• No results found

VU Research Portal

N/A
N/A
Protected

Academic year: 2021

Share "VU Research Portal"

Copied!
20
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

VU Research Portal

The role of protein kinases in Alzheimer's disease

Rosenberger, A.F.N.

2016

document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

Rosenberger, A. F. N. (2016). The role of protein kinases in Alzheimer's disease.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

(2)
(3)
(4)

NEDERLANDSE SAMENVATTING

De ziekte van Alzheimer (AD) is de meest voorkomende vorm van dementie bij ouderen en gaat gepaard met onder andere vergeetachtigheid, desoriëntatie en verandering van de persoonlijkheid. Dit alles heeft een effect op het uitvoeren van dagelijkse activiteiten en op de kwaliteit van leven. Bij de ziekte van Alzheimer zijn de hersenen beschadigd. De hersencellen die signalen doorgeven (neuronen) worden aangetast. De verbindingen tussen de neuronen en uiteindelijk de neuronen zelf gaan verloren. Hierdoor kunnen de hersenen hun functie niet meer correct uitvoeren met als gevolg het kwijtraken van het geheugen.

In de hersenen van patiënten met AD zijn drie typische verschijnselen waar te nemen. Ten eerste de vorming van eiwitkluwens van het langgerekte eiwit tau. In een gezond brein is het tau eiwit onderdeel van het interne transportsystem in neuronen dat ervoor zorgt dat voedingstoffen naar de uiteinden worden vervoerd. Een verstoord transportsystem resulteert in een steeds verminderende functie van de neuronen waardoor ze uiteindelijk afsterven. De kluwens die het tau eiwit in de neuronen vormt worden aangeduid als neurofibrillaire kluwens (“tangles”). Het tweede typische verschijnsel is een samenklontering van het beta-amyloid eiwit in de zogenoemde plaques in en rond de bloedvaten (capillaire amyloid angiopathie). De beta-amyloid klontjes zijn toxisch voor de neuronen en ze zorgen ervoor dat de communicatie tussen de neuronen wordt verstoord. De ophoping van het beta-amyloid eiwit in de vaatwand geeft aan dat de afvoer van het beta-amyloid eiwit uit de hersenen wordt belemmerd, en leidt tot verdere ophoping van het beta-amyloid in het hersenweefsel (derde verschijnsel).

Kenmerkend voor AD is de lange symptoom-vrije periode die wel 20-30 jaar kan duren. Recent onderzoek wijst erop dat chronische ontsteking (inflammatie) in de hersenen een rol speelt bij het ontstaan van AD. Ook een verminderde werking van de synapsen, die de communicatie tussen de neuronen in de hersenen tot stand brengen, wordt gezien als mogelijke oorzaak. Omdat deze processen reeds verstoord zijn in een vroeg stadium van AD wordt verondersteld dat beïnvloeding van deze processen door farmacologische interventie het ziekteproces kan vertragen en misschien zelfs de ziekte zou kunnen voorkomen.

(5)

voor de cel. Ook het amyloid eiwit kan door eiwitkinasen worden gefosforyleerd waardoor in het hersenvocht onoplosbare amyloid-aggregaten worden gevormd, die stress in de hersenen veroorzaken. Over de eiwitkinasen die bij deze processen betrokken zijn en hun specifieke rol bij de ziekte van Alzheimer is nog weinig bekend.

Het onderzoek beschreven in dit proefschrift begint dan ook met een literatuurstudie die inventariseert van welke eiwitkinasen beschreven is dat ze betrokken zijn bij inflammatie in de hersenen (neuroinflammatie) en synaptische activiteit tijdens AD. De NCBI PubMed databank is doorzocht met trefwoorden. De naam en de synoniemen van elk van de 523 eiwitkinasen zijn gebruikt in combinatie met de zoekterm ‘Alzheimer’s disease’, ‘neuroinflammation’, of ‘synaptic changes’. Dit resulteert in een lijst van 66 eiwitkinasen die actief betrokken zijn bij neuroinflammatie of bij synaptische veranderingen in AD (Hoofdstuk 1).

