJPMPHJDBM  TMVEHF QSPEVDUJPO 'PS FOFSHZFGGJDJFODZ UIFBOBNNPYQSPDFTTJTJNQMFNFOUFE"NNPOJBJTPYJEJTFEWJBOJUSJUFBUPYZHFOMJNJ UJOHDPOEJUJPOTUPOJUSPHFOHBT 4MVEHFUSFBUNFOUBU4/# *OUIFTPVUIPG5IF/FUIFSMBOETBU4/# TMVEHFGSPNNVOJDJQBMXXUQµTJTJODJOFSBUFE  UPOOFTQFS ZFBS %VSJOHJODJOFSBUJPO UIFQIPTQIBUFJODPODFOUSBUFEJOUIFBTIFTBUBDPODFOUSBUJPOPGHSBNTQFS. WWTP2030E 30.

(33) LJMPHSBNBTIFT5IFZFBSMZQIPTQIBUFQSPEVDUJPOJT UPOOFT QBSUPGJUJTTPMEUPUIFQIPTQIBUFJOEVT USZ 5IFSNQIPT 5IFNVOJDJQBMTMVEHFTOFFEUPCFMPXJOJSPOTBMUT FTQFDJBMMZCJPMPHJDBMMZ1GJYFETMVEHF BOE1GJYBUJPOCZBMVNTBMUTJTOFFEFEGPSQIPTQIBUFSFDPWFSZ %FWFOUFSXBTUFXBUFSUSFBUNFOUQMBOU 8851%FWFOUFSJTCVJMUBTB#$'4QSPDFTT XIJDIJTBQSPDFTTDPOGJHVSBUJPOXJUIBQIPTQIBUFSJDITJEF TUSFBN*OUIFTFDPOEBOBFSPCJDDPNQBSUNFOU UIFQIPTQIBUFSJDIXBTUFXBUFSJTTUSJQQFEVTJOHJSPODIMPSJ EF %PSUNVOESFBDUPS 5IFDIFNJDBMQSFDJQJUBUFETMVEHFJTMFEUPUIFTMVEHFUIJDLFOFST MFBWJOHUIFNBJO CJPMPHJDBMQSPDFTTXJUIDIFNJDBMTMVEHFT'PSQIPTQIBUFSFDPWFSZ UIFVTFPGJSPOTBMUTNVTUCFNJOJNJTFE  UIFSFGPSFSFTFBSDIIBTCFFOEPOFVTJOHDBMDJVN BMVNJOJVNBOENBHOFTJVN3FTFBSDITIPXFEUIBUDBMDJ VNJTUIFCFTUBMUFSOBUJWFUPJSPOBOEUIFBEEJUJPOBMDPTUTBSFMPXFSUIBOUIFBEEJUJPOBMCFOFGJUT 4508"  D . F 5.15. F 5.17. F 5.16. F 5.18. Figure 5.15. Crystalactor at wwtp Geestmerambacht (Giesen, 2009). Figure 5.16. Struvite production at wwtp Steenderen (TUDelft/Paques, 2009). Figure 5.17. The phosphate cycle (SNB, 2009). Figure 5.18. BCFS reactor at wwtp Deventer (Waterschap Groot Salland, 2009).. 31 WWTP2030E.

(34) 5 . 3. 2 E X P E R I E N C E I N T H E N E T H E R L A N D S. *OPSEFSUPJOTQJSF BOFYBNQMFDPOGJHVSBUJPOPGBOVUSJFOUGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN GJHVSF 5IFUFSNTPGSFGFSFODFXFSF UPPQUJNJ[FUIFQSPEVDUJPOPGBSBXNBUFSJBMGSPNTMVEHFBOE SFKFDUXBUFSUIBUDBOCFVTFECZUIFOVUSJFOUJOEVTUSZ5IJTSFRVJSFTJOUFSNTPGUSFBUNFOUPQUJPOT 4FQBSBUJPOPGOVUSJFOUTGSPN$0% $PODFOUSBUJPOPGOVUSJFOUT. Biological P fixation. Grit chamber. Post sedimentation. Sludge thickening Water Digestion. Centrifuge. Dry solids. NH4PO4 Ash. Figuur 5.19. Nutrient factory scheme by expert group.. WWTP2030E 32. NH4NO3. Oxidation. Sludge P-recovery.

