• No results found

report colour

N/A
N/A
Protected

Academic year: 2022

Share "report colour"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)t = 4466Myr. t = 4466Myr. t = 4466Myr. t = 3572.8Myr. t = 3572.8Myr. t = 3572.8Myr. t = 2679.6Myr. t = 2679.6Myr. t = 2679.6Myr. t = 1786.4Myr. t = 1786.4Myr. t = 1786.4Myr. t = 893.20Myr. t = 893.20Myr. t = 893.20Myr. t = 0Myr. t = 0Myr. t = 0Myr. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. 0.5. 1.0 a) composition. 0. 4500 0.301. b) temperature(degC): + streamfunction. 2.301 c) log(viscosity).. 

(2)  !"$#%&' ( )*,+-#% ).+/ )!0

(3)  (1 ( )%23 4+-# ).5768%

(4) 23+-9%.;:% ).#=< > ? 6  -@ )+/' (A B:% ).#C%#D@@ )+-123D237@% E%#D2F6G -H23 JIK:% ).#=<=L?% ( B /*H (@ )# .A%+/2M23.%?2(. EH  ),1+NPOQ(RSUTWV1 )#;6!@KEOQ(RS@XYV > .Z [6A. )\.

(5) (a)z (km) 0. (g)<Qsrf> (mW/m2). 5000. (d)<T> (degc). 1. 4000. 3000. 2000 0. 2000. 300 200 100 0. 4000. <T> (degc). (b)z (km) 0 -1.. 0.. 3. (h) B(t) (-). 3. (e)<vrms> (cm/yr). 1. 2. 1. 2. 1. 0. 0. 1023. 3. 1.. (f)<η> (Pa.s). (c)z (km). (i)ENT (%). vz (cm/yr) 1. 1022. 0. 2. 1. 0 1021. 1022. 0. <η> (Pa.s). 2000. 4000. 0. 2000. time (Myr). 4000. time (Myr).  ,   +- ,@ (  )5'@ (H ( .. > . %* ) " % ! (1 ( )%23 $+-# ). ? MW . ("(<H (Z2(. % :. )

(6) 4\  IE7@ ( H .

(7)  B.@@ )#C1476

(8)   (*..I FH (  )#Q@ )+/' (A < > 6?H (2(. %[L H ).2( I  R %# 2F6/A (7.Z.I )H (  )# H23 JI  K2(%H )YLG  C+/.Z. (0#%  ) #%2(@ P.  (

(9) +-# ). +- )( % +/##%. E23.%+Y H )G PZ+- # (9 )%#% )%23 E #;6,H.%+- W)H (  )# @ )+-9 ( % < [64 * J+- ) J * )# H ).2(JI %# A6EH.%+- )H (  )# H 23JI M   *  *6 +- )   23  ) FLN# )% JI %      23 V1@ 2(%H [6 %#   V > @@+ 2(%H <,' H H. )- ( )@ )*YQ ) FL 1+ % +/*. @ % 23 [6A<$;6 > %FI%23I A+- (@ (P%#Q16 )*@ +- )7( ? B )#D2(H ) C#;6

(10) %#CA6

(11)  /H. )4FH (  )# FH (P% - ) 2A )# .FI (MV  ( G%9 )%#% ,6A % > . 2(%H )!23  )@9%#-@  G# (;. (@ )#Y+/*. ?+Y@ ( .#/ > .2 2( H )4 (% ) )7MH. )4)H (A )# [H (P -@.8+Y7. -H.Z%+-   -%9 (42(H /C#;6GM% /23 @ )+-9 ( %  . .

(12) . . . . . . . . . . . . .  . . . . !. #"$&%. '. '. )(. *+%,. -. .. . +. /.