Om meer inzicht te verkrijgen in de rol van eiwitkinasen gedurende de progressie van AD, is de activiteit van de eiwitkinasen in post mortem hersenweefsel (hippocampus) van 100 breinen in verschillende stadia van AD (Braak stadium 0 t/m VI) gemeten. Hiervoor is gebruik gemaakt van een peptide microarray waarop 144 verschillende peptiden zijn bevestigd die elk door eiwitkinasen gefosforyleerd kunnen worden. De gefosforyleerde peptiden worden herkend door antilichamen waaraan een fluorescent molecuul is gekoppeld. Het onderzoek laat zien dat de activiteit van de eiwitkinasen afneemt met de progressie van de ziekte. De afname van kinase activiteit wordt al waargenomen in een vroeg stadium van de ziekte (Braak stadium I en II). Door koppeling van de microarray resultaten aan informatie in databanken, zoals STRING, UniProt en HPRD, zijn bekende en nog onbekende eiwitkinasen gevonden die mogelijk een rol spelen in de ziekte. Zo vinden we veranderingen in de activiteit van Ephrin-receptor A1 (EphA1) kinase, dat bekend is als een risico-gen voor AD, en het sarcoma tyrosine kinase (Src). Beide eiwitkinasen zijn belangrijk voor het functioneren van neuronen en betrokken bij de vorming van het geheugen. Ook zijn eiwitkinasen geïdentificeerd waarvan nog niet bekend was dat ze in een vroeg stadium van AD veranderd zijn, zoals het protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES) en het fyn-associated tyrosine kinase (FRK) (Hoofdstuk 2).

(6)

De functie van het CK2 eiwit in relatie tot AD is verder bestudeerd in een cellijn van humane astrocyten (U373) en in gekweekte primaire astrocyten afkomstig uit menselijk hersenmateriaal. Wanneer deze cellen worden gestimuleerd met de cytokines IL-1 of TNF- resulteert dat in de productie en uitscheiding van pro-inflammatie cytokines zoals MCP-1 en IL-6. In de aanwezigheid van een CK2 remmer zien we dat de hoeveelheid uitgescheiden MCP-1 en IL-6 meer afneemt naarmate de concentratie remmer hoger is (dosis-effect relatie). Deze resultaten tonen aan dat CK2 gezien kan worden als een mogelijk therapeutisch aangrijpingspunt voor het beïnvloeden van neuroinflammatie in AD (Hoofdstuk 3).

Het EphA4 eiwitkinase (Hoofdstuk 1+2) behoort tot de familie van Ephrin receptoren. Onderzoek in transgene muizen laat zien dat het een rol speelt bij geheugenverlies. Met behulp van immunohistochemische technieken hebben we de hoeveelheid EphA4 eiwit in weefsel van de hippocampus van patiënten met AD en gezonde controles vergeleken. Ons onderzoek laat zien dat de totale hoeveelheid EphA4 hetzelfde blijft maar dat de lokalisatie van het kinase in het hersenweefsel van AD patiënten anders is dan in gezond hersenweefsel. In AD bevindt het EphA4 kinase zich op dezelfde plaats als de amyloid ophopingen en de tau kluwens, de twee typisch kenmerken van AD. Deze veranderde lokalisatie is al te zien in vroege stadia van AD (Braak stadium II) (Hoofdstuk 4).

Een interessante vraag is of deze herschikking van het EphA4 eiwit ook een effect heeft op de kinaseactiviteit. Om specifiek de activiteit van EphA4 te kunnen bepalen in een extract van hippocampus weefsel waarin een groot aantal verschillende eiwitkinasen aanwezig is, is een kinase immunodepletie assay (KID) ontwikkeld. In deze assay wordt het EphA4 met behulp van een antilichaam verwijderd uit het hersenextract (depletie). Vergelijking van de eiwitkinase activiteit voor en na depletie geeft informatie over de activiteit van het verwijderde kinase. Door gebruik te maken van KID laten we zien dat de activiteit van het EphA4 kinase niet verandert tijdens de ziekte, terwijl de lokalisatie wel veranderd is (Hoofdstuk 5).