(35) 33 WWTP2030E.

(36) 6. WWTP2030E 34.

(37) ROADMAP 6 .1. D E S T I N AT I O N. 5IF%VUDIXBUFSCPBSETIBWFEFWFMPQFEBDPNNPOQFSTQFDUJWFPOUIFGVUVSFPGVSCBOXBTUFXBUFSNBOBHF NFOU*USFBET There will be one institution responsible of the integral urban wastewater management. It will act as a directing linking pin that cooperates in several strategic alliances, to efficiently treat wastewater and transform wastes into raw materials and energy.. 5IFQSPGJMFTPGGVUVSFXBUFS FOFSHZFONJOFSBMTGBDUPSJFTBTUIFOFXHFOFSBUJPOPGDVSSFOUXBTUFXBUFS USFBUNFOUQMBOUTIBWFCFFOEFWFMPQFE"DIBMMFOHFTUJMMUPCFNFUJT UPDPNCJOFUIFNJOUPPOFDPIFSFOU DPODFQU UIF/VUSJFOUT

(38) &OFSHZ

(39) 8BUFSGBDUPSZ /&8T  "UUIFNBUFSJBMJ[BUJPOPGUIFQFSTQFDUJWFBOEDPODFQU MPDBMDPOEJUJPOTBSFJNQPSUBOUBOEXJMMDBVTFBDFS UBJOWBSJFUZPGBQQSPQSJBUFBMUFSOBUJWFT 6.2. ROUTE. 5IFEFTUJOBUJPOJTEFGJOFEJOHFOFSBMUFSNTCVUOPUBTBGJYFETFUPGDPPSEJOBUFT*OUIFZFBSTUPDPNF  TFWFSBMQIFOPNFOBXJMMHSBEVBMMZEFGJOFGJSTUUIFSPVUFBOEMBUFSUIFEFTUJOBUJPO5IFTFQIFOPNFOBDBO CFDMVTUFSFEBTTUBSUJOHQPJOUT CPVOEBSZDPOEJUJPOT GBDUPSTPGJOGMVFODFBOEGBDUPSTUIBUSFRVJSFBUUFO UJPO5IFTFQIFOPNFOBIBWFUPNPOJUPSFESFHVMBSMZ JOPSEFSUPTUBZPOUSBDL Tabel 6.1. Important phenomena. PHENOMENA Starting-points. MO NI TOR I NG Will effluent be discharged into surface water or used as a water source? Will it be possible to utilize local circumstances in favour of the viability of a kind of factory?. Boundary conditions. Protection of public health by safe discharge and treatment of human wastes is a prime objective Protection of surface water quality and environment by prevention of discharge of oxygen demand and nutrients is a second important objective Setting up water, energy and nutrients factories requires a guaranteed sales of products Sales requires marketing; this is a new skill that has to be developed. Factors of influence. The choice of technology is not only determined by boundary conditions but also. Factors that require attention. Process steps should be tuned, in order to design a well balanced plant. by effluent quality, costs, energy neutrality and nutrient recovery Plants should be flexible (modular), in order to accomodate developments smoothly. 35 WWTP2030E.