(13) t = 3349.5Myr. t = 4466Myr. 0. 0 500. depth km. depth km. 500 1000 1500 2000 2500. 1000 1500 2000 2500. 0.5. 1.0. 0.5. 1.0. composition. composition.  4   $L/%%,5 E23+/' %.':% ).# 1?-+-# ).9L?  23 )G# )%JI V W ) 6A ,. . %.  +Y..  ( +Y. > %FI%23I ZP% +-@ )# > I K.FL  #%23HJIQ  #% ( ( +/*. %#  .FL 23*.Z  W+/# J+/*. YV @ ( W.@  )23 6A  P  K%FL?? P+/ E# (9 )%# )* > [I%23I *+ > ()< L?2  Z/2(.2(%.@ )# %%D @ )+-9 (  #% &9 ( )%23 > ( L! ( )  K# ( ( +/*.  )@ ( H0%#  [H ( .IY+/@ (A. ! )2(@ P @ )+-9 (  #% &9 ( )%23 <% @ > .JI  % .FI ( Y#% )23 )@ )GL? +/  

(14) H .% G % > FI%23I *+ > ( )2  )?  )A.IY23%@*$H.

(15)  R B"@ ( 

(16) I +-# ). +/  . . . %. . . . -  (" ( )23 G+-# ). G23+-9%. 23 )# )%JIB    ) %.8-

(17) H. ?9R   !   YFLG %

(18)  V

(19) R ) 6?%# > ( ) 2A@ ) %@@ )# <% P# ( ( +/*. E )@ ( HG?2(.@ P@  @ > .

(20) @@ P, M )%#  % M+/# ).'+/  %[L?%$ 4.FL ( .+Y 1 @ > . M.FI ( BFH (  

(21) I

(22) ZG%#  # )% JI 23 )@ Z  B# ( (C+/7. 

(23)  (M*@ ( )@0 > @ (H G%  E2A )+/2(.5*@ (123 $+ 2  % ( % Z  E (1 ( )%23 P+/# ). . . . . /. . . . . (. !#"$%'&()&*!+-,./102&4365%78. % ?# (%Y%!  > #%%23%M . > L?Z.. )2  <# (9 )%# 0  (H

(24)  ( +Y. > [I%23I *9D ) 0 . >   Y )@@ 23@ )# @  0%9 (E+/*. 0%# 23.. )23P @ , 0%@ -@ =  /@@  (W . >  2(2(%+W%.@ - @D! -# ( (Q+/*. B )@ (HF *(<9 -% H23JI .Z > ?#%23  L! (% ) 

(25) . H 23JI -%%; # :RRD%# RR + #% (%=<  )@9 )23H ).I  HZ23 IQ%:. 01@ ( 

(26) I,+-#% ).+/ <2(.%#%%M H23 I/+/ + + 0 G#% ( ( .FL (+/*. < H (IY+Y.8@W

(27)  % )#%23@ )# > I0 %# (9 )%# )*,@%#I  %@ %# @ FH2( V RRF6EV  (  P < *6A . .. . .

(28). .. . . . . . &. %% ( +- <  % H23 JI G   > #%%23@ )# . > -23 )@ )B  ( M23*H )23 23 )..Z-%# )HA E.   )#% )%23 $+- VMI* A# (U6B% ?.FL (!+Y7.  H )7..I<7% $" +/ (!23 %  )23I2(. ) @  B 23 WZ  W"A+ 8;.%+- )(<;L?%2A  %@ M W ( +Y. > %%#% I .Z)I ()<=M P@C  # ( ( +/*.  )@ (H V   (76A=    23 )#=<8+/..!+-%*B?+/@ ( Z. 1+  # ( ( .FI (G, )*@ % )# V  P  (0%#  "6A . . . . R.

(29) a) RFM. t = 4466Myr. b) D0. t = 4466Myr. c) UNIF. t = 4466Myr. d) TC. t = 4466Myr. e) SCLD. t = 4466Myr. f) LIN. t = 4466Myr. depth km. 0 500 1000 1500 2000 2500 0. 2000. 4000. 0. 2000. 4000. 0. 2000. 4000. 0. 2000. 4000. 0. 2000. 4000. 0. 2000. 4000. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. depth km. 0 500 1000 1500 2000 2500. 0.5. 1.0. 0.. composition. 4000. <T> (degc). T (degC) + streamfunction.     +-9.$%% V . (1A6A<$@ )+-9 (   @@ )+-1%23  %KV +/#%#%. [6W%#  ( (A+/ V1 7A6,( < : : 

(30) I 1?+-# ). 76  W< > 6MR<2F6( <#;6 M< [6   %# A6 

(31) P #". . ,)".