(7)
(8)

LIST OF PUBLICATIONS

Rosenberger AFN, Rozemuller AJM, van der Flier WM, Scheltens P, van der Vies SM, Hoozemans JJM (2014) Altered distribution of the EphA4 kinase in hippocampal brain tissue of patients with Alzheimer’s disease correlates with pathology. Acta Neuropathol Commun 2:79. doi: 10.1186/s40478-014-0079-9

Rosenberger AFN, Hilhorst R, Coart E, Garcia Barrado L, Naji F, Rozemuller AJM, van der Flier WM, Scheltens P, Hoozemans JJM, van der Vies SM (2016) Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology. J Alzheimers Dis 49:927–943. doi: 10.3233/JAD-150429

Rosenberger AFN, Morrema THJ, Gerritsen WH, van Haastert ES, Snkhchyan H, Hilhorst R, Rozemuller AJM, Scheltens P, van der Vies SM, Hoozemans JJM (2016) Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology. J Neuroinflammation 13:4. doi: 10.1186/s12974-015-0470-x

Rosenberger AFN, Boender PJ, Hilhorst R, van der Vies SM (2016) EphA4 protein kinase activity in hippocampal brain tissue of patients with Alzheimer’s disease. in preparation Rosenberger AFN, Hilhorst R, Teunissen CE, Scheltens P, Hoozemans JJM, van der Flier WM, van der Vies SM (2016) Protein kinase activity profiling as potential biomarker for Alzheimer’s disease. in preparation

(9)

LIST OF AFFILIATIONS

Piet J Boender, PamGene International BV, Wolvenhoek 10, 5211 HH ‘s-Hertogenbosch, The Netherlands

Elisabeth Coart, International Drug Development Institute, Avenue Provinciale 30, 1340 Louvain-la-Neuve, Belgium

Wiesje M van der Flier, Alzheimer center & Department of Neurology, Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands

Leonardo García Barrado, International Drug Development Institute, Avenue Provinciale 30, 1340 Louvain-la-Neuve, Belgium

Wouter H Gerritsen, Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands Elise S van Haastert, Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands Riet Hilhorst, PamGene International BV, Wolvenhoek 10, 5211 HH ‘s-Hertogenbosch, The Netherlands

Jeroen JM Hoozemans, Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands Tjado HJ Morrema, Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands Faris Naji, PamGene International BV, Wolvenhoek 10, 5211 HH ‘s-Hertogenbosch, The Netherlands

Andrea FN Rosenberger, Department of Pathology, Alzheimer center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands

(10)

Philip Scheltens, Alzheimer center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HZ Amsterdam, the Netherlands

Hripsime Snkhchyan, Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands Charlotte E Teunissen, Neurochemistry Laboratory and Biobank Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands

(11)

LIST OF ABBREVIATIONS

aa Amino acid

A Amyloid beta

A Os Amyloid beta oligomers

Abl Abelson murine leukemia viral oncogene tyrosine kinase

AD Alzheimer’s disease

ADP Adenosine di-phosphate

AGC A, G and C kinase superfamily

Akt RAC-alpha serine/threonine-protein kinase (aka PKB)

AMPK AMP-activated protein kinase

AMPAR -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

ANOVA Analysis of variance

aPK Atypical protein kinase

ApoE Apolipoprotein E

APP Amyloid precursor protein

ATCC American Type Culture Collection

ATM Ataxia telangiectasia mutated kinase

ATP Adenosine Triphosphate

BARK Beta adrenergic receptor kinase

BBB Blood-brain barrier

Bcr Breakpoint cluster region protein

BLAST Basic Local Alignment Search Tool

Brk Breast tumor kinase (aka tyrosine protein kinase 6)