(40) 6.3. GPS. 5IFPOHPJOHEFWFMPQNFOUPGDVSSFOUUSFBUNFOUUFDIOJRVFTBOEEFTJHONFUIPETIBTUPCFNPOJUPSFEDBSF GVMMZBOENBZIBWFUPCFTUJNVMBUFE5IFUBCMFTVNNBSJ[FTTPNFSFMFWBOUBDUJWJUJFT Tabel 6.2. Future activities. TO PIC. ACT I V I TY. Technology known and proven in. Knowledge and experience is well documented by STOWA. The Netherlands. This database should always be consulted. Technology known in The Netherlands but. Participation in an international network. only proven abroad. Excursions Development of business cases Demonstration projects at a Dutch wastewater treatment plant. Technology known but not proven Design. Similar Development of existing models for the purpose of design of water, energy and nutrient production. 'VSUIFSNPSF  POHPJOH SFTFBSDI IBT UP CF FWBMVBUFE BOE GVUVSF SFTFBSDI IBT UP CF EJSFDUFE  JO PSEFS UP PQUJNJ[FUIFFGGPSUTBOESFTVMUTJOUIFQFSTQFDUJWFPGUIFXBTUFXBUFSUSFBUNFOUQMBOU*UJTPGVUNPTU JNQPSUBODF UPEFWFMPQBDPIFSFOUSFTFBSDIQSPHSBNPOTFQBSBUFBOEDPNCJOFEQSPEVDUJPOPGXBUFS FOFS HZ BOEOVUSJFOUT. WWTP2030E 36.

(41) 37 WWTP2030E.

(42) CO L O P H O N. "NFSTGPPSU +VOF PUBL I SHER. 4508" "NFSTGPPSU 5IF/FUIFSMBOET AU T H O R S. JS1BVM3PFMFWFME .8)/PSUI&VSPQF ESJS+FMMF3PPSEB .8)/PSUI&VSPQF .BBSUFO4DIBBGTNB.TD .8)/PSUI&VSPQF WORK ING GROUP. JOH1BUSJDL#MPN 8BUFSTDIBQ7FMVXF ESJS+BO)PGNBO ,838BUFSDZDMF3FTFBSDI*OTUJUVUF JS,FFTEF,PSUF 8BUFSOFU ESJS.FSMFEF,SFVL 8BUFSTDIBQ)PMMBOETF%FMUB JS'SBOT4DIVMUJOH (MPCBM8BUFS3FTFBSDI$PBMJUJPO JS$PSB6JKUFSMJOEF 4508" T R A N S L AT I O N. JS+FMUFWBOEFS)FJEF .8)/PSUI&VSPQF GR APHIC DE SIGN. 4UVEJP# #SJHJUUF#FFOFO /JFVXLPPQ PHOTOGR APHY. #FOOP8POJOL .8) *4UPDLDPN. 4508"SFQPSU *4#/ . WWTP2030E 38.

(43) NEWs. NEWs. NEWs. NEWs. NEWs. NEWs. NEWs.

(44) stowa@stowa.nl www.stowa.nl. TEL + 31 33 460 32 00 FAX +31 33 460 32 01. Stationsplein 89 4th floor. P.O. BOX 2180 3800 CD AMERSFOORT THE NETHERLANDS.

(45)

Referenties

GERELATEERDE DOCUMENTEN

FIGUUR B22.42 DE CONCENTRATIE VAN CLOZAPINE IN DE TOEVOER EN DE AFVOER VAN DE UV+H 2 O 2 PILOT EN HET HIERUIT BEREKENDE VERWIJDERINGSRENDEMENT TIJDENS DE INREGELPERIODE

Het helofytenveld naast de rwzi Zeewolde bleek niet langer nodig voor nabehandeling van het rwzi-effluent en werd daarom ingezet voor behandeling van afstromend hemelwater van

My research, in collaboration with the students, teachers, parents and guardians, Elders and community members of the Gitga’at community of Hartley Bay, was to help implement

To make sure that pride is seen as a past time-focus emotion in this intervention, people will have to think back to a moment they felt proud in the past.. It is expected that

United Nations International Strategy for Disaster Reduction (UNISDR), 2005, Building the resilience of nations and communities to disasters: Hyogo Framework for

In moderne dramas word daar baie dikwels van geweld gebruik gemaak maar eerder in n geestelike as in die fisieke vorm waarin dit byvoor- beeld veral in die

That is to say that the idea of the covenant and its covenant signs were at the very core of Jewish life in the Late Second Temple Period; hence, the Sabbath, as one of the

In this paper, localization of damage in a carbon fibre reinforced composite is added to the damage detection research using Fibre Bragg Gratings of Grouve [1]