(32) . ".

(33) (a)Tman (degC). 4500 4000 3500 3000 2500 0.0. 1000.0. 2000.0. 3000.0. 4000.0. 0. 1000. 2000. 3000. 4000. 0. 1000. 2000. 3000. 4000. (b)Tcore (degC). 4500. 4000. 3500. (c)Qcmb (mW/m2). 50. 0. -50. -100. time (Myr).   W76 +- 0# (9 )%# )%23 - 7 64H.%+- YFH (  )# / + *. Y@ )+-9 ( % < > 6E23 Y@ )+/' (A %# 2F6! )  # )% IY23,%

(34) ,H )) > .2 G Q< > .Z MR<;. ( < ( )

(35) < )#  W<  

(36) P . . . . . ". &. . ". ". %. ". +. . . :. . . . .

(37) 0. 0. 0. depth. RFM (dlnv/dX=0) RFM D0 LIN. 0.5. 1. 0.5. 0. 0.01. 0.5. 1 0.03 0. 0.02. 1 0.03 1. 0.01 0.02 b) dln vs. 2 3 c) R = dln vs / dln vp. a) dln vp.    C J+-;.%# ) "M76   %# > 6  <92F6$H. )?"

(38)   )+-.Z2(. A+- (@ (B  2( H )  !1 +-#% ). ? L?0V .# > . 2 %65%#PLG,V #@@ )# > .2 %6 23+-9%.* 3&9 )23(<7+-# ). MR V > .Z [6%# +-# ).   V1  [6A . ). -. ). .   . . .. +

(39) %365 %  +7 + 02/&4,3. /,. .. 08.78%!78!,*. & !. % Y@ )+-9 (  %# 23+-9Q:% ).#E   (1 ( )%23 +-# ).! 0H ) 1W L!D+-# ).!+- )W     Y2(@ )# .@ ( . H ).2(JIDH (<5 [L?QQ%   K23 - 0@ )Z+/2 # (AH H H. )BL ( 2A@ ) 1- .[L! (Y+Y7. <!%.I .FL (Y+/*. H ).2(JI H A%WL?.Z. > #%Z2(%@ )# 9  )B # ( (0+/7. $ )@ (H  )+/% (<*237% .Z)I (

(40) V %  <7 4\  IU6A< .Z@ ( . @ )+-9 ( % 4%# 23+-9 H %, E+/.. ,%@  )7.I< E.@ ( .9H ).2( I0H $ . +/..E V  R /6A  ).2( I H A%-23 )@ 1@ (Y @ % @  J.Z)I ( )# 237H )23 < L?% )  B.FI (EFLG

(41)  %:2(*?@9 ;7I V1   : : I*U6A ? )=<9

(42) % W+/ B#% (%K. (H ). <=23.#  > #%23

(43) . >  23 Z@8L? % ?8# ( (Y+Y7. $ )@ (H)<7L?%2A-.@E%8P#% &9 ( )7823+/' = . )#%@4H %   %#Y L,)H )@9 ( )#YZ % $ # ( 5  %#   < )@9 )23H ).I<78# (% > (JL ( ) RRR

(44) # RR + , .FL ( # (%=<  H ).2( I4H A%5 ) .IMH%=< #% 8@

(45)  @..I 23%7 > @@+ @ )+-9 (  > %%#I % -* J+/ ) J % )# V C 6M+-.Z%# )M,  G%#  LFH 0H ).2( )(<51@ (.   