BSA Bovine serum albumin

CA1-4 Cornu Ammonis region 1-4 of the hippocampus

CAA Cerebral amyloid angiopathy

CAK Cell adhesion kinase

CaMK Calcium/cadmodulin-regulated kinase

CaMKK2 Calcium/cadmodulin-regulated kinase kinase 2

capCAA Capillary cerebral amyloid angiopathy

CASK Calcium/Cadmodulin-dependent serine protein kinase

CCD Charge-coupled device

CCL2 Chemokine (C-C motif) ligand 2 (aka MCP-1)

CD33 Cluster of differentiation (designation) molecule 33

Cdk5 Cyclin-dependent kinase 5

CERAD Consortium to establish a registry for Alzheimer’s disease

CK1 Protein kinase CK1 (former casein kinase 1)

CK2 Protein kinase CK2 (former casein kinase 2)

CLK CDC-like kinase 1

(12)

CNS Central nervous system

CON Control

CR1 Complement component 3b/4b receptor 1

CREB1 cAMP-response element-binding protein 1

CRPC Castration-resistant prostate cancer

CSF Cerebrospinal fluid

CSNK2A1 casein kinase II (CKII) subunit gene

CTRL Control CX-4945 5-(3-Chlorophenylamino)-benzo[c][2,6]-naphthyridine-8-carboxylic acid DAB Diaminobenzidine DAG Diacylglycerol DG Dentate gyrus

DMEM Dulbecco’s modified eagle’s medium

DMSO Dimethylsulfoxide

DTT Dithiothreitol

Dyrk1A Dual-specific tyrosine regulated kinase 1A

ECL Enhanced chemiluminescence reagent

EDTA Ethylenediaminetetraacetic acid

eEF2K Eukaryotic elongation factor-2 kinase

EGFR Epidermal growth factor receptor

EICD EphA4 intracellular domain

ELISA Enzyme linked immuno-sorbent assay

EOAD Early-onset Alzheimer’s disease

EphA1 Erythropoietin-producing hepatocellular (Eph) receptor A1

EphA4 Erythropoietin-producing hepatocellular (Eph) receptor A4

EphB2 Eph receptor B2

ePK Eukaryotic protein kinase

EPOR Erythropoietin receptor

ErbB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2

ERK1/2 Extracellular-signal-regulated kinase 1/2

ESR1 Estrogen receptor 1

EV Envision method

F Female

FAEC Fully activated empty chip

FAK1/2 Focal adhesion kinase 1/2

FBS Fetal bovine serum

FCS Fetal calf serum

FDR False discovery rate

(13)

FES Feline sarcoma oncogene kinase

FITC Fluorescein isothiocyanate

FLT1 Fms-like tyrosine kinase 1

FMS Macrophage colony-stimulating factor 1 receptor (MCSF1R)

FRAP FKBP12-rapamycin-associated protein (mTOR)

FRK Fyn-associated tyrosine kinase

FTLD Frontotemporal dementia

Fyn Proto-oncogene tyrosine protein kinase Fyn

GCN2 General control nonderepressible 2 kinase

GDS Global deterioration scale of Reisberg

GFAP Glial fibrillary acidic protein

GL Granular layer

GLP Good laboratory practice

Glu Glutamate

GPCR G-protein-coupled receptor

GPRK5 G-protein-coupled receptor kinase 5

Gsk3 Glycogen synthase kinase 3 beta

GTP Guanosine-triphosphate

GWAS Genome-wide association study

HeLa Henrietta Lack’s immortal cell line

HPRD Human protein reference database

HRI Heme-regulated eukaryotic initiation factor eIF2 kinase

HRP Horseradish peroxidase

HSYA Hydroxyl-safflor yellow A

IFN- Interferon gamma

IGF1R Insulin-like growth factor 1 receptor kinase

IgG Immunoglobulin G

IHC Immunohistochemistry

IL-1 Interleukin 1 beta

IL-6 Interleukin 6

ILK Integrin-linked kinase

IRAK1/4 Interleukin-1 receptor-associated kinase 1/4

JAK1/2 Janus kinase 1/2

JNK c-Jun N-terminal kinase

kDa Kilodalton

KID Protein kinase immunodepletion

Lck Lymphocyte-specific protein tyrosine kinase

LIMK2 LIM domain kinase 2

LKB1 Liver kinase B1 (aka Serine/threonine kinase 11)

(14)

LPR Liquid permanent red

LPS Lipopolysaccharide

LRRK2 Leucine-rich repeat kinase 2

LTP Long term potentiation

Lyn Lck/Yes novel tyrosine kinase

M Male

MAPK Mitogen-activated protein kinase

MAP3K5 Mitogen-activated protein kinase kinase kinase 5

(aka apoptosis signal-regulating kinase 1)

MAPKAPK2 Mitogen-activated protein kinase-activated protein kinase 2

MAPT Microtubule-associated protein tau

MARCKS Myristoylated alanine-rich C-kinase substrate

MARK1-4 MAP/Microtubule affinity-regulating kinases 1-4

MCI Mild cognitive impairment

MCP-1 Monocyte chemotactic protein 1

MLKL Mixed lineage kinase domain-like

MMSE Mini-mental state examination

MOK MAPK/MAK/MRK overlapping kinase

M-PER Mammalian protein extraction reagent

mRNA Messenger ribonucleic acid

mTOR Mammalian target of rapamycin

MTDD Multitarget drug discovery

MTT 3-(4,5-diMethylThiazol-2-yl)-2,5-diphenylTetrazolium bromide

MUSK Muscle-specific kinase

NA Not available

NBB Netherlands Brain Bank

NF- B Nuclear factor kappa-light-chain-enhancer of activated B cells

NFT Neurofibrillary tangles

NIA-AA National Institute on Aging – Alzheimer’s Association

NIK Mitogen-activated protein kinase kinase kinase 14

(aka NF-Kappa-B-inducing kinase)

NINCDS-ADRDA National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer›s Disease and Related Disorders Association

NMDAR N-Methyl-D-aspartate receptor

not det. Not determined

NSAIDs Nonsteroidal anti-inflammatory drugs

NT Neuropil threads

p38 p38 mitogen-activated protein kinase

PAK1 p21-activated kinase 1

(15)

PBS Phosphate buffered saline

PD Parkinson’s disease

PD(P)K1 3-Phosphoinositide-dependent (protein) kinase 1

PEG Polyethylene glycol

PET Positron emission tomography

PI3K Phosphatidylinositol 3-kinase

PIP2 Phosphatidylinositol 4,5-bisphosphate

PINK1 PTEN induced putative kinase 1

PKA Protein kinase A

PKB Protein kinase B

PKC Protein kinase C

PKG Protein kinase G

PKR Pre-apoptotic protein kinase R

PLC Phospholipase C gamma

PMD Post mortem delay

PPI Protein-protein interaction

PS1 Presenilin 1

PS2 Presenilin 2

pTau Phosphorylated tau protein

PTEN Phosphatase and tensin homologue detected on chromosome 10

PTK Protein tyrosine kinase

PTK6 Protein tyrosine kinase 6 (BRK)

RACK Receptor for activated C-kinase

RAF Rapidly accelerated fibrosarcoma 1 serine kinase

Ras Rat sarcoma proteins

Rb Retinoblastoma

RET Rearranged during transfection receptor tyrosine kinase

RGC Receptor guanylate cyclases kinases

ROCK1 Rho-associated, coiled-coil-containing protein kinase 1

ROS Reactive oxygen species

RSK1 Ribosomal S6 kinase 1

RT Room temperature

RTK Receptor tyrosine kinase

S Serine

SAPK Stress activated protein kinase

SATA N-succinimidyl S-acetylthioacetate

SCD Subjective cognitive decline

SD Standard deviation

SDS Sodium dodecyl sulfate

(16)