(46) I +-# ). +/ <  -H ) > IK% /% >   ) > .2 K2(H )PD  (< > % B#%@@ )# > .2 2( H )E[L  % ).IB ( +/.; 3&9 )23  M@ )+/Z2?# ( H H )!123+-9YL ( M@ (@ ( (   G ).H ).I/ +/.. #%&' ( )23 > (JL ( )D -% >   )D# # )# > .2 K2(H )PFLGG% /+/.. +/%#  B 3&9 )23 823+-9%.=H  K PH ).2( I @@2() 9  ) 23+- )# @  @ )Z+/24#%0H )  K@@ ( E#   V RRR76YV   :6A<5 CC+-.Z%# )

(47) C /.[L! ( +/7. B Y  > M:%H +/ )$@*0.    (2DH ) % D%:. C1  W D  / /@   LFH )@9 ( )# H ).2( I H %(    . . . . . . . ". .

(48) . . /. . . . . . . . . +. . .

(49) .  . .. -. . '. . (. ). -. .

(50) .. .. -. '. . '. .. .

(51) .. . .. .. . '). #. -. R. . .

(52) (2 .2(.%(<,L?% ( % )  H %/4 @ )+Y2 # ( H H )YL! ( K (. )23@ )# <  ).I  (A+/. H 5. )#W@4 H .Z !  <723%@*L?W# (% V   (2<7#@@ )# > .2 P2(%H [6A # %2(.Z%#% 23+-9%. 3&9 )23 . )#% @

(53) W%23 )   LGP# (P @GH. )   ?P !.FL ( +-@+/*.  . . $. .. . t = 4466Myr. 0. depth km. 500 1000 1500 2000 2500. t = 893.20Myr. 0. depth km. 500 1000 1500 2000 2500. 0.5. 1.0. 0.. a) composition. 4000 b) temperature (degC).   8%% 176  ,23+-9.:% ).#W%# > 6= @ )+-9 (  :% ).# %#W@@ )+ 1%23 1?+-# ). ? . . t = 4466Myr. 0 500. depth km. . 1000 1500 2000 2500. t = 893.20Myr. 0 500. depth km. ,. 1000 1500 2000 2500. -.02. .02 seismic anomaly (vp). -.02. .02 seismic anomaly (vs).    8   )#23@ )# H %$Z @ )+/Z2GL,)H )' ( )#   4 (" ( )23 P+-# ). . .

(54) t = 4466Myr. 0. depth km. 500 1000 1500 2000 2500. t = 893.20Myr. 0. depth km. 500 1000 1500 2000 2500. 0.5. 1.0. 0.. a) composition. 4000 b) temperature (degC).   <8%% 176  ,23+-9.:% ).#W%# > 6= @ )+-9 (  :% ).# %#W@@ )+ 1%23 1?+-# ). 

(55)  ,. t = 4466Myr. 0. depth km. 500 1000 1500 2000 2500. t = 893.20Myr. 0. depth km. 500 1000 1500 2000 2500. -.02. .02. -.02. seismic anomaly (vp). .02 seismic anomaly (vs).   8 )#23@ )# H %$Z @ )+Y2

(56) LFH )@9 ( )#  +-# ). .   . +

(57) %365 %. . +7 + 08&4,3. . &(7+. 78+ +-. /,102+-. *&. . 5 &(32 08& ,+-. . 78+. /!, 0. % W@@  )@E%+/ )7E@423+-9%..FI (  

(58)  -.2 K! (HZ# )%23 B"E 23+-9%. *@ ( 23   .FL (M+Y7.  ? )23 )7ML 

(59) M#%. P# 2A* > (WV RRF6

(60) %# ,. %# 8 # ( . .. . .. ".

(61).