SFPB Serum-free protein blocking

SGK Serum- and glucocorticoid-induced protein kinase

S6K p70 S6 kinase

SL Stratum Lacunosum

SMC Subjective memory complaints

smMLCK Myosin light-chain kinase

Sod2 Superoxide dismutase 2

SOP Standard operating procedures

Src Proto-oncogene sarcoma protein tyrosine kinase

STAT3 Signal transducer and activator of transcription 3

STE Homolog of sterile kinases

STK Serine/threonine kinase

STRING Search Tool for Retrieval of Interacting Genes/Proteins

Syk Spleen tyrosine kinase

T Threonine

TAK1 Transforming growth factor beta-activated kinase 1

TBB 4,5,6,7-TetraBromo-1H-Benzoztiazole

TBK1 Tank-binding kinase 1

TBS Tris-buffered saline

TDP Transactive response DNA binding protein

TGF- Transforming growth factor beta

TGFbR2 TGF-beta type 2 serine/threonine kinase receptor

TKL Tyrosine kinase-like

TNF- Tumour necrosis factor alpha

TREM2 Triggering receptor expressed on myeloid cells 2

TRKA Tropomyosin receptor kinase A

TRKB Tropomyosin receptor kinase B

tTau total tau

TTBK1 Tau-tubulin kinase 1

USA The United States of America

UV Ultraviolet

VU Vrije Universiteit Amsterdam

VASP Vasodilator-stimulated phosphoprotein

WB Western blotting

Y Tyrosine

(17)

ACKNOWLEDGMENTS

Surround yourself with people who believe in you, support and inspire you, not the ones who say ‘you can’t’.

This is probably the most read part of my thesis and likely the second (and last) after the title page. Therefore, I will do my best to make my colleagues, collaborators, friends and family proud. Just know, even if your name is not listed here, I am grateful for your support during the last 5 years.

First and foremost, I am grateful to the patients for letting us use their brain fluid (CSF) and private information and who donated their brains. Without them, we wouldn’t be able to conduct our research. A special thanks to Charlotte Teunissen and the NUBIN CSF bank for the supply of CSF samples for my studies. Also, to the Nederlands

Brain Bank for providing brain tissue, especially to Michiel Kooremanfor helping with

patient data.

I would like to express my deepest gratitude to my promotors Saskia and Philip and my co-promotors Jeroen and Riet for giving me the opportunity to be part of their teams and for their continuous support during the last years.

Dear Saskia, we have been through a lot together. You challenged and encouraged me even-handedly and played an essential role in forming the person I have become. I can’t put into words all the lessons I have learned from your tough love. Especially during difficult phases, I could always count on your support. You always made time for me when I needed help and I am honoured to have had such a strong female leader as my promotor.

Dear Philip, when we first met, I immediately valued your charisma and your fantastic sense of humour. Notwithstanding that you have countless responsibilities, you always made time for me and my concerns and I can’t thank you enough for the confidence you had in me and for giving me the opportunity to be part of your outstanding team at the Alzheimer center.

(18)

Dear Riet, you are so much more than a co-promotor to me. In you, I found a nederlandse moeder and I will miss working with you the most. I am impressed by your vast knowledge and relentlessness when it comes to ‘digging through the data’. I also have the utmost respect for your social skills.

Thank you Annemieke and Wiesje for your precious input and suggestions and for sharing your expertise and knowledge with me. Elise, Marlies and Wouter you are the backbone of our Pathology lab. You deserve special thanks for your patience in explaining the diverse procedures to me and for helping with the tissue samples. You always had an open ear for trouble-shooting and helping hands when the weeks were too short.

David, with your calm nature and wicked sense of humour you kept me going. How awesome that we shared similar experiences as PhD students. It was a pleasure working with you and to meet your (not so imaginary) family. Hripsime, thank you for the warm hugs and don’t forget: ‘Life is like a zebra! And if you get on the donkey it is one shame, Sandra, thank you for your support throughout the years, I admire you. Sietske, Betty, Sofie, Marissa, Sander, Maja, Rik, Lieke, Christiane, Argonde, Willem, Lieza and all the other AC colleagues: What a great time we had in Vancouver and Copenhagen at the AAIC.

In addition, I want to thank my PamGene family for their scientific input and friendship. Without you guys, I couldn’t have done it. Thank you, for your constant and invaluable support. Faris (fashion twins), Savi (turkish pizza), Niek (lab buddies), Lies (travels and SOPs), Rik (bioinformatics mastermind), Rene (Game of thrones), Rob (Syk, motivation), Arjé (motivation, curiosity), Diana (sample storage and sugarfree cake), Rinie (thinking outside the box), Adrienne (series, dogs), Almar (technical support and Vienna), Iskander (production, green cake), Piek (running), Mostafa (support), Monique (antibodies and relationships), Liesbeth (flipping the plate master), Karin (logistics), Martijn (cookies and sales), Dirk (GeneGO), Theo (surprise), Piet (KID), Hans (IT) and all the others.

I owe gratitude to our students. Tjado, without you, no Chapter 3. Beer is on me! Sjoukje, Marloes and Roxanna, thank you for your contribution to this thesis. Denise, Vera and Marina, thank you for the good times in the lab.

(19)
(20)

CURRICULUM VITAE

Andrea Friederike Nina Rosenberger was born on 5th of April

1985 in Vienna, Austria. From a young age she loved reading and travelling and organized her own birthday parties. In 2003, she graduated and started studying Biotechnology at the University of Natural Resources and Life Sciences in Vienna. The topic of her master thesis was Xylosylation in Trichomonas vaginalis. Whilst undertaking her studies, she worked at Biovertis for 2 years. Then she conducted research at the Department of Physiology, Pathophysiology and Immunology of the Medical University of Vienna. The goal was to identify candidate pharmacological chaperones and anti-chaperones from classes of target specific ligands.

After finishing her MSc (DI) in 2010, Andrea spent 4 months in Dundee, Scotland, where she joined the Lamond lab and researched ageing (Gene Regulation and Expression). The project focused on in vitro splicing and purification of HisUbi HeLa cells (Exo70). In the following 10 months, she gave a talk at a Parasitology conference in Melbourne and travelled around the world by herself. Visited countries included New Zealand, Fiji, Australia, Thailand, Malaysia, Singapore, Mexico, Guatemala and Belize. Mid 2011, Andrea started her PhD (onderzoeker in opleiding) at the Alzheimer center and Department of Pathology of the VU Medical Center in Amsterdam. During her PhD, she closely collaborated with two companies (IDDI, International Drug Development Institute and PamGene International B.V.

Referenties

GERELATEERDE DOCUMENTEN

The studies described in this thesis were carried out at the department of Pathology and the Alzheimer center, VU University Medical Center, Amsterdam, The Netherlands as well

Emmanuelle Leteurtre, Department of Pathology, CHRU Lille, Lille, France Nienke Loosekoot, Department of Medical Oncology, Cancer Center Amsterdam, VU Medisch Centrum, Amsterdam,

Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands Department of Thoracic Oncology, Clatterbridge Cancer Centre, Liverpool Heart &

Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Amsterdam Bone Center, Amsterdam Movement Sciences, De Boelelaan 1117, Amsterdam, the

van Kooyk (Department of Molecular Cell Biology and Immunology, VU University medical center, Amsterdam, The

1 VU University Medical Center, Department of Medical Microbiology and Infection Control, Amsterdam, 2 VU University Medical Center, Laboratory of Immunogenetics,

1 VU University Medical Center Amsterdam, Department of Nutrition and Dietetics, Internal Medicine, Amsterdam, Netherlands; 2 Amsterdam University of Applied Sciences,

Department of Psychiatry and EMGO Institute for health care and research, VU University Medical Centre, and Neuroscience Campus Amsterdam, the Netherlands. Carmilla MM