(62) t = 4466Myr. 0. depth km. 500 1000 1500 2000 2500. t = 893.20Myr. 0. depth km. 500 1000 1500 2000 2500. 0.5. 1.0. 0.. a) composition. 4000 b) temperature (degC).   *8%% 176  ,23+-9.:% ).#W%# > 6= @ )+-9 (  :% ).# %#W@@ )+ 1%23 1?+-# ). MR . t = 4466Myr. 0. depth km. 500 1000 1500 2000 2500. t = 893.20Myr. 0 500. depth km. ,. 1000 1500 2000 2500. -.02. .02 seismic anomaly (vp). %  \ . . -.02. .02 seismic anomaly (vs).  )#%23@ )# H   @ ) +/2

(63) LFH )@9 ( )#  +-#% ).

(64)  R.

(65) .

(66) epsilon = 1.10^-6. epsilon = 1.10^-7 1.0. 0.8 0.6 0.5 0.4 0.2 0.0 0.0. 1.0 epsilon = 1.10^-8. 0.0 0.0. 2.0. 1.0. 1.0. 0.5. 0.5. 0.0 0.0. 1.0. 0.0 0.0. 2.0. 1.0 epsilon = 1.10^-9. 1.0. 2.0. 2.0.  W  M  @@A >    W@ 23 ( Z2(. ) " # &' ( )7 H. ) W ( 76 EOQ(R  <%2F6 4  OQ(R  %# #;6 4OQ(R  . #. ,. .  O (R< > 6. ,.  %MM -2(@ <   FLGM B* J+/ ) J % -H ).2(JI  B"E+/# ).Z( > H%.I<  @. 23*H ( )GL?  +/.. (

(67) )<%#%Z2(W%  P%+- (A2(.9 )%.  P?I ( @ > . )# > I  4@A%%2( (  (  + %

(68)  > FH 4,23%2(.%#% )#/%$ H.

(69)   (R M %% @ G", M+-# ).!Y!%#I % /#%H ( )%23 0% 232(.Z.I H%% )(< L?. B /H ).2( I : ).#D )+/Z%4@ > .   GFL (H ()< ( % (  %%.# 2  )2  FL % )$2(.2(%. > ))H 4L?  )' )23$@  $L? ) %Z ,23# 41 . @ (A+ 2(.2(.%( .  . . . .. .  .

(70) 0.2. layer thickness. 0.19. 0.18. 0.17. 0. 1000. 2000. 3000. 4000. 5000. time (Myr).  W  %

(71) %; 7,%Z2  )  M# )% M.Z)I ($L?0+-  ,.2 ;< )# #0 ( ) 2(H )$[L  4 )%.$1 4OQ(R EO (R 4%#QEOD(R < )@9 )23H ).I . . .. %. .. ,. . <Vrms> (cm/yr). 0.30. 0.20.     J+- ) J *% )# H ).2(JI  G- %%23 +-   EA (7.5 Z$ (% ) )7?+- 1 + R-@ RRR 

(72) I) 8+ .*$@Y#% % #% )( POQ(R  EOQ(R  EO (R  %#DEOQ(R  . . . . ,. .. . . . 

(73). . .

(74)

Referenties

GERELATEERDE DOCUMENTEN

This table reports average coefficients of the time-series regression of five sin portfolios (SP1-SP5)(the monthly excess return for an value-weighted portfolio of sin stocks –

Now the proof mass is displaced a small distance δy, so that the horizontal flexures are rotated a small angle θ.. A schematic representation of the big mass design shows the proof

Hinton &amp; Salakhutdinov (2006) showed that a class of neural networks known as ‘autoencoders’ can be used to find lower-dimensional structure within a dataset, by attempting

Seismic TF (bench top/ ground) Floor shaked with big shaker, vert... Attempts to Stiffen the supports.. • Tests with Optic

The trajectory detection should be able to compare models of different contexts to detect the changes over time and the two- dimensional aspect of collective detection has to

Chapter 2 Sharp Penalty Term and Time Step Bounds for the Interior Penalty Discontinuous Galerkin Method for Linear Hyperbolic Problems1 Abstract We present sharp and sufficient

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

• In the low frequency range from 30 mHz to 1 Hz, seismic noise is attributed to interactions between oceanic waves and the ocean ground, referred to as microseismic activity..